ceph/doc/rados/troubleshooting/troubleshooting-pg.rst
John Wilkins 3b8057ac93 doc: Bifurcating OSD and PG Troubleshooting. Added PG troubleshooting doc.
Signed-off-by: John Wilkins <john.wilkins@inktank.com>
2013-04-18 13:30:05 -07:00

262 lines
9.2 KiB
ReStructuredText

=====================
Troubleshooting PGs
=====================
Placement Groups Never Get Clean
================================
There are a few cases where Ceph placement groups never get clean:
#. **One OSD:** If you deviate from the quick start and use only one OSD, you
will likely run into problems. OSDs report other OSDs to the monitor, and
also interact with other OSDs when replicating data. If you have only one
OSD, a second OSD cannot check its heartbeat. Also, if you remove an OSD
and have only one OSD remaining, you may encounter problems. An secondary
or tertiary OSD expects another OSD to tell it which placement groups it
should have. The lack of another OSD prevents this from occurring. So a
placement group can remain stuck “stale” forever.
#. **Pool Size = 1**: If you have only one copy of an object, no other OSD will
tell the OSD which objects it should have. For each placement group mapped
to the remaining OSD (see ``ceph pg dump``), you can force the OSD to notice
the placement groups it needs by running::
ceph pg force_create_pg <pgid>
#. **CRUSH Rules:** Another candidate for placement groups remaining
unclean involves errors in your CRUSH map.
As a general rule, you should run your cluster with more than one OSD and a
pool size greater than 1 object replica.
Stuck Placement Groups
======================
It is normal for placement groups to enter states like "degraded" or "peering"
following a failure. Normally these states indicate the normal progression
through the failure recovery process. However, if a placement group stays in one
of these states for a long time this may be an indication of a larger problem.
For this reason, the monitor will warn when placement groups get "stuck" in a
non-optimal state. Specifically, we check for:
* ``inactive`` - The placement group has not been ``active`` for too long
(i.e., it hasn't been able to service read/write requests).
* ``unclean`` - The placement group has not been ``clean`` for too long
(i.e., it hasn't been able to completely recover from a previous failure).
* ``stale`` - The placement group status has not been updated by a ``ceph-osd``,
indicating that all nodes storing this placement group may be ``down``.
You can explicitly list stuck placement groups with one of::
ceph pg dump_stuck stale
ceph pg dump_stuck inactive
ceph pg dump_stuck unclean
For stuck ``stale`` placement groups, it is normally a matter of getting the
right ``ceph-osd`` daemons running again. For stuck ``inactive`` placement
groups, it is usually a peering problem (see :ref:`failures-osd-peering`). For
stuck ``unclean`` placement groups, there is usually something preventing
recovery from completing, like unfound objects (see
:ref:`failures-osd-unfound`);
.. _failures-osd-peering:
Placement Group Down - Peering Failure
======================================
In certain cases, the ``ceph-osd`` `Peering` process can run into
problems, preventing a PG from becoming active and usable. For
example, ``ceph health`` might report::
ceph health detail
HEALTH_ERR 7 pgs degraded; 12 pgs down; 12 pgs peering; 1 pgs recovering; 6 pgs stuck unclean; 114/3300 degraded (3.455%); 1/3 in osds are down
...
pg 0.5 is down+peering
pg 1.4 is down+peering
...
osd.1 is down since epoch 69, last address 192.168.106.220:6801/8651
We can query the cluster to determine exactly why the PG is marked ``down`` with::
ceph pg 0.5 query
.. code-block:: javascript
{ "state": "down+peering",
...
"recovery_state": [
{ "name": "Started\/Primary\/Peering\/GetInfo",
"enter_time": "2012-03-06 14:40:16.169679",
"requested_info_from": []},
{ "name": "Started\/Primary\/Peering",
"enter_time": "2012-03-06 14:40:16.169659",
"probing_osds": [
0,
1],
"blocked": "peering is blocked due to down osds",
"down_osds_we_would_probe": [
1],
"peering_blocked_by": [
{ "osd": 1,
"current_lost_at": 0,
"comment": "starting or marking this osd lost may let us proceed"}]},
{ "name": "Started",
"enter_time": "2012-03-06 14:40:16.169513"}
]
}
The ``recovery_state`` section tells us that peering is blocked due to
down ``ceph-osd`` daemons, specifically ``osd.1``. In this case, we can start that ``ceph-osd``
and things will recover.
Alternatively, if there is a catastrophic failure of ``osd.1`` (e.g., disk
failure), we can tell the cluster that it is ``lost`` and to cope as
best it can.
.. important:: This is dangerous in that the cluster cannot
guarantee that the other copies of the data are consistent
and up to date.
To instruct Ceph to continue anyway::
ceph osd lost 1
Recovery will proceed.
.. _failures-osd-unfound:
Unfound Objects
===============
Under certain combinations of failures Ceph may complain about
``unfound`` objects::
ceph health detail
HEALTH_WARN 1 pgs degraded; 78/3778 unfound (2.065%)
pg 2.4 is active+degraded, 78 unfound
This means that the storage cluster knows that some objects (or newer
copies of existing objects) exist, but it hasn't found copies of them.
One example of how this might come about for a PG whose data is on ceph-osds
1 and 2:
* 1 goes down
* 2 handles some writes, alone
* 1 comes up
* 1 and 2 repeer, and the objects missing on 1 are queued for recovery.
* Before the new objects are copied, 2 goes down.
Now 1 knows that these object exist, but there is no live ``ceph-osd`` who
has a copy. In this case, IO to those objects will block, and the
cluster will hope that the failed node comes back soon; this is
assumed to be preferable to returning an IO error to the user.
First, you can identify which objects are unfound with::
ceph pg 2.4 list_missing [starting offset, in json]
.. code-block:: javascript
{ "offset": { "oid": "",
"key": "",
"snapid": 0,
"hash": 0,
"max": 0},
"num_missing": 0,
"num_unfound": 0,
"objects": [
{ "oid": "object 1",
"key": "",
"hash": 0,
"max": 0 },
...
],
"more": 0}
If there are too many objects to list in a single result, the ``more``
field will be true and you can query for more. (Eventually the
command line tool will hide this from you, but not yet.)
Second, you can identify which OSDs have been probed or might contain
data::
ceph pg 2.4 query
.. code-block:: javascript
"recovery_state": [
{ "name": "Started\/Primary\/Active",
"enter_time": "2012-03-06 15:15:46.713212",
"might_have_unfound": [
{ "osd": 1,
"status": "osd is down"}]},
In this case, for example, the cluster knows that ``osd.1`` might have
data, but it is ``down``. The full range of possible states include::
* already probed
* querying
* osd is down
* not queried (yet)
Sometimes it simply takes some time for the cluster to query possible
locations.
It is possible that there are other locations where the object can
exist that are not listed. For example, if a ceph-osd is stopped and
taken out of the cluster, the cluster fully recovers, and due to some
future set of failures ends up with an unfound object, it won't
consider the long-departed ceph-osd as a potential location to
consider. (This scenario, however, is unlikely.)
If all possible locations have been queried and objects are still
lost, you may have to give up on the lost objects. This, again, is
possible given unusual combinations of failures that allow the cluster
to learn about writes that were performed before the writes themselves
are recovered. To mark the "unfound" objects as "lost"::
ceph pg 2.5 mark_unfound_lost revert
This the final argument specifies how the cluster should deal with
lost objects. Currently the only supported option is "revert", which
will either roll back to a previous version of the object or (if it
was a new object) forget about it entirely. Use this with caution, as
it may confuse applications that expected the object to exist.
Homeless Placement Groups
=========================
It is possible for all OSDs that had copies of a given placement groups to fail.
If that's the case, that subset of the object store is unavailable, and the
monitor will receive no status updates for those placement groups. To detect
this situation, the monitor marks any placement group whose primary OSD has
failed as ``stale``. For example::
ceph health
HEALTH_WARN 24 pgs stale; 3/300 in osds are down
You can identify which placement groups are ``stale``, and what the last OSDs to
store them were, with::
ceph health detail
HEALTH_WARN 24 pgs stale; 3/300 in osds are down
...
pg 2.5 is stuck stale+active+remapped, last acting [2,0]
...
osd.10 is down since epoch 23, last address 192.168.106.220:6800/11080
osd.11 is down since epoch 13, last address 192.168.106.220:6803/11539
osd.12 is down since epoch 24, last address 192.168.106.220:6806/11861
If we want to get placement group 2.5 back online, for example, this tells us that
it was last managed by ``osd.0`` and ``osd.2``. Restarting those ``ceph-osd``
daemons will allow the cluster to recover that placement group (and, presumably,
many others).