#include #include #include "include/types.h" #include "auth/Crypto.h" #include "common/ceph_crypto.h" #include "gtest/gtest.h" class CryptoEnvironment: public ::testing::Environment { public: void SetUp() { ceph::crypto::init(); } }; ::testing::Environment* const crypto_env = ::testing::AddGlobalTestEnvironment(new CryptoEnvironment); TEST(AES, ValidateSecret) { CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES); int l; for (l=0; l<16; l++) { bufferptr bp(l); int err; err = h->validate_secret(bp); EXPECT_EQ(-EINVAL, err); } for (l=16; l<50; l++) { bufferptr bp(l); int err; err = h->validate_secret(bp); EXPECT_EQ(0, err); } } TEST(AES, Encrypt) { CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES); char secret_s[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, }; bufferptr secret(secret_s, sizeof(secret_s)); char plaintext_s[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff, }; bufferlist plaintext; plaintext.append(plaintext_s, sizeof(plaintext_s)); bufferlist cipher; int success; success = h->encrypt(secret, plaintext, cipher); ASSERT_NE(false, success); // C defines booleans as non-zero, so the above is sort of enough // and more correct, but let's be strict to avoid confusion in // callers ASSERT_EQ(true, success); char want_cipher[] = { 0xb3, 0x8f, 0x5b, 0xc9, 0x35, 0x4c, 0xf8, 0xc6, 0x13, 0x15, 0x66, 0x6f, 0x37, 0xd7, 0x79, 0x3a, 0x11, 0x90, 0x7b, 0xe9, 0xd8, 0x3c, 0x35, 0x70, 0x58, 0x7b, 0x97, 0x9b, 0x03, 0xd2, 0xa5, 0x01, }; char cipher_s[sizeof(want_cipher)]; ASSERT_EQ(sizeof(cipher_s), cipher.length()); cipher.copy(0, sizeof(cipher_s), &cipher_s[0]); int err; err = memcmp(cipher_s, want_cipher, sizeof(want_cipher)); ASSERT_EQ(0, err); } TEST(AES, Decrypt) { CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES); char secret_s[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, }; bufferptr secret(secret_s, sizeof(secret_s)); char cipher_s[] = { 0xb3, 0x8f, 0x5b, 0xc9, 0x35, 0x4c, 0xf8, 0xc6, 0x13, 0x15, 0x66, 0x6f, 0x37, 0xd7, 0x79, 0x3a, 0x11, 0x90, 0x7b, 0xe9, 0xd8, 0x3c, 0x35, 0x70, 0x58, 0x7b, 0x97, 0x9b, 0x03, 0xd2, 0xa5, 0x01, }; bufferlist cipher; cipher.append(cipher_s, sizeof(cipher_s)); char want_plaintext[] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff, }; char plaintext_s[sizeof(want_plaintext)]; bufferlist plaintext; int err; err = h->decrypt(secret, cipher, plaintext); ASSERT_EQ((int)sizeof(want_plaintext), err); ASSERT_EQ(sizeof(plaintext_s), plaintext.length()); plaintext.copy(0, sizeof(plaintext_s), &plaintext_s[0]); err = memcmp(plaintext_s, want_plaintext, sizeof(want_plaintext)); ASSERT_EQ(0, err); } TEST(AES, Benchmark) { int err; struct timespec before; struct timespec after; err = clock_gettime(CLOCK_MONOTONIC, &before); ASSERT_EQ(0, err); char secret_s[16]; err = get_random_bytes(secret_s, sizeof(secret_s)); ASSERT_EQ(0, err); bufferptr secret(secret_s, sizeof(secret_s)); char orig_plaintext_s[1024]; err = get_random_bytes(orig_plaintext_s, sizeof(orig_plaintext_s)); ASSERT_EQ(0, err); bufferlist plaintext; plaintext.append(orig_plaintext_s, sizeof(orig_plaintext_s)); for (int i=0; i<10000; i++) { bufferlist cipher; { CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES); int success; success = h->encrypt(secret, plaintext, cipher); ASSERT_NE(false, success); } plaintext.clear(); { CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES); int err; err = h->decrypt(secret, cipher, plaintext); ASSERT_EQ((int)sizeof(orig_plaintext_s), err); } } err = clock_gettime(CLOCK_MONOTONIC, &after); ASSERT_EQ(0, err); char plaintext_s[sizeof(orig_plaintext_s)]; plaintext.copy(0, sizeof(plaintext_s), &plaintext_s[0]); err = memcmp(plaintext_s, orig_plaintext_s, sizeof(orig_plaintext_s)); ASSERT_EQ(0, err); // 64 bits of nanoseconds a lot, but nothing guarantees what if any // epoch CLOCK_MONOTONIC has; shift measurements closer to 0 epoch ASSERT_LE(before.tv_sec, after.tv_sec); after.tv_sec -= before.tv_sec; before.tv_sec = 0; u_int64_t before_ns = before.tv_sec*1000000000 + before.tv_nsec; u_int64_t after_ns = after.tv_sec*1000000000 + after.tv_nsec; ASSERT_LE(before_ns, after_ns); u_int64_t duration_ns = after_ns - before_ns; // my desktop machine completes this in ~200ms with CryptoPP, ~750ms // right now for NSS (too slow!), this allows for 1s before flagging // a problem; not really robust but need something to detect really // severe regressions EXPECT_LT(duration_ns, 1000000000u); RecordProperty("durationnanoseconds", duration_ns); }