ceph/qa/tasks/cephfs/test_data_scan.py
Rishabh Dave 5967592792 qa/cephfs: remove sudo parameter from run_shell()
Right now, run_shell() in mount.py accepts both "sudo" and "omit_sudo"
as parameters. It's better to accept only one of these two parameters.
A call to run_shell() where both are set to opposing values will be
buggy. Therefore, methods calling run_shell() must add "sudo" to command
arguments before call and set omit_sudo to False in call.

As a result of this change, methods like stat() and run_python() in
mount.py are now modified to add "sudo" to command arguments
and set omit_sudo to False within their own definitions.

Signed-off-by: Rishabh Dave <ridave@redhat.com>
2022-06-27 19:56:04 +05:30

726 lines
28 KiB
Python

"""
Test our tools for recovering metadata from the data pool
"""
import json
import logging
import os
import time
import traceback
import stat
from io import BytesIO, StringIO
from collections import namedtuple, defaultdict
from textwrap import dedent
from teuthology.exceptions import CommandFailedError
from tasks.cephfs.cephfs_test_case import CephFSTestCase, for_teuthology
log = logging.getLogger(__name__)
ValidationError = namedtuple("ValidationError", ["exception", "backtrace"])
class Workload(object):
def __init__(self, filesystem, mount):
self._mount = mount
self._filesystem = filesystem
self._initial_state = None
# Accumulate backtraces for every failed validation, and return them. Backtraces
# are rather verbose, but we only see them when something breaks, and they
# let us see which check failed without having to decorate each check with
# a string
self._errors = []
def assert_equal(self, a, b):
try:
if a != b:
raise AssertionError("{0} != {1}".format(a, b))
except AssertionError as e:
self._errors.append(
ValidationError(e, traceback.format_exc(3))
)
def assert_true(self, a):
try:
if not a:
raise AssertionError("{0} is not true".format(a))
except AssertionError as e:
self._errors.append(
ValidationError(e, traceback.format_exc(3))
)
def write(self):
"""
Write the workload files to the mount
"""
raise NotImplementedError()
def validate(self):
"""
Read from the mount and validate that the workload files are present (i.e. have
survived or been reconstructed from the test scenario)
"""
raise NotImplementedError()
def damage(self):
"""
Damage the filesystem pools in ways that will be interesting to recover from. By
default just wipe everything in the metadata pool
"""
# Delete every object in the metadata pool
pool = self._filesystem.get_metadata_pool_name()
self._filesystem.rados(["purge", pool, '--yes-i-really-really-mean-it'])
def flush(self):
"""
Called after client unmount, after write: flush whatever you want
"""
self._filesystem.mds_asok(["flush", "journal"])
class SimpleWorkload(Workload):
"""
Single file, single directory, check that it gets recovered and so does its size
"""
def write(self):
self._mount.run_shell(["mkdir", "subdir"])
self._mount.write_n_mb("subdir/sixmegs", 6)
self._initial_state = self._mount.stat("subdir/sixmegs")
def validate(self):
self._mount.run_shell(["sudo", "ls", "subdir"], omit_sudo=False)
st = self._mount.stat("subdir/sixmegs", sudo=True)
self.assert_equal(st['st_size'], self._initial_state['st_size'])
return self._errors
class SymlinkWorkload(Workload):
"""
Symlink file, check that it gets recovered as symlink
"""
def write(self):
self._mount.run_shell(["mkdir", "symdir"])
self._mount.write_n_mb("symdir/onemegs", 1)
self._mount.run_shell(["ln", "-s", "onemegs", "symdir/symlink_onemegs"])
self._mount.run_shell(["ln", "-s", "symdir/onemegs", "symlink1_onemegs"])
def validate(self):
self._mount.run_shell(["sudo", "ls", "symdir"], omit_sudo=False)
st = self._mount.lstat("symdir/symlink_onemegs")
self.assert_true(stat.S_ISLNK(st['st_mode']))
target = self._mount.readlink("symdir/symlink_onemegs")
self.assert_equal(target, "onemegs")
st = self._mount.lstat("symlink1_onemegs")
self.assert_true(stat.S_ISLNK(st['st_mode']))
target = self._mount.readlink("symlink1_onemegs")
self.assert_equal(target, "symdir/onemegs")
return self._errors
class MovedFile(Workload):
def write(self):
# Create a file whose backtrace disagrees with his eventual position
# in the metadata. We will see that he gets reconstructed in his
# original position according to his backtrace.
self._mount.run_shell(["mkdir", "subdir_alpha"])
self._mount.run_shell(["mkdir", "subdir_bravo"])
self._mount.write_n_mb("subdir_alpha/sixmegs", 6)
self._filesystem.mds_asok(["flush", "journal"])
self._mount.run_shell(["mv", "subdir_alpha/sixmegs", "subdir_bravo/sixmegs"])
self._initial_state = self._mount.stat("subdir_bravo/sixmegs")
def flush(self):
pass
def validate(self):
self.assert_equal(self._mount.ls(sudo=True), ["subdir_alpha"])
st = self._mount.stat("subdir_alpha/sixmegs", sudo=True)
self.assert_equal(st['st_size'], self._initial_state['st_size'])
return self._errors
class BacktracelessFile(Workload):
def write(self):
self._mount.run_shell(["mkdir", "subdir"])
self._mount.write_n_mb("subdir/sixmegs", 6)
self._initial_state = self._mount.stat("subdir/sixmegs")
def flush(self):
# Never flush metadata, so backtrace won't be written
pass
def validate(self):
ino_name = "%x" % self._initial_state["st_ino"]
# The inode should be linked into lost+found because we had no path for it
self.assert_equal(self._mount.ls(sudo=True), ["lost+found"])
self.assert_equal(self._mount.ls("lost+found", sudo=True), [ino_name])
st = self._mount.stat(f"lost+found/{ino_name}", sudo=True)
# We might not have got the name or path, but we should still get the size
self.assert_equal(st['st_size'], self._initial_state['st_size'])
return self._errors
class StripedStashedLayout(Workload):
def __init__(self, fs, m):
super(StripedStashedLayout, self).__init__(fs, m)
# Nice small stripes so we can quickly do our writes+validates
self.sc = 4
self.ss = 65536
self.os = 262144
self.interesting_sizes = [
# Exactly stripe_count objects will exist
self.os * self.sc,
# Fewer than stripe_count objects will exist
self.os * self.sc // 2,
self.os * (self.sc - 1) + self.os // 2,
self.os * (self.sc - 1) + self.os // 2 - 1,
self.os * (self.sc + 1) + self.os // 2,
self.os * (self.sc + 1) + self.os // 2 + 1,
# More than stripe_count objects will exist
self.os * self.sc + self.os * self.sc // 2
]
def write(self):
# Create a dir with a striped layout set on it
self._mount.run_shell(["mkdir", "stripey"])
self._mount.setfattr("./stripey", "ceph.dir.layout",
"stripe_unit={ss} stripe_count={sc} object_size={os} pool={pool}".format(
ss=self.ss, os=self.os, sc=self.sc,
pool=self._filesystem.get_data_pool_name()
))
# Write files, then flush metadata so that its layout gets written into an xattr
for i, n_bytes in enumerate(self.interesting_sizes):
self._mount.write_test_pattern("stripey/flushed_file_{0}".format(i), n_bytes)
# This is really just validating the validator
self._mount.validate_test_pattern("stripey/flushed_file_{0}".format(i), n_bytes)
self._filesystem.mds_asok(["flush", "journal"])
# Write another file in the same way, but this time don't flush the metadata,
# so that it won't have the layout xattr
self._mount.write_test_pattern("stripey/unflushed_file", 1024 * 512)
self._mount.validate_test_pattern("stripey/unflushed_file", 1024 * 512)
self._initial_state = {
"unflushed_ino": self._mount.path_to_ino("stripey/unflushed_file")
}
def flush(self):
# Pass because we already selectively flushed during write
pass
def validate(self):
# The first files should have been recovered into its original location
# with the correct layout: read back correct data
for i, n_bytes in enumerate(self.interesting_sizes):
try:
self._mount.validate_test_pattern("stripey/flushed_file_{0}".format(i), n_bytes)
except CommandFailedError as e:
self._errors.append(
ValidationError("File {0} (size {1}): {2}".format(i, n_bytes, e), traceback.format_exc(3))
)
# The unflushed file should have been recovered into lost+found without
# the correct layout: read back junk
ino_name = "%x" % self._initial_state["unflushed_ino"]
self.assert_equal(self._mount.ls("lost+found", sudo=True), [ino_name])
try:
self._mount.validate_test_pattern(os.path.join("lost+found", ino_name), 1024 * 512)
except CommandFailedError:
pass
else:
self._errors.append(
ValidationError("Unexpectedly valid data in unflushed striped file", "")
)
return self._errors
class ManyFilesWorkload(Workload):
def __init__(self, filesystem, mount, file_count):
super(ManyFilesWorkload, self).__init__(filesystem, mount)
self.file_count = file_count
def write(self):
self._mount.run_shell(["mkdir", "subdir"])
for n in range(0, self.file_count):
self._mount.write_test_pattern("subdir/{0}".format(n), 6 * 1024 * 1024)
def validate(self):
for n in range(0, self.file_count):
try:
self._mount.validate_test_pattern("subdir/{0}".format(n), 6 * 1024 * 1024)
except CommandFailedError as e:
self._errors.append(
ValidationError("File {0}: {1}".format(n, e), traceback.format_exc(3))
)
return self._errors
class MovedDir(Workload):
def write(self):
# Create a nested dir that we will then move. Two files with two different
# backtraces referring to the moved dir, claiming two different locations for
# it. We will see that only one backtrace wins and the dir ends up with
# single linkage.
self._mount.run_shell(["mkdir", "-p", "grandmother/parent"])
self._mount.write_n_mb("grandmother/parent/orig_pos_file", 1)
self._filesystem.mds_asok(["flush", "journal"])
self._mount.run_shell(["mkdir", "grandfather"])
self._mount.run_shell(["mv", "grandmother/parent", "grandfather"])
self._mount.write_n_mb("grandfather/parent/new_pos_file", 2)
self._filesystem.mds_asok(["flush", "journal"])
self._initial_state = (
self._mount.stat("grandfather/parent/orig_pos_file"),
self._mount.stat("grandfather/parent/new_pos_file")
)
def validate(self):
root_files = self._mount.ls()
self.assert_equal(len(root_files), 1)
self.assert_equal(root_files[0] in ["grandfather", "grandmother"], True)
winner = root_files[0]
st_opf = self._mount.stat(f"{winner}/parent/orig_pos_file", sudo=True)
st_npf = self._mount.stat(f"{winner}/parent/new_pos_file", sudo=True)
self.assert_equal(st_opf['st_size'], self._initial_state[0]['st_size'])
self.assert_equal(st_npf['st_size'], self._initial_state[1]['st_size'])
class MissingZerothObject(Workload):
def write(self):
self._mount.run_shell(["mkdir", "subdir"])
self._mount.write_n_mb("subdir/sixmegs", 6)
self._initial_state = self._mount.stat("subdir/sixmegs")
def damage(self):
super(MissingZerothObject, self).damage()
zeroth_id = "{0:x}.00000000".format(self._initial_state['st_ino'])
self._filesystem.rados(["rm", zeroth_id], pool=self._filesystem.get_data_pool_name())
def validate(self):
ino = self._initial_state['st_ino']
st = self._mount.stat(f"lost+found/{ino:x}", sudo=True)
self.assert_equal(st['st_size'], self._initial_state['st_size'])
class NonDefaultLayout(Workload):
"""
Check that the reconstruction copes with files that have a different
object size in their layout
"""
def write(self):
self._mount.run_shell(["touch", "datafile"])
self._mount.setfattr("./datafile", "ceph.file.layout.object_size", "8388608")
self._mount.run_shell(["dd", "if=/dev/urandom", "of=./datafile", "bs=1M", "count=32"])
self._initial_state = self._mount.stat("datafile")
def validate(self):
# Check we got the layout reconstructed properly
object_size = int(self._mount.getfattr("./datafile", "ceph.file.layout.object_size", sudo=True))
self.assert_equal(object_size, 8388608)
# Check we got the file size reconstructed properly
st = self._mount.stat("datafile", sudo=True)
self.assert_equal(st['st_size'], self._initial_state['st_size'])
class TestDataScan(CephFSTestCase):
MDSS_REQUIRED = 2
def is_marked_damaged(self, rank):
mds_map = self.fs.get_mds_map()
return rank in mds_map['damaged']
def _rebuild_metadata(self, workload, workers=1):
"""
That when all objects in metadata pool are removed, we can rebuild a metadata pool
based on the contents of a data pool, and a client can see and read our files.
"""
# First, inject some files
workload.write()
# Unmount the client and flush the journal: the tool should also cope with
# situations where there is dirty metadata, but we'll test that separately
self.mount_a.umount_wait()
workload.flush()
# Stop the MDS
self.fs.fail()
# After recovery, we need the MDS to not be strict about stats (in production these options
# are off by default, but in QA we need to explicitly disable them)
self.fs.set_ceph_conf('mds', 'mds verify scatter', False)
self.fs.set_ceph_conf('mds', 'mds debug scatterstat', False)
# Apply any data damage the workload wants
workload.damage()
# Reset the MDS map in case multiple ranks were in play: recovery procedure
# only understands how to rebuild metadata under rank 0
self.fs.reset()
self.fs.set_joinable() # redundant with reset
def get_state(mds_id):
info = self.mds_cluster.get_mds_info(mds_id)
return info['state'] if info is not None else None
self.wait_until_true(lambda: self.is_marked_damaged(0), 60)
for mds_id in self.fs.mds_ids:
self.wait_until_equal(
lambda: get_state(mds_id),
"up:standby",
timeout=60)
self.fs.table_tool([self.fs.name + ":0", "reset", "session"])
self.fs.table_tool([self.fs.name + ":0", "reset", "snap"])
self.fs.table_tool([self.fs.name + ":0", "reset", "inode"])
# Run the recovery procedure
if False:
with self.assertRaises(CommandFailedError):
# Normal reset should fail when no objects are present, we'll use --force instead
self.fs.journal_tool(["journal", "reset"], 0)
self.fs.journal_tool(["journal", "reset", "--force"], 0)
self.fs.data_scan(["init"])
self.fs.data_scan(["scan_extents", self.fs.get_data_pool_name()], worker_count=workers)
self.fs.data_scan(["scan_inodes", self.fs.get_data_pool_name()], worker_count=workers)
# Mark the MDS repaired
self.fs.mon_manager.raw_cluster_cmd('mds', 'repaired', '0')
# Start the MDS
self.fs.mds_restart()
self.fs.wait_for_daemons()
log.info(str(self.mds_cluster.status()))
# Mount a client
self.mount_a.mount_wait()
# See that the files are present and correct
errors = workload.validate()
if errors:
log.error("Validation errors found: {0}".format(len(errors)))
for e in errors:
log.error(e.exception)
log.error(e.backtrace)
raise AssertionError("Validation failed, first error: {0}\n{1}".format(
errors[0].exception, errors[0].backtrace
))
def test_rebuild_simple(self):
self._rebuild_metadata(SimpleWorkload(self.fs, self.mount_a))
def test_rebuild_symlink(self):
self._rebuild_metadata(SymlinkWorkload(self.fs, self.mount_a))
def test_rebuild_moved_file(self):
self._rebuild_metadata(MovedFile(self.fs, self.mount_a))
def test_rebuild_backtraceless(self):
self._rebuild_metadata(BacktracelessFile(self.fs, self.mount_a))
def test_rebuild_moved_dir(self):
self._rebuild_metadata(MovedDir(self.fs, self.mount_a))
def test_rebuild_missing_zeroth(self):
self._rebuild_metadata(MissingZerothObject(self.fs, self.mount_a))
def test_rebuild_nondefault_layout(self):
self._rebuild_metadata(NonDefaultLayout(self.fs, self.mount_a))
def test_stashed_layout(self):
self._rebuild_metadata(StripedStashedLayout(self.fs, self.mount_a))
def _dirfrag_keys(self, object_id):
keys_str = self.fs.radosmo(["listomapkeys", object_id], stdout=StringIO())
if keys_str:
return keys_str.strip().split("\n")
else:
return []
def test_fragmented_injection(self):
"""
That when injecting a dentry into a fragmented directory, we put it in the right fragment.
"""
file_count = 100
file_names = ["%s" % n for n in range(0, file_count)]
# Make sure and disable dirfrag auto merging and splitting
self.fs.set_ceph_conf('mds', 'mds bal merge size', 0)
self.fs.set_ceph_conf('mds', 'mds bal split size', 100 * file_count)
# Create a directory of `file_count` files, each named after its
# decimal number and containing the string of its decimal number
self.mount_a.run_python(dedent("""
import os
path = os.path.join("{path}", "subdir")
os.mkdir(path)
for n in range(0, {file_count}):
open(os.path.join(path, "%s" % n), 'w').write("%s" % n)
""".format(
path=self.mount_a.mountpoint,
file_count=file_count
)))
dir_ino = self.mount_a.path_to_ino("subdir")
# Only one MDS should be active!
self.assertEqual(len(self.fs.get_active_names()), 1)
# Ensure that one directory is fragmented
mds_id = self.fs.get_active_names()[0]
self.fs.mds_asok(["dirfrag", "split", "/subdir", "0/0", "1"], mds_id)
# Flush journal and stop MDS
self.mount_a.umount_wait()
self.fs.mds_asok(["flush", "journal"], mds_id)
self.fs.fail()
# Pick a dentry and wipe out its key
# Because I did a 1 bit split, I know one frag will be named <inode>.01000000
frag_obj_id = "{0:x}.01000000".format(dir_ino)
keys = self._dirfrag_keys(frag_obj_id)
victim_key = keys[7] # arbitrary choice
log.info("victim_key={0}".format(victim_key))
victim_dentry = victim_key.split("_head")[0]
self.fs.radosm(["rmomapkey", frag_obj_id, victim_key])
# Start filesystem back up, observe that the file appears to be gone in an `ls`
self.fs.set_joinable()
self.fs.wait_for_daemons()
self.mount_a.mount_wait()
files = self.mount_a.run_shell(["ls", "subdir/"]).stdout.getvalue().strip().split("\n")
self.assertListEqual(sorted(files), sorted(list(set(file_names) - set([victim_dentry]))))
# Stop the filesystem
self.mount_a.umount_wait()
self.fs.fail()
# Run data-scan, observe that it inserts our dentry back into the correct fragment
# by checking the omap now has the dentry's key again
self.fs.data_scan(["scan_extents", self.fs.get_data_pool_name()])
self.fs.data_scan(["scan_inodes", self.fs.get_data_pool_name()])
self.fs.data_scan(["scan_links"])
self.assertIn(victim_key, self._dirfrag_keys(frag_obj_id))
# Start the filesystem and check that the dentry we deleted is now once again visible
# and points to the correct file data.
self.fs.set_joinable()
self.fs.wait_for_daemons()
self.mount_a.mount_wait()
self.mount_a.run_shell(["ls", "-l", "subdir/"]) # debugging
# Use sudo because cephfs-data-scan will reinsert the dentry with root ownership, it can't know the real owner.
out = self.mount_a.run_shell_payload(f"sudo cat subdir/{victim_dentry}", omit_sudo=False).stdout.getvalue().strip()
self.assertEqual(out, victim_dentry)
# Finally, close the loop by checking our injected dentry survives a merge
mds_id = self.fs.get_active_names()[0]
self.mount_a.ls("subdir") # Do an ls to ensure both frags are in cache so the merge will work
self.fs.mds_asok(["dirfrag", "merge", "/subdir", "0/0"], mds_id)
self.fs.mds_asok(["flush", "journal"], mds_id)
frag_obj_id = "{0:x}.00000000".format(dir_ino)
keys = self._dirfrag_keys(frag_obj_id)
self.assertListEqual(sorted(keys), sorted(["%s_head" % f for f in file_names]))
# run scrub to update and make sure rstat.rbytes info in subdir inode and dirfrag
# are matched
out_json = self.fs.run_scrub(["start", "/subdir", "repair,recursive"])
self.assertNotEqual(out_json, None)
self.assertEqual(out_json["return_code"], 0)
self.assertEqual(self.fs.wait_until_scrub_complete(tag=out_json["scrub_tag"]), True)
# Remove the whole 'sudbdir' directory
self.mount_a.run_shell(["rm", "-rf", "subdir/"])
@for_teuthology
def test_parallel_execution(self):
self._rebuild_metadata(ManyFilesWorkload(self.fs, self.mount_a, 25), workers=7)
def test_pg_files(self):
"""
That the pg files command tells us which files are associated with
a particular PG
"""
file_count = 20
self.mount_a.run_shell(["mkdir", "mydir"])
self.mount_a.create_n_files("mydir/myfile", file_count)
# Some files elsewhere in the system that we will ignore
# to check that the tool is filtering properly
self.mount_a.run_shell(["mkdir", "otherdir"])
self.mount_a.create_n_files("otherdir/otherfile", file_count)
pgs_to_files = defaultdict(list)
# Rough (slow) reimplementation of the logic
for i in range(0, file_count):
file_path = "mydir/myfile_{0}".format(i)
ino = self.mount_a.path_to_ino(file_path)
obj = "{0:x}.{1:08x}".format(ino, 0)
pgid = json.loads(self.fs.mon_manager.raw_cluster_cmd(
"osd", "map", self.fs.get_data_pool_name(), obj,
"--format=json-pretty"
))['pgid']
pgs_to_files[pgid].append(file_path)
log.info("{0}: {1}".format(file_path, pgid))
pg_count = self.fs.get_pool_pg_num(self.fs.get_data_pool_name())
for pg_n in range(0, pg_count):
pg_str = "{0}.{1:x}".format(self.fs.get_data_pool_id(), pg_n)
out = self.fs.data_scan(["pg_files", "mydir", pg_str])
lines = [l for l in out.split("\n") if l]
log.info("{0}: {1}".format(pg_str, lines))
self.assertSetEqual(set(lines), set(pgs_to_files[pg_str]))
def test_rebuild_linkage(self):
"""
The scan_links command fixes linkage errors
"""
self.mount_a.run_shell(["mkdir", "testdir1"])
self.mount_a.run_shell(["mkdir", "testdir2"])
dir1_ino = self.mount_a.path_to_ino("testdir1")
dir2_ino = self.mount_a.path_to_ino("testdir2")
dirfrag1_oid = "{0:x}.00000000".format(dir1_ino)
dirfrag2_oid = "{0:x}.00000000".format(dir2_ino)
self.mount_a.run_shell(["touch", "testdir1/file1"])
self.mount_a.run_shell(["ln", "testdir1/file1", "testdir1/link1"])
self.mount_a.run_shell(["ln", "testdir1/file1", "testdir2/link2"])
mds_id = self.fs.get_active_names()[0]
self.fs.mds_asok(["flush", "journal"], mds_id)
dirfrag1_keys = self._dirfrag_keys(dirfrag1_oid)
# introduce duplicated primary link
file1_key = "file1_head"
self.assertIn(file1_key, dirfrag1_keys)
file1_omap_data = self.fs.radosmo(["getomapval", dirfrag1_oid, file1_key, '-'])
self.fs.radosm(["setomapval", dirfrag2_oid, file1_key], stdin=BytesIO(file1_omap_data))
self.assertIn(file1_key, self._dirfrag_keys(dirfrag2_oid))
# remove a remote link, make inode link count incorrect
link1_key = 'link1_head'
self.assertIn(link1_key, dirfrag1_keys)
self.fs.radosm(["rmomapkey", dirfrag1_oid, link1_key])
# increase good primary link's version
self.mount_a.run_shell(["touch", "testdir1/file1"])
self.mount_a.umount_wait()
self.fs.mds_asok(["flush", "journal"], mds_id)
self.fs.fail()
# repair linkage errors
self.fs.data_scan(["scan_links"])
# primary link in testdir2 was deleted?
self.assertNotIn(file1_key, self._dirfrag_keys(dirfrag2_oid))
self.fs.set_joinable()
self.fs.wait_for_daemons()
self.mount_a.mount_wait()
# link count was adjusted?
file1_nlink = self.mount_a.path_to_nlink("testdir1/file1")
self.assertEqual(file1_nlink, 2)
def test_rebuild_inotable(self):
"""
The scan_links command repair inotables
"""
self.fs.set_max_mds(2)
self.fs.wait_for_daemons()
active_mds_names = self.fs.get_active_names()
mds0_id = active_mds_names[0]
mds1_id = active_mds_names[1]
self.mount_a.run_shell(["mkdir", "dir1"])
dir_ino = self.mount_a.path_to_ino("dir1")
self.mount_a.setfattr("dir1", "ceph.dir.pin", "1")
# wait for subtree migration
file_ino = 0;
while True:
time.sleep(1)
# allocate an inode from mds.1
self.mount_a.run_shell(["touch", "dir1/file1"])
file_ino = self.mount_a.path_to_ino("dir1/file1")
if file_ino >= (2 << 40):
break
self.mount_a.run_shell(["rm", "-f", "dir1/file1"])
self.mount_a.umount_wait()
self.fs.mds_asok(["flush", "journal"], mds0_id)
self.fs.mds_asok(["flush", "journal"], mds1_id)
self.fs.fail()
self.fs.radosm(["rm", "mds0_inotable"])
self.fs.radosm(["rm", "mds1_inotable"])
self.fs.data_scan(["scan_links", "--filesystem", self.fs.name])
mds0_inotable = json.loads(self.fs.table_tool([self.fs.name + ":0", "show", "inode"]))
self.assertGreaterEqual(
mds0_inotable['0']['data']['inotable']['free'][0]['start'], dir_ino)
mds1_inotable = json.loads(self.fs.table_tool([self.fs.name + ":1", "show", "inode"]))
self.assertGreaterEqual(
mds1_inotable['1']['data']['inotable']['free'][0]['start'], file_ino)
def test_rebuild_snaptable(self):
"""
The scan_links command repair snaptable
"""
self.fs.set_allow_new_snaps(True)
self.mount_a.run_shell(["mkdir", "dir1"])
self.mount_a.run_shell(["mkdir", "dir1/.snap/s1"])
self.mount_a.run_shell(["mkdir", "dir1/.snap/s2"])
self.mount_a.run_shell(["rmdir", "dir1/.snap/s2"])
self.mount_a.umount_wait()
mds0_id = self.fs.get_active_names()[0]
self.fs.mds_asok(["flush", "journal"], mds0_id)
# wait for mds to update removed snaps
time.sleep(10)
old_snaptable = json.loads(self.fs.table_tool([self.fs.name + ":0", "show", "snap"]))
# stamps may have minor difference
for item in old_snaptable['snapserver']['snaps']:
del item['stamp']
self.fs.radosm(["rm", "mds_snaptable"])
self.fs.data_scan(["scan_links", "--filesystem", self.fs.name])
new_snaptable = json.loads(self.fs.table_tool([self.fs.name + ":0", "show", "snap"]))
for item in new_snaptable['snapserver']['snaps']:
del item['stamp']
self.assertGreaterEqual(
new_snaptable['snapserver']['last_snap'], old_snaptable['snapserver']['last_snap'])
self.assertEqual(
new_snaptable['snapserver']['snaps'], old_snaptable['snapserver']['snaps'])