ceph/qa/workunits/rbd/concurrent.sh
Alex Elder 97c6619d3f qa: update the rbd/concurrent.sh workunit
A few changes, now that a few rbd problems have been fixed.
First, the more substantive changes:
    - Generate a source file, and compare what's read back from rbd
      devices with the content of that file.
    - Write to the rbd device such that the written data spans
      an (assumed 4 MB) rbd object boundary, as well as starting
      and ending on non-page-aligned offsets.
    - Perform multiple reads on rbd devices: entirely within a range
      before any written data; beginning before but ending within
      written data; the exact written data (and validating what's
      read); beginning within written data but ending after it;
      reading after written data but within a written rbd object;
      and reading from an unwritten rbd object.
    - Have the sleep between iterations provide a non-integer value
      to avoid zero (or quantized) delays.

Also, some a little less substantive (but possibly informative):
    - Don't run with "set -x".  It produces a ton of noise that is
      not useful for this test.  This is an exerciser, looking
      really for system crashes during concurrent activity, and
      knowing which commands were (concurrently) active isn't going
      to help much in diagnosis.
    - Create two more directories, used to track the degree of
      concurrency (more or less) and the highest rbd id consumed.
      Files whose names are numbers are touched in each, and the
      highest at the end is the highest during the run.  This gets
      around issues passing environment info from sub-shells to the
      top-level shell.  As a bonus, it offers a better chance of
      avoiding problems due to concurrent update.
    - NAMESDIR is renamed NAMES_DIR, and it (and the others) is
      set up in the setup() function.
    - Increase the concurrency and iteration counts.
    - Move the default definitions before the ceph secrets stuff

Signed-off-by: Alex Elder <elder@inktank.com>
2013-01-31 11:55:59 -06:00

387 lines
10 KiB
Bash
Executable File

#!/bin/bash
# Copyright (C) 2013 Inktank Storage, Inc.
#
# This is free software; see the source for copying conditions.
# There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.
#
# This is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as
# published by the Free Software Foundation version 2.
# Alex Elder <elder@inktank.com>
# January 29, 2013
################################################################
# The purpose of this test is to exercise paths through the rbd
# code, making sure no bad pointer references or invalid reference
# count operations occur in the face of concurrent activity.
#
# Each pass of the test creates an rbd image, maps it, and writes
# some data into the image. It also reads some data from all of the
# other images that exist at the time the pass executes. Finally,
# the image is unmapped and removed. The image removal completes in
# the background.
#
# An iteration of the test consists of performing some number of
# passes, initating each pass as a background job, and finally
# sleeping for a variable delay. The delay is initially a specified
# value, but each iteration shortens that proportionally, such that
# the last iteration will not delay at all.
#
# The result exercises concurrent creates and deletes of rbd images,
# writes to new images, reads from both written and unwritten image
# data (including reads concurrent with writes), and attempts to
# unmap images being read.
# Usage: concurrent [-i <iter>] [-c <count>] [-d <delay>]
#
# Exit status:
# 0: success
# 1: usage error
# 2: other runtime error
# 99: argument count error (programming error)
# 100: getopt error (internal error)
################################################################
# set -x
#
# Default flag values; RBD_CONCURRENT_ITER names are intended
# to be used in yaml scripts to pass in alternate values, e.g.:
# env:
# RBD_CONCURRENT_ITER: 20
# RBD_CONCURRENT_COUNT: 5
# RBD_CONCURRENT_DELAY: 3
ITER_DEFAULT=${RBD_CONCURRENT_ITER:-100}
COUNT_DEFAULT=${RBD_CONCURRENT_COUNT:-5}
DELAY_DEFAULT=${RBD_CONCURRENT_DELAY:-5} # seconds
CEPH_SECRET_FILE=${CEPH_SECRET_FILE:-}
CEPH_ID=${CEPH_ID:-admin}
SECRET_ARGS=""
if [ "${CEPH_SECRET_FILE}" ]; then
SECRET_ARGS="--secret $CEPH_SECRET_FILE"
fi
################################################################
function setup() {
ID_MAX_DIR=$(mktemp -d /tmp/image_max_id.XXXXX)
ID_COUNT_DIR=$(mktemp -d /tmp/image_ids.XXXXXX)
NAMES_DIR=$(mktemp -d /tmp/image_names.XXXXXX)
SOURCE_DATA=$(mktemp /tmp/source_data.XXXXXX)
# This assumes it's easier to read a file than generate
# random data. Use busybox because it is a big executable.
dd if="/bin/busybox" of="{SOURCE_DATA}" bs=2048 count=66 \
>/dev/null 2>&1
# List of rbd id's *not* created by this script
export INITIAL_RBD_IDS=$(ls /sys/bus/rbd/devices)
sudo chown ubuntu /sys/bus/rbd/add /sys/bus/rbd/remove
# Set up some environment for normal teuthology test setup.
# This really should not be necessary but I found it was.
TOP="/tmp/cephtest"
export CEPH_ARGS="--conf ${TOP}/ceph.conf"
export CEPH_ARGS="${CEPH_ARGS} --keyring ${TOP}/data/client.0.keyring"
export CEPH_ARGS="${CEPH_ARGS} --name client.0"
export LD_LIBRARY_PATH="${TOP}/binary/usr/local/lib:${LD_LIBRARY_PATH}"
export PATH="${TOP}/binary/usr/local/bin:${PATH}"
export PATH="${TOP}/binary/usr/local/sbin:${PATH}"
}
function cleanup() {
[ ! "${ID_MAX_DIR}" ] && return
local id
local image
# Unmap mapped devices
for id in $(rbd_ids); do
image=$(cat "/sys/bus/rbd/devices/${id}/name")
rbd_unmap_image "${id}"
rbd_destroy_image "${image}"
done
# Get any leftover images
for image in $(rbd ls 2>/dev/null); do
rbd_destroy_image "${image}"
done
wait
sync
rm -f "${SOURCE_DATA}"
[ -d "${NAMES_DIR}" ] && rmdir -f "${NAMES_DIR}"
sudo chown root /sys/bus/rbd/add /sys/bus/rbd/remove
echo "Max concurrent rbd image count was $(get_max "${ID_COUNT_DIR}")"
rm -rf "${ID_COUNT_DIR}"
echo "Max rbd image id was $(get_max "${ID_MAX_DIR}")"
rm -rf "${ID_MAX_DIR}"
}
function get_max() {
[ $# -eq 1 ] || exit 99
local dir="$1"
ls -U "${dir}" | sort -n | tail -1
}
trap cleanup HUP INT QUIT
# print a usage message and quit
#
# if a message is supplied, print that first, and then exit
# with non-zero status
function usage() {
if [ $# -gt 0 ]; then
echo "" >&2
echo "$@" >&2
fi
echo "" >&2
echo "Usage: ${PROGNAME} <options> <tests>" >&2
echo "" >&2
echo " options:" >&2
echo " -h or --help" >&2
echo " show this message" >&2
echo " -i or --iterations" >&2
echo " iteration count (1 or more)" >&2
echo " -c or --count" >&2
echo " images created per iteration (1 or more)" >&2
echo " -d or --delay" >&2
echo " maximum delay between iterations" >&2
echo "" >&2
echo " defaults:" >&2
echo " iterations: ${ITER_DEFAULT}"
echo " count: ${COUNT_DEFAULT}"
echo " delay: ${DELAY_DEFAULT} (seconds)"
echo "" >&2
[ $# -gt 0 ] && exit 1
exit 0 # This is used for a --help
}
# parse command line arguments
function parseargs() {
ITER="${ITER_DEFAULT}"
COUNT="${COUNT_DEFAULT}"
DELAY="${DELAY_DEFAULT}"
# Short option flags
SHORT_OPTS=""
SHORT_OPTS="${SHORT_OPTS},h"
SHORT_OPTS="${SHORT_OPTS},i:"
SHORT_OPTS="${SHORT_OPTS},c:"
SHORT_OPTS="${SHORT_OPTS},d:"
# Short option flags
LONG_OPTS=""
LONG_OPTS="${LONG_OPTS},help"
LONG_OPTS="${LONG_OPTS},iterations:"
LONG_OPTS="${LONG_OPTS},count:"
LONG_OPTS="${LONG_OPTS},delay:"
TEMP=$(getopt --name "${PROGNAME}" \
--options "${SHORT_OPTS}" \
--longoptions "${LONG_OPTS}" \
-- "$@")
eval set -- "$TEMP"
while [ "$1" != "--" ]; do
case "$1" in
-h|--help)
usage
;;
-i|--iterations)
ITER="$2"
[ "${ITER}" -lt 1 ] &&
usage "bad iterations value"
shift
;;
-c|--count)
COUNT="$2"
[ "${COUNT}" -lt 1 ] &&
usage "bad count value"
shift
;;
-d|--delay)
DELAY="$2"
shift
;;
*)
exit 100 # Internal error
;;
esac
shift
done
shift
}
function rbd_ids() {
[ $# -eq 0 ] || exit 99
local ids
local i
[ -d /sys/bus/rbd ] || return
ids=" $(echo $(ls /sys/bus/rbd/devices)) "
for i in ${INITIAL_RBD_IDS}; do
ids=${ids/ ${i} / }
done
echo ${ids}
}
function update_maxes() {
local ids="$@"
local last_id
# These aren't 100% safe against concurrent updates but it
# should be pretty close
count=$(echo ${ids} | wc -w)
touch "${ID_COUNT_DIR}/${count}"
last_id=${ids% }
last_id=${last_id##* }
touch "${ID_MAX_DIR}/${last_id}"
}
function rbd_create_image() {
[ $# -eq 0 ] || exit 99
local image=$(basename $(mktemp "${NAMES_DIR}/image.XXXXXX"))
rbd create "${image}" --size=1024
echo "${image}"
}
function rbd_image_id() {
[ $# -eq 1 ] || exit 99
local image="$1"
grep -l "${image}" /sys/bus/rbd/devices/*/name 2>/dev/null |
cut -d / -f 6
}
function rbd_map_image() {
[ $# -eq 1 ] || exit 99
local image="$1"
local id
rbd map "${image}" --user "${CEPH_ID}" ${SECRET_ARGS}
udevadm settle
id=$(rbd_image_id "${image}")
echo "${id}"
}
function rbd_write_image() {
[ $# -eq 1 ] || exit 99
local id="$1"
# Offset and size here are meant to ensure beginning and end
# cross both (4K or 64K) page and (4MB) rbd object boundaries.
# It assumes the SOURCE_DATA file has size 66 * 2048 bytes
dd "${SOURCE_DATA}" of="/dev/rbd${id}" bs=2048 seek=2015 \
> /dev/null 2>&1
}
# All starting and ending offsets here are selected so they are not
# aligned on a (4 KB or 64 KB) page boundary
function rbd_read_image() {
[ $# -eq 1 ] || exit 99
local id="$1"
# First read starting and ending at an offset before any
# written data. The osd zero-fills data read from an
# existing rbd object, but before any previously-written
# data.
dd if="/dev/rbd${id}" of=/dev/null bs=2048 count=34 skip=3 \
> /dev/null 2>&1
# Next read starting at an offset before any written data,
# but ending at an offset that includes data that's been
# written. The osd zero-fills unwritten data at the
# beginning of a read.
dd if="/dev/rbd${id}" of=/dev/null bs=2048 count=34 skip=1983 \
> /dev/null 2>&1
# Read the data at offset 2015 * 2048 bytes (where it was
# written) and make sure it matches the original data.
cmp --quiet "${SOURCE_DATA}" "/dev/rbd${id}" 0 4126720 ||
echo "MISMATCH!!!"
# Now read starting within the pre-written data, but ending
# beyond it. The rbd client zero-fills the unwritten
# portion at the end of a read.
dd if="/dev/rbd${id}" of=/dev/null bs=2048 count=34 skip=2079 \
> /dev/null 2>&1
# Now read starting from an unwritten range within a written
# rbd object. The rbd client zero-fills this.
dd if="/dev/rbd${id}" of=/dev/null bs=2048 count=34 skip=2115 \
> /dev/null 2>&1
# Finally read from an unwritten region which would reside
# in a different (non-existent) osd object. The osd client
# zero-fills unwritten data when the target object doesn't
# exist.
dd if="/dev/rbd${id}" of=/dev/null bs=2048 count=34 skip=4098 \
/dev/null 2>&1
}
function rbd_unmap_image() {
[ $# -eq 1 ] || exit 99
local id="$1"
rbd unmap "/dev/rbd${id}" > /dev/null 2>&1
udevadm settle
}
function rbd_destroy_image() {
[ $# -eq 1 ] || exit 99
local image="$1"
# Don't wait for it to complete, to increase concurrency
rbd rm "${image}" >/dev/null 2>&1 &
rm -f "${NAMES_DIR}/${image}"
}
function one_pass() {
[ $# -eq 0 ] || exit 99
local image
local id
local ids
local i
image=$(rbd_create_image)
id=$(rbd_map_image "${image}")
ids=$(rbd_ids)
update_maxes "${ids}"
for i in ${rbd_ids}; do
if [ "${i}" -eq "${id}" ]; then
rbd_write_image "${i}"
else
rbd_read_image "${i}"
fi
done
rbd_unmap_image "${id}"
rbd_destroy_image "${image}"
}
################################################################
parseargs "$@"
setup
for iter in $(seq 1 "${ITER}"); do
for count in $(seq 1 "${COUNT}"); do
one_pass &
done
# Sleep longer at first, overlap iterations more later.
# Use awk to get sub-second granularity (see sleep(1)).
sleep $(echo "${DELAY}" "${iter}" "${ITER}" |
awk '{ printf("%.2f\n", $1 - $1 * $2 / $3);}')
done
wait
cleanup
exit 0