ceph/src/mds/CInode.h
Xiubo Li f5a457b4f2 mds: defer encoding and storing the inode backtrace
When encoding the inode backtrace, it may take a bit longer time.
If we hold the mds_lock or other locks, it may cause other threads
to idle wait.

This will queue the encoding and storing work in the mds finisher
to get rid of the locks holded.

Fixes: https://tracker.ceph.com/issues/47148
Signed-off-by: Xiubo Li <xiubli@redhat.com>
2020-09-24 16:53:18 +08:00

1315 lines
45 KiB
C++

// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2004-2006 Sage Weil <sage@newdream.net>
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef CEPH_CINODE_H
#define CEPH_CINODE_H
#include <list>
#include <map>
#include <set>
#include <string_view>
#include "common/config.h"
#include "common/RefCountedObj.h"
#include "include/counter.h"
#include "include/elist.h"
#include "include/types.h"
#include "include/lru.h"
#include "include/compact_set.h"
#include "MDSCacheObject.h"
#include "MDSContext.h"
#include "flock.h"
#include "BatchOp.h"
#include "CDentry.h"
#include "SimpleLock.h"
#include "ScatterLock.h"
#include "LocalLockC.h"
#include "Capability.h"
#include "SnapRealm.h"
#include "Mutation.h"
#include "messages/MClientCaps.h"
#define dout_context g_ceph_context
class Context;
class CDir;
class CInode;
class MDCache;
class LogSegment;
struct SnapRealm;
class Session;
struct ObjectOperation;
class EMetaBlob;
struct cinode_lock_info_t {
int lock;
int wr_caps;
};
struct CInodeCommitOperation {
public:
CInodeCommitOperation(int prio, int64_t po)
: pool(po), priority(prio) {
}
CInodeCommitOperation(int prio, int64_t po, file_layout_t l, uint64_t f)
: pool(po), priority(prio), _layout(l), _features(f) {
update_layout = true;
}
void update(ObjectOperation &op, inode_backtrace_t *bt);
int64_t get_pool() { return pool; }
private:
int64_t pool; ///< pool id
int priority;
bool update_layout = false;
file_layout_t _layout;
uint64_t _features;
};
struct CInodeCommitOperations {
std::vector<CInodeCommitOperation> ops_vec;
inode_backtrace_t bt;
version_t version;
CInode *in;
};
/**
* Base class for CInode, containing the backing store data and
* serialization methods. This exists so that we can read and
* handle CInodes from the backing store without hitting all
* the business logic in CInode proper.
*/
class InodeStoreBase {
public:
using mempool_inode = inode_t<mempool::mds_co::pool_allocator>;
using inode_ptr = std::shared_ptr<mempool_inode>;
using inode_const_ptr = std::shared_ptr<const mempool_inode>;
template <typename ...Args>
static inode_ptr allocate_inode(Args && ...args) {
static mempool::mds_co::pool_allocator<mempool_inode> allocator;
return std::allocate_shared<mempool_inode>(allocator, std::forward<Args>(args)...);
}
using mempool_xattr_map = xattr_map<mempool::mds_co::pool_allocator>; // FIXME bufferptr not in mempool
using xattr_map_ptr = std::shared_ptr<mempool_xattr_map>;
using xattr_map_const_ptr = std::shared_ptr<const mempool_xattr_map>;
template <typename ...Args>
static xattr_map_ptr allocate_xattr_map(Args && ...args) {
static mempool::mds_co::pool_allocator<mempool_xattr_map> allocator;
return std::allocate_shared<mempool_xattr_map>(allocator, std::forward<Args>(args)...);
}
using mempool_old_inode = old_inode_t<mempool::mds_co::pool_allocator>;
using mempool_old_inode_map = mempool::mds_co::map<snapid_t, mempool_old_inode>;
using old_inode_map_ptr = std::shared_ptr<mempool_old_inode_map>;
using old_inode_map_const_ptr = std::shared_ptr<const mempool_old_inode_map>;
template <typename ...Args>
static old_inode_map_ptr allocate_old_inode_map(Args && ...args) {
static mempool::mds_co::pool_allocator<mempool_old_inode_map> allocator;
return std::allocate_shared<mempool_old_inode_map>(allocator, std::forward<Args>(args)...);
}
void reset_inode(inode_const_ptr&& ptr) {
inode = std::move(ptr);
}
void reset_xattrs(xattr_map_const_ptr&& ptr) {
xattrs = std::move(ptr);
}
void reset_old_inodes(old_inode_map_const_ptr&& ptr) {
old_inodes = std::move(ptr);
}
void encode_xattrs(bufferlist &bl) const;
void decode_xattrs(bufferlist::const_iterator &p);
void encode_old_inodes(bufferlist &bl, uint64_t features) const;
void decode_old_inodes(bufferlist::const_iterator &p);
/* Helpers */
static object_t get_object_name(inodeno_t ino, frag_t fg, std::string_view suffix);
/* Full serialization for use in ".inode" root inode objects */
void encode(ceph::buffer::list &bl, uint64_t features, const ceph::buffer::list *snap_blob=NULL) const;
void decode(ceph::buffer::list::const_iterator &bl, ceph::buffer::list& snap_blob);
/* Serialization without ENCODE_START/FINISH blocks for use embedded in dentry */
void encode_bare(ceph::buffer::list &bl, uint64_t features, const ceph::buffer::list *snap_blob=NULL) const;
void decode_bare(ceph::buffer::list::const_iterator &bl, ceph::buffer::list &snap_blob, __u8 struct_v=5);
/* For test/debug output */
void dump(ceph::Formatter *f) const;
void decode_json(JSONObj *obj);
static void xattrs_cb(InodeStoreBase::mempool_xattr_map& c, JSONObj *obj);
static void old_indoes_cb(InodeStoreBase::mempool_old_inode_map& c, JSONObj *obj);
/* For use by offline tools */
__u32 hash_dentry_name(std::string_view dn);
frag_t pick_dirfrag(std::string_view dn);
mempool::mds_co::string symlink; // symlink dest, if symlink
fragtree_t dirfragtree; // dir frag tree, if any. always consistent with our dirfrag map.
snapid_t oldest_snap = CEPH_NOSNAP;
damage_flags_t damage_flags = 0;
protected:
static inode_const_ptr empty_inode;
// Following members are pointers to constant data, the constant data can
// be shared by CInode and log events. To update these members in CInode,
// read-copy-update should be used.
inode_const_ptr inode = empty_inode;
xattr_map_const_ptr xattrs;
old_inode_map_const_ptr old_inodes; // key = last, value.first = first
};
inline void decode_noshare(InodeStoreBase::mempool_xattr_map& xattrs,
ceph::buffer::list::const_iterator &p)
{
decode_noshare<mempool::mds_co::pool_allocator>(xattrs, p);
}
class InodeStore : public InodeStoreBase {
public:
mempool_inode* get_inode() {
if (inode == empty_inode)
reset_inode(allocate_inode());
return const_cast<mempool_inode*>(inode.get());
}
mempool_xattr_map* get_xattrs() { return const_cast<mempool_xattr_map*>(xattrs.get()); }
void encode(ceph::buffer::list &bl, uint64_t features) const {
InodeStoreBase::encode(bl, features, &snap_blob);
}
void decode(ceph::buffer::list::const_iterator &bl) {
InodeStoreBase::decode(bl, snap_blob);
}
void encode_bare(ceph::buffer::list &bl, uint64_t features) const {
InodeStoreBase::encode_bare(bl, features, &snap_blob);
}
void decode_bare(ceph::buffer::list::const_iterator &bl) {
InodeStoreBase::decode_bare(bl, snap_blob);
}
static void generate_test_instances(std::list<InodeStore*>& ls);
using InodeStoreBase::inode;
using InodeStoreBase::xattrs;
using InodeStoreBase::old_inodes;
// FIXME bufferlist not part of mempool
ceph::buffer::list snap_blob; // Encoded copy of SnapRealm, because we can't
// rehydrate it without full MDCache
};
WRITE_CLASS_ENCODER_FEATURES(InodeStore)
// just for ceph-dencoder
class InodeStoreBare : public InodeStore {
public:
void encode(ceph::buffer::list &bl, uint64_t features) const {
InodeStore::encode_bare(bl, features);
}
void decode(ceph::buffer::list::const_iterator &bl) {
InodeStore::decode_bare(bl);
}
static void generate_test_instances(std::list<InodeStoreBare*>& ls);
};
WRITE_CLASS_ENCODER_FEATURES(InodeStoreBare)
// cached inode wrapper
class CInode : public MDSCacheObject, public InodeStoreBase, public Counter<CInode> {
public:
MEMPOOL_CLASS_HELPERS();
using mempool_cap_map = mempool::mds_co::map<client_t, Capability>;
/**
* @defgroup Scrubbing and fsck
*/
/**
* Report the results of validation against a particular inode.
* Each member is a pair of bools.
* <member>.first represents if validation was performed against the member.
* <member.second represents if the member passed validation.
* performed_validation is set to true if the validation was actually
* run. It might not be run if, for instance, the inode is marked as dirty.
* passed_validation is set to true if everything that was checked
* passed its validation.
*/
struct validated_data {
template<typename T>struct member_status {
bool checked = false;
bool passed = false;
bool repaired = false;
int ondisk_read_retval = 0;
T ondisk_value;
T memory_value;
std::stringstream error_str;
};
struct raw_stats_t {
frag_info_t dirstat;
nest_info_t rstat;
};
validated_data() {}
void dump(ceph::Formatter *f) const;
bool all_damage_repaired() const;
bool performed_validation = false;
bool passed_validation = false;
member_status<inode_backtrace_t> backtrace;
member_status<mempool_inode> inode; // XXX should not be in mempool; wait for pmr
member_status<raw_stats_t> raw_stats;
};
// friends
friend class Server;
friend class Locker;
friend class Migrator;
friend class MDCache;
friend class StrayManager;
friend class CDir;
friend std::ostream& operator<<(std::ostream&, const CInode&);
class scrub_stamp_info_t {
public:
scrub_stamp_info_t() {}
void reset() {
scrub_start_version = last_scrub_version = 0;
scrub_start_stamp = last_scrub_stamp = utime_t();
}
/// version we started our latest scrub (whether in-progress or finished)
version_t scrub_start_version = 0;
/// time we started our latest scrub (whether in-progress or finished)
utime_t scrub_start_stamp;
/// version we started our most recent finished scrub
version_t last_scrub_version = 0;
/// time we started our most recent finished scrub
utime_t last_scrub_stamp;
};
class scrub_info_t : public scrub_stamp_info_t {
public:
scrub_info_t() {}
CDentry *scrub_parent = nullptr;
MDSContext *on_finish = nullptr;
bool last_scrub_dirty = false; /// are our stamps dirty with respect to disk state?
bool scrub_in_progress = false; /// are we currently scrubbing?
bool children_scrubbed = false;
/// my own (temporary) stamps and versions for each dirfrag we have
std::map<frag_t, scrub_stamp_info_t> dirfrag_stamps; // XXX not part of mempool
ScrubHeaderRef header;
};
// -- pins --
static const int PIN_DIRFRAG = -1;
static const int PIN_CAPS = 2; // client caps
static const int PIN_IMPORTING = -4; // importing
static const int PIN_OPENINGDIR = 7;
static const int PIN_REMOTEPARENT = 8;
static const int PIN_BATCHOPENJOURNAL = 9;
static const int PIN_SCATTERED = 10;
static const int PIN_STICKYDIRS = 11;
//static const int PIN_PURGING = -12;
static const int PIN_FREEZING = 13;
static const int PIN_FROZEN = 14;
static const int PIN_IMPORTINGCAPS = -15;
static const int PIN_PASTSNAPPARENT = -16;
static const int PIN_OPENINGSNAPPARENTS = 17;
static const int PIN_TRUNCATING = 18;
static const int PIN_STRAY = 19; // we pin our stray inode while active
static const int PIN_NEEDSNAPFLUSH = 20;
static const int PIN_DIRTYRSTAT = 21;
static const int PIN_EXPORTINGCAPS = 22;
static const int PIN_DIRTYPARENT = 23;
static const int PIN_DIRWAITER = 24;
static const int PIN_SCRUBQUEUE = 25;
// -- dump flags --
static const int DUMP_INODE_STORE_BASE = (1 << 0);
static const int DUMP_MDS_CACHE_OBJECT = (1 << 1);
static const int DUMP_LOCKS = (1 << 2);
static const int DUMP_STATE = (1 << 3);
static const int DUMP_CAPS = (1 << 4);
static const int DUMP_PATH = (1 << 5);
static const int DUMP_DIRFRAGS = (1 << 6);
static const int DUMP_ALL = (-1);
static const int DUMP_DEFAULT = DUMP_ALL & (~DUMP_PATH) & (~DUMP_DIRFRAGS);
// -- state --
static const int STATE_EXPORTING = (1<<0); // on nonauth bystander.
static const int STATE_OPENINGDIR = (1<<1);
static const int STATE_FREEZING = (1<<2);
static const int STATE_FROZEN = (1<<3);
static const int STATE_AMBIGUOUSAUTH = (1<<4);
static const int STATE_EXPORTINGCAPS = (1<<5);
static const int STATE_NEEDSRECOVER = (1<<6);
static const int STATE_RECOVERING = (1<<7);
static const int STATE_PURGING = (1<<8);
static const int STATE_DIRTYPARENT = (1<<9);
static const int STATE_DIRTYRSTAT = (1<<10);
static const int STATE_STRAYPINNED = (1<<11);
static const int STATE_FROZENAUTHPIN = (1<<12);
static const int STATE_DIRTYPOOL = (1<<13);
static const int STATE_REPAIRSTATS = (1<<14);
static const int STATE_MISSINGOBJS = (1<<15);
static const int STATE_EVALSTALECAPS = (1<<16);
static const int STATE_QUEUEDEXPORTPIN = (1<<17);
static const int STATE_TRACKEDBYOFT = (1<<18); // tracked by open file table
static const int STATE_DELAYEDEXPORTPIN = (1<<19);
static const int STATE_DISTEPHEMERALPIN = (1<<20);
static const int STATE_RANDEPHEMERALPIN = (1<<21);
static const int STATE_CLIENTWRITEABLE = (1<<22);
// orphan inode needs notification of releasing reference
static const int STATE_ORPHAN = STATE_NOTIFYREF;
static const int MASK_STATE_EXPORTED =
(STATE_DIRTY|STATE_NEEDSRECOVER|STATE_DIRTYPARENT|STATE_DIRTYPOOL|
STATE_DISTEPHEMERALPIN|STATE_RANDEPHEMERALPIN);
static const int MASK_STATE_EXPORT_KEPT =
(STATE_FROZEN|STATE_AMBIGUOUSAUTH|STATE_EXPORTINGCAPS|
STATE_QUEUEDEXPORTPIN|STATE_TRACKEDBYOFT|STATE_DELAYEDEXPORTPIN|
STATE_DISTEPHEMERALPIN|STATE_RANDEPHEMERALPIN);
/* These are for "permanent" state markers that are passed around between
* MDS. Nothing protects/updates it like a typical MDS lock.
*
* Currently, we just use this for REPLICATED inodes. The reason we need to
* replicate the random epin state is because the directory inode is still
* under the authority of the parent subtree. So it's not exported normally
* and we can't pass around the state that way. The importer of the dirfrags
* still needs to know that the inode is random pinned though otherwise it
* doesn't know that the dirfrags are pinned.
*/
static const int MASK_STATE_REPLICATED = STATE_RANDEPHEMERALPIN;
// -- waiters --
static const uint64_t WAIT_DIR = (1<<0);
static const uint64_t WAIT_FROZEN = (1<<1);
static const uint64_t WAIT_TRUNC = (1<<2);
static const uint64_t WAIT_FLOCK = (1<<3);
static const uint64_t WAIT_ANY_MASK = (uint64_t)(-1);
// misc
static const unsigned EXPORT_NONCE = 1; // nonce given to replicas created by export
// ---------------------------
CInode() = delete;
CInode(MDCache *c, bool auth=true, snapid_t f=2, snapid_t l=CEPH_NOSNAP);
~CInode() override {
close_dirfrags();
close_snaprealm();
clear_file_locks();
ceph_assert(num_projected_srnodes == 0);
ceph_assert(num_caps_notable == 0);
ceph_assert(num_subtree_roots == 0);
ceph_assert(num_exporting_dirs == 0);
ceph_assert(batch_ops.empty());
}
std::map<int, std::unique_ptr<BatchOp>> batch_ops;
std::string_view pin_name(int p) const override;
std::ostream& print_db_line_prefix(std::ostream& out) override;
const scrub_info_t *scrub_info() const{
if (!scrub_infop)
scrub_info_create();
return scrub_infop;
}
ScrubHeaderRef get_scrub_header() {
if (scrub_infop == nullptr) {
return nullptr;
} else {
return scrub_infop->header;
}
}
bool scrub_is_in_progress() const {
return (scrub_infop && scrub_infop->scrub_in_progress);
}
/**
* Start scrubbing on this inode. That could be very short if it's
* a file, or take a long time if we're recursively scrubbing a directory.
* @pre It is not currently scrubbing
* @post it has set up internal scrubbing state
* @param scrub_version What version are we scrubbing at (usually, parent
* directory's get_projected_version())
*/
void scrub_initialize(CDentry *scrub_parent,
ScrubHeaderRef& header,
MDSContext *f);
/**
* Get the next dirfrag to scrub. Gives you a frag_t in output param which
* you must convert to a CDir (and possibly load off disk).
* @param dir A pointer to frag_t, will be filled in with the next dirfrag to
* scrub if there is one.
* @returns 0 on success, you should scrub the passed-out frag_t right now;
* ENOENT: There are no remaining dirfrags to scrub
* <0 There was some other error (It will return -ENOTDIR if not a directory)
*/
int scrub_dirfrag_next(frag_t* out_dirfrag);
/**
* Get the currently scrubbing dirfrags. When returned, the
* passed-in list will be filled in with all frag_ts which have
* been returned from scrub_dirfrag_next but not sent back
* via scrub_dirfrag_finished.
*/
void scrub_dirfrags_scrubbing(frag_vec_t *out_dirfrags);
/**
* Report to the CInode that a dirfrag it owns has been scrubbed. Call
* this for every frag_t returned from scrub_dirfrag_next().
* @param dirfrag The frag_t that was scrubbed
*/
void scrub_dirfrag_finished(frag_t dirfrag);
/**
* Call this once the scrub has been completed, whether it's a full
* recursive scrub on a directory or simply the data on a file (or
* anything in between).
* @param c An out param which is filled in with a Context* that must
* be complete()ed.
*/
void scrub_finished(MDSContext **c);
void scrub_aborted(MDSContext **c);
/**
* Report to the CInode that alldirfrags it owns have been scrubbed.
*/
void scrub_children_finished() {
scrub_infop->children_scrubbed = true;
}
void scrub_set_finisher(MDSContext *c) {
ceph_assert(!scrub_infop->on_finish);
scrub_infop->on_finish = c;
}
bool is_multiversion() const {
return snaprealm || // other snaprealms will link to me
get_inode()->is_dir() || // links to me in other snaps
get_inode()->nlink > 1 || // there are remote links, possibly snapped, that will need to find me
is_any_old_inodes(); // once multiversion, always multiversion. until old_inodes gets cleaned out.
}
snapid_t get_oldest_snap();
bool is_dirty_rstat() {
return state_test(STATE_DIRTYRSTAT);
}
void mark_dirty_rstat();
void clear_dirty_rstat();
//bool hack_accessed = false;
//utime_t hack_load_stamp;
/**
* Projection methods, used to store inode changes until they have been journaled,
* at which point they are popped.
* Usage:
* project_inode as needed. If you're changing xattrs or sr_t, then pass true
* as needed then change the xattrs/snapnode member as needed. (Dirty
* exception: project_past_snaprealm_parent allows you to project the
* snapnode after doing project_inode (i.e. you don't need to pass
* snap=true).
*
* Then, journal. Once journaling is done, pop_and_dirty_projected_inode.
* This function will take care of the inode itself, the xattrs, and the snaprealm.
*/
struct projected_inode {
static sr_t* const UNDEF_SRNODE;
inode_ptr const inode;
xattr_map_ptr const xattrs;
sr_t* const snapnode;
projected_inode() = delete;
explicit projected_inode(inode_ptr&& i, xattr_map_ptr&& x, sr_t *s=nullptr) :
inode(std::move(i)), xattrs(std::move(x)), snapnode(s) {}
};
projected_inode project_inode(const MutationRef& mut,
bool xattr = false, bool snap = false);
void pop_and_dirty_projected_inode(LogSegment *ls, const MutationRef& mut);
version_t get_projected_version() const {
if (projected_nodes.empty())
return get_inode()->version;
else
return projected_nodes.back().inode->version;
}
bool is_projected() const {
return !projected_nodes.empty();
}
const inode_const_ptr& get_projected_inode() const {
if (projected_nodes.empty())
return get_inode();
else
return projected_nodes.back().inode;
}
// inode should have already been projected in caller's context
mempool_inode* _get_projected_inode() {
ceph_assert(!projected_nodes.empty());
return const_cast<mempool_inode*>(projected_nodes.back().inode.get());
}
const inode_const_ptr& get_previous_projected_inode() const {
ceph_assert(!projected_nodes.empty());
auto it = projected_nodes.rbegin();
++it;
if (it != projected_nodes.rend())
return it->inode;
else
return get_inode();
}
const xattr_map_const_ptr& get_projected_xattrs() {
if (projected_nodes.empty())
return xattrs;
else
return projected_nodes.back().xattrs;
}
const xattr_map_const_ptr& get_previous_projected_xattrs() {
ceph_assert(!projected_nodes.empty());
auto it = projected_nodes.rbegin();
++it;
if (it != projected_nodes.rend())
return it->xattrs;
else
return xattrs;
}
sr_t *prepare_new_srnode(snapid_t snapid);
void project_snaprealm(sr_t *new_srnode);
sr_t *project_snaprealm(snapid_t snapid=0) {
sr_t* new_srnode = prepare_new_srnode(snapid);
project_snaprealm(new_srnode);
return new_srnode;
}
const sr_t *get_projected_srnode() const;
void mark_snaprealm_global(sr_t *new_srnode);
void clear_snaprealm_global(sr_t *new_srnode);
bool is_projected_snaprealm_global() const;
void record_snaprealm_past_parent(sr_t *new_snap, SnapRealm *newparent);
void record_snaprealm_parent_dentry(sr_t *new_snap, SnapRealm *newparent,
CDentry *dn, bool primary_dn);
void project_snaprealm_past_parent(SnapRealm *newparent);
void early_pop_projected_snaprealm();
const mempool_old_inode& cow_old_inode(snapid_t follows, bool cow_head);
void split_old_inode(snapid_t snap);
snapid_t pick_old_inode(snapid_t last) const;
void pre_cow_old_inode();
bool has_snap_data(snapid_t s);
void purge_stale_snap_data(const std::set<snapid_t>& snaps);
size_t get_num_dirfrags() const { return dirfrags.size(); }
CDir* get_dirfrag(frag_t fg) {
auto pi = dirfrags.find(fg);
if (pi != dirfrags.end()) {
//assert(g_conf()->debug_mds < 2 || dirfragtree.is_leaf(fg)); // performance hack FIXME
return pi->second;
}
return NULL;
}
std::pair<bool, std::vector<CDir*>> get_dirfrags_under(frag_t fg);
CDir* get_approx_dirfrag(frag_t fg);
template<typename Container>
void get_dirfrags(Container& ls) const {
// all dirfrags
if constexpr (std::is_same_v<Container, std::vector<CDir*>>)
ls.reserve(ls.size() + dirfrags.size());
for (const auto &p : dirfrags)
ls.push_back(p.second);
}
auto get_dirfrags() const {
std::vector<CDir*> result;
get_dirfrags(result);
return result;
}
void get_nested_dirfrags(std::vector<CDir*>&) const;
std::vector<CDir*> get_nested_dirfrags() const {
std::vector<CDir*> v;
get_nested_dirfrags(v);
return v;
}
void get_subtree_dirfrags(std::vector<CDir*>&) const;
std::vector<CDir*> get_subtree_dirfrags() const {
std::vector<CDir*> v;
get_subtree_dirfrags(v);
return v;
}
int get_num_subtree_roots() const {
return num_subtree_roots;
}
CDir *get_or_open_dirfrag(MDCache *mdcache, frag_t fg);
CDir *add_dirfrag(CDir *dir);
void close_dirfrag(frag_t fg);
void close_dirfrags();
bool has_subtree_root_dirfrag(int auth=-1);
bool has_subtree_or_exporting_dirfrag();
void force_dirfrags();
void verify_dirfrags();
void get_stickydirs();
void put_stickydirs();
void add_need_snapflush(CInode *snapin, snapid_t snapid, client_t client);
void remove_need_snapflush(CInode *snapin, snapid_t snapid, client_t client);
std::pair<bool,bool> split_need_snapflush(CInode *cowin, CInode *in);
// -- accessors --
inodeno_t ino() const { return get_inode()->ino; }
vinodeno_t vino() const { return vinodeno_t(ino(), last); }
int d_type() const { return IFTODT(get_inode()->mode); }
bool is_root() const { return ino() == MDS_INO_ROOT; }
bool is_stray() const { return MDS_INO_IS_STRAY(ino()); }
mds_rank_t get_stray_owner() const {
return (mds_rank_t)MDS_INO_STRAY_OWNER(ino());
}
bool is_mdsdir() const { return MDS_INO_IS_MDSDIR(ino()); }
bool is_base() const { return MDS_INO_IS_BASE(ino()); }
bool is_system() const { return ino() < MDS_INO_SYSTEM_BASE; }
bool is_normal() const { return !(is_base() || is_system() || is_stray()); }
bool is_file() const { return get_inode()->is_file(); }
bool is_symlink() const { return get_inode()->is_symlink(); }
bool is_dir() const { return get_inode()->is_dir(); }
bool is_head() const { return last == CEPH_NOSNAP; }
// note: this overloads MDSCacheObject
bool is_ambiguous_auth() const {
return state_test(STATE_AMBIGUOUSAUTH) ||
MDSCacheObject::is_ambiguous_auth();
}
void set_ambiguous_auth() {
state_set(STATE_AMBIGUOUSAUTH);
}
void clear_ambiguous_auth(MDSContext::vec& finished);
void clear_ambiguous_auth();
const inode_const_ptr& get_inode() const {
return inode;
}
// only used for updating newly allocated CInode
mempool_inode* _get_inode() {
if (inode == empty_inode)
reset_inode(allocate_inode());
return const_cast<mempool_inode*>(inode.get());
}
const xattr_map_const_ptr& get_xattrs() const { return xattrs; }
bool is_any_old_inodes() const { return old_inodes && !old_inodes->empty(); }
const old_inode_map_const_ptr& get_old_inodes() const { return old_inodes; }
CDentry* get_parent_dn() { return parent; }
const CDentry* get_parent_dn() const { return parent; }
CDentry* get_projected_parent_dn() { return !projected_parent.empty() ? projected_parent.back() : parent; }
const CDentry* get_projected_parent_dn() const { return !projected_parent.empty() ? projected_parent.back() : parent; }
const CDentry* get_oldest_parent_dn() const {
if (parent)
return parent;
return !projected_parent.empty() ? projected_parent.front(): NULL;
}
CDir *get_parent_dir();
const CDir *get_projected_parent_dir() const;
CDir *get_projected_parent_dir();
CInode *get_parent_inode();
bool is_lt(const MDSCacheObject *r) const override {
const CInode *o = static_cast<const CInode*>(r);
return ino() < o->ino() ||
(ino() == o->ino() && last < o->last);
}
// -- misc --
bool is_ancestor_of(const CInode *other) const;
bool is_projected_ancestor_of(const CInode *other) const;
void make_path_string(std::string& s, bool projected=false, const CDentry *use_parent=NULL) const;
void make_path(filepath& s, bool projected=false) const;
void name_stray_dentry(std::string& dname);
// -- dirtyness --
version_t get_version() const { return get_inode()->version; }
version_t pre_dirty();
void _mark_dirty(LogSegment *ls);
void mark_dirty(LogSegment *ls);
void mark_clean();
void store(MDSContext *fin);
void _stored(int r, version_t cv, Context *fin);
/**
* Flush a CInode to disk. This includes the backtrace, the parent
* directory's link, and the Inode object itself (if a base directory).
* @pre is_auth() on both the inode and its containing directory
* @pre can_auth_pin()
* @param fin The Context to call when the flush is completed.
*/
void flush(MDSContext *fin);
void fetch(MDSContext *fin);
void _fetched(ceph::buffer::list& bl, ceph::buffer::list& bl2, Context *fin);
void _commit_ops(int r, version_t version, MDSContext *fin,
std::vector<CInodeCommitOperation> &ops_vec,
inode_backtrace_t *bt);
void build_backtrace(int64_t pool, inode_backtrace_t& bt);
void _store_backtrace(std::vector<CInodeCommitOperation> &ops_vec,
inode_backtrace_t &bt, int op_prio);
void store_backtrace(CInodeCommitOperations &op, int op_prio);
void store_backtrace(MDSContext *fin, int op_prio=-1);
void _stored_backtrace(int r, version_t v, Context *fin);
void fetch_backtrace(Context *fin, ceph::buffer::list *backtrace);
void mark_dirty_parent(LogSegment *ls, bool dirty_pool=false);
void clear_dirty_parent();
void verify_diri_backtrace(ceph::buffer::list &bl, int err);
bool is_dirty_parent() { return state_test(STATE_DIRTYPARENT); }
bool is_dirty_pool() { return state_test(STATE_DIRTYPOOL); }
void encode_snap_blob(ceph::buffer::list &bl);
void decode_snap_blob(const ceph::buffer::list &bl);
void encode_store(ceph::buffer::list& bl, uint64_t features);
void decode_store(ceph::buffer::list::const_iterator& bl);
void add_dir_waiter(frag_t fg, MDSContext *c);
void take_dir_waiting(frag_t fg, MDSContext::vec& ls);
bool is_waiting_for_dir(frag_t fg) {
return waiting_on_dir.count(fg);
}
void add_waiter(uint64_t tag, MDSContext *c) override;
void take_waiting(uint64_t tag, MDSContext::vec& ls) override;
// -- encode/decode helpers --
void _encode_base(ceph::buffer::list& bl, uint64_t features);
void _decode_base(ceph::buffer::list::const_iterator& p);
void _encode_locks_full(ceph::buffer::list& bl);
void _decode_locks_full(ceph::buffer::list::const_iterator& p);
void _encode_locks_state_for_replica(ceph::buffer::list& bl, bool need_recover);
void _encode_locks_state_for_rejoin(ceph::buffer::list& bl, int rep);
void _decode_locks_state_for_replica(ceph::buffer::list::const_iterator& p, bool is_new);
void _decode_locks_rejoin(ceph::buffer::list::const_iterator& p, MDSContext::vec& waiters,
std::list<SimpleLock*>& eval_locks, bool survivor);
// -- import/export --
void encode_export(ceph::buffer::list& bl);
void finish_export();
void abort_export() {
put(PIN_TEMPEXPORTING);
ceph_assert(state_test(STATE_EXPORTINGCAPS));
state_clear(STATE_EXPORTINGCAPS);
put(PIN_EXPORTINGCAPS);
}
void decode_import(ceph::buffer::list::const_iterator& p, LogSegment *ls);
// for giving to clients
int encode_inodestat(ceph::buffer::list& bl, Session *session, SnapRealm *realm,
snapid_t snapid=CEPH_NOSNAP, unsigned max_bytes=0,
int getattr_wants=0);
void encode_cap_message(const ceph::ref_t<MClientCaps> &m, Capability *cap);
SimpleLock* get_lock(int type) override;
void set_object_info(MDSCacheObjectInfo &info) override;
void encode_lock_state(int type, ceph::buffer::list& bl) override;
void decode_lock_state(int type, const ceph::buffer::list& bl) override;
void encode_lock_iauth(ceph::buffer::list& bl);
void decode_lock_iauth(ceph::buffer::list::const_iterator& p);
void encode_lock_ilink(ceph::buffer::list& bl);
void decode_lock_ilink(ceph::buffer::list::const_iterator& p);
void encode_lock_idft(ceph::buffer::list& bl);
void decode_lock_idft(ceph::buffer::list::const_iterator& p);
void encode_lock_ifile(ceph::buffer::list& bl);
void decode_lock_ifile(ceph::buffer::list::const_iterator& p);
void encode_lock_inest(ceph::buffer::list& bl);
void decode_lock_inest(ceph::buffer::list::const_iterator& p);
void encode_lock_ixattr(ceph::buffer::list& bl);
void decode_lock_ixattr(ceph::buffer::list::const_iterator& p);
void encode_lock_isnap(ceph::buffer::list& bl);
void decode_lock_isnap(ceph::buffer::list::const_iterator& p);
void encode_lock_iflock(ceph::buffer::list& bl);
void decode_lock_iflock(ceph::buffer::list::const_iterator& p);
void encode_lock_ipolicy(ceph::buffer::list& bl);
void decode_lock_ipolicy(ceph::buffer::list::const_iterator& p);
void _finish_frag_update(CDir *dir, MutationRef& mut);
void clear_dirty_scattered(int type) override;
bool is_dirty_scattered();
void clear_scatter_dirty(); // on rejoin ack
void start_scatter(ScatterLock *lock);
void finish_scatter_update(ScatterLock *lock, CDir *dir,
version_t inode_version, version_t dir_accounted_version);
void finish_scatter_gather_update(int type, MutationRef& mut);
void finish_scatter_gather_update_accounted(int type, EMetaBlob *metablob);
// -- snap --
void open_snaprealm(bool no_split=false);
void close_snaprealm(bool no_join=false);
SnapRealm *find_snaprealm() const;
void encode_snap(ceph::buffer::list& bl);
void decode_snap(ceph::buffer::list::const_iterator& p);
client_t get_loner() const { return loner_cap; }
client_t get_wanted_loner() const { return want_loner_cap; }
// this is the loner state our locks should aim for
client_t get_target_loner() const {
if (loner_cap == want_loner_cap)
return loner_cap;
else
return -1;
}
client_t calc_ideal_loner();
void set_loner_cap(client_t l);
bool choose_ideal_loner();
bool try_set_loner();
bool try_drop_loner();
// choose new lock state during recovery, based on issued caps
void choose_lock_state(SimpleLock *lock, int allissued);
void choose_lock_states(int dirty_caps);
int count_nonstale_caps();
bool multiple_nonstale_caps();
bool is_any_caps() { return !client_caps.empty(); }
bool is_any_nonstale_caps() { return count_nonstale_caps(); }
const mempool::mds_co::compact_map<int32_t,int32_t>& get_mds_caps_wanted() const { return mds_caps_wanted; }
void set_mds_caps_wanted(mempool::mds_co::compact_map<int32_t,int32_t>& m);
void set_mds_caps_wanted(mds_rank_t mds, int32_t wanted);
const mempool_cap_map& get_client_caps() const { return client_caps; }
Capability *get_client_cap(client_t client) {
auto client_caps_entry = client_caps.find(client);
if (client_caps_entry != client_caps.end())
return &client_caps_entry->second;
return 0;
}
int get_client_cap_pending(client_t client) const {
auto client_caps_entry = client_caps.find(client);
if (client_caps_entry != client_caps.end()) {
return client_caps_entry->second.pending();
} else {
return 0;
}
}
int get_num_caps_notable() const { return num_caps_notable; }
void adjust_num_caps_notable(int d);
Capability *add_client_cap(client_t client, Session *session,
SnapRealm *conrealm=nullptr, bool new_inode=false);
void remove_client_cap(client_t client);
void move_to_realm(SnapRealm *realm);
Capability *reconnect_cap(client_t client, const cap_reconnect_t& icr, Session *session);
void clear_client_caps_after_export();
void export_client_caps(std::map<client_t,Capability::Export>& cl);
// caps allowed
int get_caps_liked() const;
int get_caps_allowed_ever() const;
int get_caps_allowed_by_type(int type) const;
int get_caps_careful() const;
int get_xlocker_mask(client_t client) const;
int get_caps_allowed_for_client(Session *s, Capability *cap,
const mempool_inode *file_i) const;
// caps issued, wanted
int get_caps_issued(int *ploner = 0, int *pother = 0, int *pxlocker = 0,
int shift = 0, int mask = -1);
bool is_any_caps_wanted() const;
int get_caps_wanted(int *ploner = 0, int *pother = 0, int shift = 0, int mask = -1) const;
bool issued_caps_need_gather(SimpleLock *lock);
// client writeable
bool is_clientwriteable() const { return state & STATE_CLIENTWRITEABLE; }
void mark_clientwriteable();
void clear_clientwriteable();
// -- authority --
mds_authority_t authority() const override;
// -- auth pins --
bool can_auth_pin(int *err_ret=nullptr) const override;
void auth_pin(void *by) override;
void auth_unpin(void *by) override;
// -- freeze --
bool is_freezing_inode() const { return state_test(STATE_FREEZING); }
bool is_frozen_inode() const { return state_test(STATE_FROZEN); }
bool is_frozen_auth_pin() const { return state_test(STATE_FROZENAUTHPIN); }
bool is_frozen() const override;
bool is_frozen_dir() const;
bool is_freezing() const override;
/* Freeze the inode. auth_pin_allowance lets the caller account for any
* auth_pins it is itself holding/responsible for. */
bool freeze_inode(int auth_pin_allowance=0);
void unfreeze_inode(MDSContext::vec& finished);
void unfreeze_inode();
void freeze_auth_pin();
void unfreeze_auth_pin();
// -- reference counting --
void bad_put(int by) override {
generic_dout(0) << " bad put " << *this << " by " << by << " " << pin_name(by) << " was " << ref
#ifdef MDS_REF_SET
<< " (" << ref_map << ")"
#endif
<< dendl;
#ifdef MDS_REF_SET
ceph_assert(ref_map[by] > 0);
#endif
ceph_assert(ref > 0);
}
void bad_get(int by) override {
generic_dout(0) << " bad get " << *this << " by " << by << " " << pin_name(by) << " was " << ref
#ifdef MDS_REF_SET
<< " (" << ref_map << ")"
#endif
<< dendl;
#ifdef MDS_REF_SET
ceph_assert(ref_map[by] >= 0);
#endif
}
void first_get() override;
void last_put() override;
void _put() override;
// -- hierarchy stuff --
void set_primary_parent(CDentry *p) {
ceph_assert(parent == 0 ||
g_conf().get_val<bool>("mds_hack_allow_loading_invalid_metadata"));
parent = p;
}
void remove_primary_parent(CDentry *dn) {
ceph_assert(dn == parent);
parent = 0;
}
void add_remote_parent(CDentry *p);
void remove_remote_parent(CDentry *p);
int num_remote_parents() {
return remote_parents.size();
}
void push_projected_parent(CDentry *dn) {
projected_parent.push_back(dn);
}
void pop_projected_parent() {
ceph_assert(projected_parent.size());
parent = projected_parent.front();
projected_parent.pop_front();
}
bool is_parent_projected() const {
return !projected_parent.empty();
}
mds_rank_t get_export_pin(bool inherit=true, bool ephemeral=true) const;
void set_export_pin(mds_rank_t rank);
void queue_export_pin(mds_rank_t target);
void maybe_export_pin(bool update=false);
void check_pin_policy();
void set_ephemeral_dist(bool yes);
void maybe_ephemeral_dist(bool update=false);
void maybe_ephemeral_dist_children(bool update=false);
void setxattr_ephemeral_dist(bool val=false);
bool is_ephemeral_dist() const {
return state_test(STATE_DISTEPHEMERALPIN);
}
double get_ephemeral_rand(bool inherit=true) const;
void set_ephemeral_rand(bool yes);
void maybe_ephemeral_rand(bool fresh=false, double threshold=-1.0);
void setxattr_ephemeral_rand(double prob=0.0);
bool is_ephemeral_rand() const {
return state_test(STATE_RANDEPHEMERALPIN);
}
bool has_ephemeral_policy() const {
return get_inode()->export_ephemeral_random_pin > 0.0 ||
get_inode()->export_ephemeral_distributed_pin;
}
bool is_ephemerally_pinned() const {
return state_test(STATE_DISTEPHEMERALPIN) ||
state_test(STATE_RANDEPHEMERALPIN);
}
bool is_exportable(mds_rank_t dest) const;
void maybe_pin() {
maybe_export_pin();
maybe_ephemeral_dist();
maybe_ephemeral_rand();
}
void print(std::ostream& out) override;
void dump(ceph::Formatter *f, int flags = DUMP_DEFAULT) const;
/**
* Validate that the on-disk state of an inode matches what
* we expect from our memory state. Currently this checks that:
* 1) The backtrace associated with the file data exists and is correct
* 2) For directories, the actual inode metadata matches our memory state,
* 3) For directories, the rstats match
*
* @param results A freshly-created validated_data struct, with values set
* as described in the struct documentation.
* @param mdr The request to be responeded upon the completion of the
* validation (or NULL)
* @param fin Context to call back on completion (or NULL)
*/
void validate_disk_state(validated_data *results,
MDSContext *fin);
static void dump_validation_results(const validated_data& results,
ceph::Formatter *f);
//bool hack_accessed = false;
//utime_t hack_load_stamp;
MDCache *mdcache;
SnapRealm *snaprealm = nullptr;
SnapRealm *containing_realm = nullptr;
snapid_t first, last;
mempool::mds_co::compact_set<snapid_t> dirty_old_rstats;
uint64_t last_journaled = 0; // log offset for the last time i was journaled
//loff_t last_open_journaled; // log offset for the last journaled EOpen
utime_t last_dirstat_prop;
// list item node for when we have unpropagated rstat data
elist<CInode*>::item dirty_rstat_item;
mempool::mds_co::set<client_t> client_snap_caps;
mempool::mds_co::compact_map<snapid_t, mempool::mds_co::set<client_t> > client_need_snapflush;
// LogSegment lists i (may) belong to
elist<CInode*>::item item_dirty;
elist<CInode*>::item item_caps;
elist<CInode*>::item item_open_file;
elist<CInode*>::item item_dirty_parent;
elist<CInode*>::item item_dirty_dirfrag_dir;
elist<CInode*>::item item_dirty_dirfrag_nest;
elist<CInode*>::item item_dirty_dirfrag_dirfragtree;
elist<CInode*>::item item_scrub;
// also update RecoveryQueue::RecoveryQueue() if you change this
elist<CInode*>::item& item_recover_queue = item_dirty_dirfrag_dir;
elist<CInode*>::item& item_recover_queue_front = item_dirty_dirfrag_nest;
inode_load_vec_t pop;
elist<CInode*>::item item_pop_lru;
// -- locks --
static LockType versionlock_type;
static LockType authlock_type;
static LockType linklock_type;
static LockType dirfragtreelock_type;
static LockType filelock_type;
static LockType xattrlock_type;
static LockType snaplock_type;
static LockType nestlock_type;
static LockType flocklock_type;
static LockType policylock_type;
// FIXME not part of mempool
LocalLockC versionlock;
SimpleLock authlock;
SimpleLock linklock;
ScatterLock dirfragtreelock;
ScatterLock filelock;
SimpleLock xattrlock;
SimpleLock snaplock;
ScatterLock nestlock;
SimpleLock flocklock;
SimpleLock policylock;
// -- caps -- (new)
// client caps
client_t loner_cap = -1, want_loner_cap = -1;
protected:
ceph_lock_state_t *get_fcntl_lock_state() {
if (!fcntl_locks)
fcntl_locks = new ceph_lock_state_t(g_ceph_context, CEPH_LOCK_FCNTL);
return fcntl_locks;
}
void clear_fcntl_lock_state() {
delete fcntl_locks;
fcntl_locks = NULL;
}
ceph_lock_state_t *get_flock_lock_state() {
if (!flock_locks)
flock_locks = new ceph_lock_state_t(g_ceph_context, CEPH_LOCK_FLOCK);
return flock_locks;
}
void clear_flock_lock_state() {
delete flock_locks;
flock_locks = NULL;
}
void clear_file_locks() {
clear_fcntl_lock_state();
clear_flock_lock_state();
}
void _encode_file_locks(ceph::buffer::list& bl) const {
using ceph::encode;
bool has_fcntl_locks = fcntl_locks && !fcntl_locks->empty();
encode(has_fcntl_locks, bl);
if (has_fcntl_locks)
encode(*fcntl_locks, bl);
bool has_flock_locks = flock_locks && !flock_locks->empty();
encode(has_flock_locks, bl);
if (has_flock_locks)
encode(*flock_locks, bl);
}
void _decode_file_locks(ceph::buffer::list::const_iterator& p) {
using ceph::decode;
bool has_fcntl_locks;
decode(has_fcntl_locks, p);
if (has_fcntl_locks)
decode(*get_fcntl_lock_state(), p);
else
clear_fcntl_lock_state();
bool has_flock_locks;
decode(has_flock_locks, p);
if (has_flock_locks)
decode(*get_flock_lock_state(), p);
else
clear_flock_lock_state();
}
/**
* Return the pool ID where we currently write backtraces for
* this inode (in addition to inode.old_pools)
*
* @returns a pool ID >=0
*/
int64_t get_backtrace_pool() const;
// parent dentries in cache
CDentry *parent = nullptr; // primary link
mempool::mds_co::compact_set<CDentry*> remote_parents; // if hard linked
mempool::mds_co::list<CDentry*> projected_parent; // for in-progress rename, (un)link, etc.
mds_authority_t inode_auth = CDIR_AUTH_DEFAULT;
// -- distributed state --
// file capabilities
mempool_cap_map client_caps; // client -> caps
mempool::mds_co::compact_map<int32_t, int32_t> mds_caps_wanted; // [auth] mds -> caps wanted
int replica_caps_wanted = 0; // [replica] what i've requested from auth
int num_caps_notable = 0;
ceph_lock_state_t *fcntl_locks = nullptr;
ceph_lock_state_t *flock_locks = nullptr;
// -- waiting --
mempool::mds_co::compact_map<frag_t, MDSContext::vec > waiting_on_dir;
// -- freezing inode --
int auth_pin_freeze_allowance = 0;
elist<CInode*>::item item_freezing_inode;
void maybe_finish_freeze_inode();
private:
friend class ValidationContinuation;
/**
* Create a scrub_info_t struct for the scrub_infop pointer.
*/
void scrub_info_create() const;
/**
* Delete the scrub_info_t struct if it's not got any useful data
*/
void scrub_maybe_delete_info();
void pop_projected_snaprealm(sr_t *next_snaprealm, bool early);
bool _validate_disk_state(class ValidationContinuation *c,
int rval, int stage);
struct projected_const_node {
inode_const_ptr inode;
xattr_map_const_ptr xattrs;
sr_t *snapnode;
projected_const_node() = delete;
projected_const_node(projected_const_node&&) = default;
explicit projected_const_node(const inode_const_ptr& i, const xattr_map_const_ptr& x, sr_t *s) :
inode(i), xattrs(x), snapnode(s) {}
};
mempool::mds_co::list<projected_const_node> projected_nodes; // projected values (only defined while dirty)
size_t num_projected_srnodes = 0;
// -- cache infrastructure --
mempool::mds_co::compact_map<frag_t,CDir*> dirfrags; // cached dir fragments under this Inode
//for the purpose of quickly determining whether there's a subtree root or exporting dir
int num_subtree_roots = 0;
int num_exporting_dirs = 0;
int stickydir_ref = 0;
scrub_info_t *scrub_infop = nullptr;
/** @} Scrubbing and fsck */
};
std::ostream& operator<<(std::ostream& out, const CInode& in);
std::ostream& operator<<(std::ostream& out, const CInode::scrub_stamp_info_t& si);
extern cinode_lock_info_t cinode_lock_info[];
extern int num_cinode_locks;
#undef dout_context
#endif