mirror of
https://github.com/ceph/ceph
synced 2025-01-10 05:00:59 +00:00
f0447b29ad
Updated the terminology from federated architecture to multisite configuration. Updated the reference link for multisite configuration. Signed-off-by: James McClune <jmcclune@mcclunetechnologies.net>
581 lines
18 KiB
ReStructuredText
581 lines
18 KiB
ReStructuredText
==============================
|
|
Manual Deployment on FreeBSD
|
|
==============================
|
|
|
|
This a largely a copy of the regular Manual Deployment with FreeBSD specifics.
|
|
The difference lies in two parts: The underlying diskformat, and the way to use
|
|
the tools.
|
|
|
|
All Ceph clusters require at least one monitor, and at least as many OSDs as
|
|
copies of an object stored on the cluster. Bootstrapping the initial monitor(s)
|
|
is the first step in deploying a Ceph Storage Cluster. Monitor deployment also
|
|
sets important criteria for the entire cluster, such as the number of replicas
|
|
for pools, the number of placement groups per OSD, the heartbeat intervals,
|
|
whether authentication is required, etc. Most of these values are set by
|
|
default, so it's useful to know about them when setting up your cluster for
|
|
production.
|
|
|
|
Following the same configuration as `Installation (Quick)`_, we will set up a
|
|
cluster with ``node1`` as the monitor node, and ``node2`` and ``node3`` for
|
|
OSD nodes.
|
|
|
|
|
|
|
|
.. ditaa::
|
|
/------------------\ /----------------\
|
|
| Admin Node | | node1 |
|
|
| +-------->+ |
|
|
| | | cCCC |
|
|
\---------+--------/ \----------------/
|
|
|
|
|
| /----------------\
|
|
| | node2 |
|
|
+----------------->+ |
|
|
| | cCCC |
|
|
| \----------------/
|
|
|
|
|
| /----------------\
|
|
| | node3 |
|
|
+----------------->| |
|
|
| cCCC |
|
|
\----------------/
|
|
|
|
|
|
|
|
Disklayout on FreeBSD
|
|
=====================
|
|
|
|
Current implementation works on ZFS pools
|
|
|
|
* All Ceph data is created in /var/lib/ceph
|
|
* Log files go into /var/log/ceph
|
|
* PID files go into /var/log/run
|
|
* One ZFS pool is allocated per OSD, like::
|
|
|
|
gpart create -s GPT ada1
|
|
gpart add -t freebsd-zfs -l osd.1 ada1
|
|
zpool create -m /var/lib/ceph/osd/osd.1 osd.1 gpt/osd.1
|
|
|
|
* Some cache and log (ZIL) can be attached.
|
|
Please note that this is different from the Ceph journals. Cache and log are
|
|
totally transparent for Ceph, and help the filesystem to keep the system
|
|
consistent and help performance.
|
|
Assuming that ada2 is an SSD::
|
|
|
|
gpart create -s GPT ada2
|
|
gpart add -t freebsd-zfs -l osd.1-log -s 1G ada2
|
|
zpool add osd.1 log gpt/osd.1-log
|
|
gpart add -t freebsd-zfs -l osd.1-cache -s 10G ada2
|
|
zpool add osd.1 log gpt/osd.1-cache
|
|
|
|
* Note: *UFS2 does not allow large xattribs*
|
|
|
|
|
|
Configuration
|
|
-------------
|
|
|
|
As per FreeBSD default parts of extra software go into ``/usr/local/``. Which
|
|
means that for ``/etc/ceph.conf`` the default location is
|
|
``/usr/local/etc/ceph/ceph.conf``. Smartest thing to do is to create a softlink
|
|
from ``/etc/ceph`` to ``/usr/local/etc/ceph``::
|
|
|
|
ln -s /usr/local/etc/ceph /etc/ceph
|
|
|
|
A sample file is provided in ``/usr/local/share/doc/ceph/sample.ceph.conf``
|
|
Note that ``/usr/local/etc/ceph/ceph.conf`` will be found by most tools,
|
|
linking it to ``/etc/ceph/ceph.conf`` will help with any scripts that are found
|
|
in extra tools, scripts, and/or discussionlists.
|
|
|
|
Monitor Bootstrapping
|
|
=====================
|
|
|
|
Bootstrapping a monitor (a Ceph Storage Cluster, in theory) requires
|
|
a number of things:
|
|
|
|
- **Unique Identifier:** The ``fsid`` is a unique identifier for the cluster,
|
|
and stands for File System ID from the days when the Ceph Storage Cluster was
|
|
principally for the Ceph Filesystem. Ceph now supports native interfaces,
|
|
block devices, and object storage gateway interfaces too, so ``fsid`` is a
|
|
bit of a misnomer.
|
|
|
|
- **Cluster Name:** Ceph clusters have a cluster name, which is a simple string
|
|
without spaces. The default cluster name is ``ceph``, but you may specify
|
|
a different cluster name. Overriding the default cluster name is
|
|
especially useful when you are working with multiple clusters and you need to
|
|
clearly understand which cluster your are working with.
|
|
|
|
For example, when you run multiple clusters in a :ref:`multisite configuration <multisite>`,
|
|
the cluster name (e.g., ``us-west``, ``us-east``) identifies the cluster for
|
|
the current CLI session. **Note:** To identify the cluster name on the
|
|
command line interface, specify the a Ceph configuration file with the
|
|
cluster name (e.g., ``ceph.conf``, ``us-west.conf``, ``us-east.conf``, etc.).
|
|
Also see CLI usage (``ceph --cluster {cluster-name}``).
|
|
|
|
- **Monitor Name:** Each monitor instance within a cluster has a unique name.
|
|
In common practice, the Ceph Monitor name is the host name (we recommend one
|
|
Ceph Monitor per host, and no commingling of Ceph OSD Daemons with
|
|
Ceph Monitors). You may retrieve the short hostname with ``hostname -s``.
|
|
|
|
- **Monitor Map:** Bootstrapping the initial monitor(s) requires you to
|
|
generate a monitor map. The monitor map requires the ``fsid``, the cluster
|
|
name (or uses the default), and at least one host name and its IP address.
|
|
|
|
- **Monitor Keyring**: Monitors communicate with each other via a
|
|
secret key. You must generate a keyring with a monitor secret and provide
|
|
it when bootstrapping the initial monitor(s).
|
|
|
|
- **Administrator Keyring**: To use the ``ceph`` CLI tools, you must have
|
|
a ``client.admin`` user. So you must generate the admin user and keyring,
|
|
and you must also add the ``client.admin`` user to the monitor keyring.
|
|
|
|
The foregoing requirements do not imply the creation of a Ceph Configuration
|
|
file. However, as a best practice, we recommend creating a Ceph configuration
|
|
file and populating it with the ``fsid``, the ``mon initial members`` and the
|
|
``mon host`` settings.
|
|
|
|
You can get and set all of the monitor settings at runtime as well. However,
|
|
a Ceph Configuration file may contain only those settings that override the
|
|
default values. When you add settings to a Ceph configuration file, these
|
|
settings override the default settings. Maintaining those settings in a
|
|
Ceph configuration file makes it easier to maintain your cluster.
|
|
|
|
The procedure is as follows:
|
|
|
|
|
|
#. Log in to the initial monitor node(s)::
|
|
|
|
ssh {hostname}
|
|
|
|
For example::
|
|
|
|
ssh node1
|
|
|
|
|
|
#. Ensure you have a directory for the Ceph configuration file. By default,
|
|
Ceph uses ``/etc/ceph``. When you install ``ceph``, the installer will
|
|
create the ``/etc/ceph`` directory automatically. ::
|
|
|
|
ls /etc/ceph
|
|
|
|
**Note:** Deployment tools may remove this directory when purging a
|
|
cluster (e.g., ``ceph-deploy purgedata {node-name}``, ``ceph-deploy purge
|
|
{node-name}``).
|
|
|
|
#. Create a Ceph configuration file. By default, Ceph uses
|
|
``ceph.conf``, where ``ceph`` reflects the cluster name. ::
|
|
|
|
sudo vim /etc/ceph/ceph.conf
|
|
|
|
|
|
#. Generate a unique ID (i.e., ``fsid``) for your cluster. ::
|
|
|
|
uuidgen
|
|
|
|
|
|
#. Add the unique ID to your Ceph configuration file. ::
|
|
|
|
fsid = {UUID}
|
|
|
|
For example::
|
|
|
|
fsid = a7f64266-0894-4f1e-a635-d0aeaca0e993
|
|
|
|
|
|
#. Add the initial monitor(s) to your Ceph configuration file. ::
|
|
|
|
mon initial members = {hostname}[,{hostname}]
|
|
|
|
For example::
|
|
|
|
mon initial members = node1
|
|
|
|
|
|
#. Add the IP address(es) of the initial monitor(s) to your Ceph configuration
|
|
file and save the file. ::
|
|
|
|
mon host = {ip-address}[,{ip-address}]
|
|
|
|
For example::
|
|
|
|
mon host = 192.168.0.1
|
|
|
|
**Note:** You may use IPv6 addresses instead of IPv4 addresses, but
|
|
you must set ``ms bind ipv6`` to ``true``. See `Network Configuration
|
|
Reference`_ for details about network configuration.
|
|
|
|
#. Create a keyring for your cluster and generate a monitor secret key. ::
|
|
|
|
ceph-authtool --create-keyring /tmp/ceph.mon.keyring --gen-key -n mon. --cap mon 'allow *'
|
|
|
|
|
|
#. Generate an administrator keyring, generate a ``client.admin`` user and add
|
|
the user to the keyring. ::
|
|
|
|
sudo ceph-authtool --create-keyring /etc/ceph/ceph.client.admin.keyring --gen-key -n client.admin --cap mon 'allow *' --cap osd 'allow *' --cap mds 'allow *' --cap mgr 'allow *'
|
|
|
|
|
|
#. Add the ``client.admin`` key to the ``ceph.mon.keyring``. ::
|
|
|
|
ceph-authtool /tmp/ceph.mon.keyring --import-keyring /etc/ceph/ceph.client.admin.keyring
|
|
|
|
|
|
#. Generate a monitor map using the hostname(s), host IP address(es) and the FSID.
|
|
Save it as ``/tmp/monmap``::
|
|
|
|
monmaptool --create --add {hostname} {ip-address} --fsid {uuid} /tmp/monmap
|
|
|
|
For example::
|
|
|
|
monmaptool --create --add node1 192.168.0.1 --fsid a7f64266-0894-4f1e-a635-d0aeaca0e993 /tmp/monmap
|
|
|
|
|
|
#. Create a default data directory (or directories) on the monitor host(s). ::
|
|
|
|
sudo mkdir /var/lib/ceph/mon/{cluster-name}-{hostname}
|
|
|
|
For example::
|
|
|
|
sudo mkdir /var/lib/ceph/mon/ceph-node1
|
|
|
|
See `Monitor Config Reference - Data`_ for details.
|
|
|
|
#. Populate the monitor daemon(s) with the monitor map and keyring. ::
|
|
|
|
sudo -u ceph ceph-mon [--cluster {cluster-name}] --mkfs -i {hostname} --monmap /tmp/monmap --keyring /tmp/ceph.mon.keyring
|
|
|
|
For example::
|
|
|
|
sudo -u ceph ceph-mon --mkfs -i node1 --monmap /tmp/monmap --keyring /tmp/ceph.mon.keyring
|
|
|
|
|
|
#. Consider settings for a Ceph configuration file. Common settings include
|
|
the following::
|
|
|
|
[global]
|
|
fsid = {cluster-id}
|
|
mon initial members = {hostname}[, {hostname}]
|
|
mon host = {ip-address}[, {ip-address}]
|
|
public network = {network}[, {network}]
|
|
cluster network = {network}[, {network}]
|
|
auth cluster required = cephx
|
|
auth service required = cephx
|
|
auth client required = cephx
|
|
osd journal size = {n}
|
|
osd pool default size = {n} # Write an object n times.
|
|
osd pool default min size = {n} # Allow writing n copy in a degraded state.
|
|
osd pool default pg num = {n}
|
|
osd pool default pgp num = {n}
|
|
osd crush chooseleaf type = {n}
|
|
|
|
In the foregoing example, the ``[global]`` section of the configuration might
|
|
look like this::
|
|
|
|
[global]
|
|
fsid = a7f64266-0894-4f1e-a635-d0aeaca0e993
|
|
mon initial members = node1
|
|
mon host = 192.168.0.1
|
|
public network = 192.168.0.0/24
|
|
auth cluster required = cephx
|
|
auth service required = cephx
|
|
auth client required = cephx
|
|
osd journal size = 1024
|
|
osd pool default size = 3
|
|
osd pool default min size = 2
|
|
osd pool default pg num = 333
|
|
osd pool default pgp num = 333
|
|
osd crush chooseleaf type = 1
|
|
|
|
#. Touch the ``done`` file.
|
|
|
|
Mark that the monitor is created and ready to be started::
|
|
|
|
sudo touch /var/lib/ceph/mon/ceph-node1/done
|
|
|
|
#. And for FreeBSD an entry for every monitor needs to be added to the config
|
|
file. (The requirement will be removed in future releases).
|
|
|
|
The entry should look like::
|
|
|
|
[mon]
|
|
[mon.node1]
|
|
host = node1 # this name can be resolve
|
|
|
|
|
|
#. Start the monitor(s).
|
|
|
|
For Ubuntu, use Upstart::
|
|
|
|
sudo start ceph-mon id=node1 [cluster={cluster-name}]
|
|
|
|
In this case, to allow the start of the daemon at each reboot you
|
|
must create two empty files like this::
|
|
|
|
sudo touch /var/lib/ceph/mon/{cluster-name}-{hostname}/upstart
|
|
|
|
For example::
|
|
|
|
sudo touch /var/lib/ceph/mon/ceph-node1/upstart
|
|
|
|
For Debian/CentOS/RHEL, use sysvinit::
|
|
|
|
sudo /etc/init.d/ceph start mon.node1
|
|
|
|
For FreeBSD we use the rc.d init scripts (called bsdrc in Ceph)::
|
|
|
|
sudo service ceph start start mon.node1
|
|
|
|
For this to work /etc/rc.conf also needs the entry to enable ceph::
|
|
cat 'ceph_enable="YES"' >> /etc/rc.conf
|
|
|
|
|
|
#. Verify that Ceph created the default pools. ::
|
|
|
|
ceph osd lspools
|
|
|
|
You should see output like this::
|
|
|
|
0 data
|
|
1 metadata
|
|
2 rbd
|
|
|
|
#. Verify that the monitor is running. ::
|
|
|
|
ceph -s
|
|
|
|
You should see output that the monitor you started is up and running, and
|
|
you should see a health error indicating that placement groups are stuck
|
|
inactive. It should look something like this::
|
|
|
|
cluster a7f64266-0894-4f1e-a635-d0aeaca0e993
|
|
health HEALTH_ERR 192 pgs stuck inactive; 192 pgs stuck unclean; no osds
|
|
monmap e1: 1 mons at {node1=192.168.0.1:6789/0}, election epoch 1, quorum 0 node1
|
|
osdmap e1: 0 osds: 0 up, 0 in
|
|
pgmap v2: 192 pgs, 3 pools, 0 bytes data, 0 objects
|
|
0 kB used, 0 kB / 0 kB avail
|
|
192 creating
|
|
|
|
**Note:** Once you add OSDs and start them, the placement group health errors
|
|
should disappear. See the next section for details.
|
|
|
|
.. _freebsd_adding_osds:
|
|
|
|
Adding OSDs
|
|
===========
|
|
|
|
Once you have your initial monitor(s) running, you should add OSDs. Your cluster
|
|
cannot reach an ``active + clean`` state until you have enough OSDs to handle the
|
|
number of copies of an object (e.g., ``osd pool default size = 2`` requires at
|
|
least two OSDs). After bootstrapping your monitor, your cluster has a default
|
|
CRUSH map; however, the CRUSH map doesn't have any Ceph OSD Daemons mapped to
|
|
a Ceph Node.
|
|
|
|
|
|
Long Form
|
|
---------
|
|
|
|
Without the benefit of any helper utilities, create an OSD and add it to the
|
|
cluster and CRUSH map with the following procedure. To create the first two
|
|
OSDs with the long form procedure, execute the following on ``node2`` and
|
|
``node3``:
|
|
|
|
#. Connect to the OSD host. ::
|
|
|
|
ssh {node-name}
|
|
|
|
#. Generate a UUID for the OSD. ::
|
|
|
|
uuidgen
|
|
|
|
|
|
#. Create the OSD. If no UUID is given, it will be set automatically when the
|
|
OSD starts up. The following command will output the OSD number, which you
|
|
will need for subsequent steps. ::
|
|
|
|
ceph osd create [{uuid} [{id}]]
|
|
|
|
|
|
#. Create the default directory on your new OSD. ::
|
|
|
|
ssh {new-osd-host}
|
|
sudo mkdir /var/lib/ceph/osd/{cluster-name}-{osd-number}
|
|
|
|
Above are the ZFS instructions to do this for FreeBSD.
|
|
|
|
|
|
#. If the OSD is for a drive other than the OS drive, prepare it
|
|
for use with Ceph, and mount it to the directory you just created.
|
|
|
|
|
|
#. Initialize the OSD data directory. ::
|
|
|
|
ssh {new-osd-host}
|
|
sudo ceph-osd -i {osd-num} --mkfs --mkkey --osd-uuid [{uuid}]
|
|
|
|
The directory must be empty before you can run ``ceph-osd`` with the
|
|
``--mkkey`` option. In addition, the ceph-osd tool requires specification
|
|
of custom cluster names with the ``--cluster`` option.
|
|
|
|
|
|
#. Register the OSD authentication key. The value of ``ceph`` for
|
|
``ceph-{osd-num}`` in the path is the ``$cluster-$id``. If your
|
|
cluster name differs from ``ceph``, use your cluster name instead.::
|
|
|
|
sudo ceph auth add osd.{osd-num} osd 'allow *' mon 'allow profile osd' -i /var/lib/ceph/osd/{cluster-name}-{osd-num}/keyring
|
|
|
|
|
|
#. Add your Ceph Node to the CRUSH map. ::
|
|
|
|
ceph [--cluster {cluster-name}] osd crush add-bucket {hostname} host
|
|
|
|
For example::
|
|
|
|
ceph osd crush add-bucket node1 host
|
|
|
|
|
|
#. Place the Ceph Node under the root ``default``. ::
|
|
|
|
ceph osd crush move node1 root=default
|
|
|
|
|
|
#. Add the OSD to the CRUSH map so that it can begin receiving data. You may
|
|
also decompile the CRUSH map, add the OSD to the device list, add the host as a
|
|
bucket (if it's not already in the CRUSH map), add the device as an item in the
|
|
host, assign it a weight, recompile it and set it. ::
|
|
|
|
ceph [--cluster {cluster-name}] osd crush add {id-or-name} {weight} [{bucket-type}={bucket-name} ...]
|
|
|
|
For example::
|
|
|
|
ceph osd crush add osd.0 1.0 host=node1
|
|
|
|
|
|
#. After you add an OSD to Ceph, the OSD is in your configuration. However,
|
|
it is not yet running. The OSD is ``down`` and ``in``. You must start
|
|
your new OSD before it can begin receiving data.
|
|
|
|
For Ubuntu, use Upstart::
|
|
|
|
sudo start ceph-osd id={osd-num} [cluster={cluster-name}]
|
|
|
|
For example::
|
|
|
|
sudo start ceph-osd id=0
|
|
sudo start ceph-osd id=1
|
|
|
|
For Debian/CentOS/RHEL, use sysvinit::
|
|
|
|
sudo /etc/init.d/ceph start osd.{osd-num} [--cluster {cluster-name}]
|
|
|
|
For example::
|
|
|
|
sudo /etc/init.d/ceph start osd.0
|
|
sudo /etc/init.d/ceph start osd.1
|
|
|
|
In this case, to allow the start of the daemon at each reboot you
|
|
must create an empty file like this::
|
|
|
|
sudo touch /var/lib/ceph/osd/{cluster-name}-{osd-num}/sysvinit
|
|
|
|
For example::
|
|
|
|
sudo touch /var/lib/ceph/osd/ceph-0/sysvinit
|
|
sudo touch /var/lib/ceph/osd/ceph-1/sysvinit
|
|
|
|
Once you start your OSD, it is ``up`` and ``in``.
|
|
|
|
For FreeBSD using rc.d init.
|
|
|
|
After adding the OSD to ``ceph.conf``::
|
|
|
|
sudo service ceph start osd.{osd-num}
|
|
|
|
For example::
|
|
|
|
sudo service ceph start osd.0
|
|
sudo service ceph start osd.1
|
|
|
|
In this case, to allow the start of the daemon at each reboot you
|
|
must create an empty file like this::
|
|
|
|
sudo touch /var/lib/ceph/osd/{cluster-name}-{osd-num}/bsdrc
|
|
|
|
For example::
|
|
|
|
sudo touch /var/lib/ceph/osd/ceph-0/bsdrc
|
|
sudo touch /var/lib/ceph/osd/ceph-1/bsdrc
|
|
|
|
Once you start your OSD, it is ``up`` and ``in``.
|
|
|
|
|
|
|
|
Adding MDS
|
|
==========
|
|
|
|
In the below instructions, ``{id}`` is an arbitrary name, such as the hostname of the machine.
|
|
|
|
#. Create the mds data directory.::
|
|
|
|
mkdir -p /var/lib/ceph/mds/{cluster-name}-{id}
|
|
|
|
#. Create a keyring.::
|
|
|
|
ceph-authtool --create-keyring /var/lib/ceph/mds/{cluster-name}-{id}/keyring --gen-key -n mds.{id}
|
|
|
|
#. Import the keyring and set caps.::
|
|
|
|
ceph auth add mds.{id} osd "allow rwx" mds "allow" mon "allow profile mds" -i /var/lib/ceph/mds/{cluster}-{id}/keyring
|
|
|
|
#. Add to ceph.conf.::
|
|
|
|
[mds.{id}]
|
|
host = {id}
|
|
|
|
#. Start the daemon the manual way.::
|
|
|
|
ceph-mds --cluster {cluster-name} -i {id} -m {mon-hostname}:{mon-port} [-f]
|
|
|
|
#. Start the daemon the right way (using ceph.conf entry).::
|
|
|
|
service ceph start
|
|
|
|
#. If starting the daemon fails with this error::
|
|
|
|
mds.-1.0 ERROR: failed to authenticate: (22) Invalid argument
|
|
|
|
Then make sure you do not have a keyring set in ceph.conf in the global section; move it to the client section; or add a keyring setting specific to this mds daemon. And verify that you see the same key in the mds data directory and ``ceph auth get mds.{id}`` output.
|
|
|
|
#. Now you are ready to `create a Ceph filesystem`_.
|
|
|
|
|
|
Summary
|
|
=======
|
|
|
|
Once you have your monitor and two OSDs up and running, you can watch the
|
|
placement groups peer by executing the following::
|
|
|
|
ceph -w
|
|
|
|
To view the tree, execute the following::
|
|
|
|
ceph osd tree
|
|
|
|
You should see output that looks something like this::
|
|
|
|
# id weight type name up/down reweight
|
|
-1 2 root default
|
|
-2 2 host node1
|
|
0 1 osd.0 up 1
|
|
-3 1 host node2
|
|
1 1 osd.1 up 1
|
|
|
|
To add (or remove) additional monitors, see `Add/Remove Monitors`_.
|
|
To add (or remove) additional Ceph OSD Daemons, see `Add/Remove OSDs`_.
|
|
|
|
|
|
.. _Installation (Quick): ../../start
|
|
.. _Add/Remove Monitors: ../../rados/operations/add-or-rm-mons
|
|
.. _Add/Remove OSDs: ../../rados/operations/add-or-rm-osds
|
|
.. _Network Configuration Reference: ../../rados/configuration/network-config-ref
|
|
.. _Monitor Config Reference - Data: ../../rados/configuration/mon-config-ref#data
|
|
.. _create a Ceph filesystem: ../../cephfs/createfs
|