common: add an async SharedMutex

Signed-off-by: Casey Bodley <cbodley@redhat.com>
This commit is contained in:
Casey Bodley 2018-03-29 23:53:40 -04:00
parent e7d98d73e5
commit 36d3a8f984
3 changed files with 860 additions and 0 deletions

View File

@ -0,0 +1,428 @@
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2018 Red Hat
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#ifndef CEPH_ASYNC_SHARED_MUTEX_H
#define CEPH_ASYNC_SHARED_MUTEX_H
#include <condition_variable>
#include <mutex>
#include <shared_mutex> // for std::shared_lock
#include <boost/intrusive/list.hpp>
#include "common/async/completion.h"
namespace ceph::async {
/**
* An asynchronous shared mutex for use with boost::asio.
*
* A shared mutex class with asynchronous lock operations that complete on a
* boost::asio executor. The class also has synchronous interfaces that meet
* most of the standard library's requirements for the SharedMutex concept,
* which makes it compatible with lock_guard, unique_lock, and shared_lock.
*
* All lock requests can fail with operation_aborted on cancel() or destruction.
* The non-error_code overloads of lock() and lock_shared() will throw this
* error as an exception of type boost::system::system_error.
*
* Exclusive locks are prioritized over shared locks. Locks of the same type
* are granted in fifo order. The implementation defines a limit on the number
* of shared locks to 65534 at a time.
*
* Example use:
*
* boost::asio::io_context context;
* SharedMutex mutex{context.get_executor()};
*
* mutex.async_lock([&] (boost::system::error_code ec, auto lock) {
* if (!ec) {
* // mutate shared state ...
* }
* });
* mutex.async_lock_shared([&] (boost::system::error_code ec, auto lock) {
* if (!ec) {
* // read shared state ...
* }
* });
*
* context.run();
*/
template <typename Executor>
class SharedMutex {
public:
SharedMutex(const Executor& ex1);
/// on destruction, all pending lock requests are canceled
~SharedMutex();
using executor_type = Executor;
executor_type get_executor() const noexcept { return ex1; }
/// initiate an asynchronous request for an exclusive lock. when the lock is
/// granted, the completion handler is invoked with a successful error code
/// and a std::unique_lock that owns this mutex.
/// Signature = void(boost::system::error_code, std::unique_lock)
template <typename CompletionToken>
auto async_lock(CompletionToken&& token);
/// wait synchronously for an exclusive lock. if an error occurs before the
/// lock is granted, that error is thrown as an exception
void lock();
/// wait synchronously for an exclusive lock. if an error occurs before the
/// lock is granted, that error is assigned to 'ec'
void lock(boost::system::error_code& ec);
/// try to acquire an exclusive lock. if the lock is not immediately
/// available, returns false
bool try_lock();
/// releases an exclusive lock. not required to be called from the same thread
/// that initiated the lock
void unlock();
/// initiate an asynchronous request for a shared lock. when the lock is
/// granted, the completion handler is invoked with a successful error code
/// and a std::shared_lock that owns this mutex.
/// Signature = void(boost::system::error_code, std::shared_lock)
template <typename CompletionToken>
auto async_lock_shared(CompletionToken&& token);
/// wait synchronously for a shared lock. if an error occurs before the
/// lock is granted, that error is thrown as an exception
void lock_shared();
/// wait synchronously for a shared lock. if an error occurs before the lock
/// is granted, that error is assigned to 'ec'
void lock_shared(boost::system::error_code& ec);
/// try to acquire a shared lock. if the lock is not immediately available,
/// returns false
bool try_lock_shared();
/// releases a shared lock. not required to be called from the same thread
/// that initiated the lock
void unlock_shared();
/// cancel any pending requests for exclusive or shared locks with an
/// operation_aborted error
void cancel();
private:
Executor ex1; //< default callback executor
struct LockRequest : public boost::intrusive::list_base_hook<> {
virtual ~LockRequest() {}
virtual void complete(boost::system::error_code ec) = 0;
virtual void destroy() = 0;
};
using RequestList = boost::intrusive::list<LockRequest>;
RequestList shared_queue; //< requests waiting on a shared lock
RequestList exclusive_queue; //< requests waiting on an exclusive lock
/// lock state encodes the number of shared lockers, or 'max' for exclusive
using LockState = uint16_t;
static constexpr LockState Unlocked = 0;
static constexpr LockState Exclusive = std::numeric_limits<LockState>::max();
static constexpr LockState MaxShared = Exclusive - 1;
LockState state = Unlocked; //< current lock state
std::mutex mutex; //< protects lock state and wait queues
// sync requests live on the stack and wait on a condition variable
class SyncRequest;
// async requests use async::Completion to invoke a handler on its executor
template <template <typename Mutex> typename Lock>
class AsyncRequest;
using AsyncExclusiveRequest = AsyncRequest<std::unique_lock>;
using AsyncSharedRequest = AsyncRequest<std::shared_lock>;
void complete(RequestList&& requests, boost::system::error_code ec);
};
template <typename Executor>
class SharedMutex<Executor>::SyncRequest : public LockRequest {
std::condition_variable cond;
std::optional<boost::system::error_code> ec;
public:
boost::system::error_code wait(std::unique_lock<std::mutex>& lock) {
// return the error code once its been set
cond.wait(lock, [this] { return ec; });
return *ec;
}
void complete(boost::system::error_code ec) override {
this->ec = ec;
cond.notify_one();
}
void destroy() override {
// nothing, SyncRequests live on the stack
}
};
template <typename Executor>
template <template <typename Mutex> typename Lock>
class SharedMutex<Executor>::AsyncRequest : public LockRequest {
SharedMutex& mutex; //< mutex argument for lock guard
public:
AsyncRequest(SharedMutex& mutex) : mutex(mutex) {}
using Signature = void(boost::system::error_code, Lock<SharedMutex>);
using LockCompletion = Completion<Signature, AsBase<AsyncRequest>>;
void complete(boost::system::error_code ec) override {
auto r = static_cast<LockCompletion*>(this);
// pass ownership of ourselves to post(). on error, pass an empty lock
post(std::unique_ptr<LockCompletion>{r}, ec,
ec ? Lock{mutex, std::defer_lock} : Lock{mutex, std::adopt_lock});
}
void destroy() override {
delete static_cast<LockCompletion*>(this);
}
};
template <typename Executor>
inline SharedMutex<Executor>::SharedMutex(const Executor& ex1)
: ex1(ex1)
{
}
template <typename Executor>
inline SharedMutex<Executor>::~SharedMutex()
{
try {
cancel();
} catch (const std::exception&) {
// swallow any exceptions, the destructor can't throw
}
}
template <typename Executor>
template <typename CompletionToken>
auto SharedMutex<Executor>::async_lock(CompletionToken&& token)
{
using Signature = typename AsyncExclusiveRequest::Signature;
boost::asio::async_completion<CompletionToken, Signature> init(token);
auto& handler = init.completion_handler;
{
std::lock_guard lock{mutex};
if (state == Unlocked) {
state = Exclusive;
// post the completion
auto ex2 = boost::asio::get_associated_executor(handler, ex1);
auto alloc2 = boost::asio::get_associated_allocator(handler);
auto b = bind_handler(std::move(handler), boost::system::error_code{},
std::unique_lock{*this, std::adopt_lock});
ex2.post(forward_handler(std::move(b)), alloc2);
} else {
// create a request and add it to the exclusive list
using LockCompletion = typename AsyncExclusiveRequest::LockCompletion;
auto request = LockCompletion::create(ex1, std::move(handler), *this);
exclusive_queue.push_back(*request.release());
}
}
return init.result.get();
}
template <typename Executor>
inline void SharedMutex<Executor>::lock()
{
boost::system::error_code ec;
lock(ec);
if (ec) {
throw boost::system::system_error(ec);
}
}
template <typename Executor>
void SharedMutex<Executor>::lock(boost::system::error_code& ec)
{
std::unique_lock lock{mutex};
if (state == Unlocked) {
state = Exclusive;
ec.clear();
} else {
SyncRequest request;
exclusive_queue.push_back(request);
ec = request.wait(lock);
}
}
template <typename Executor>
inline bool SharedMutex<Executor>::try_lock()
{
std::lock_guard lock{mutex};
if (state == Unlocked) {
state = Exclusive;
return true;
}
return false;
}
template <typename Executor>
void SharedMutex<Executor>::unlock()
{
RequestList granted;
{
std::lock_guard lock{mutex};
assert(state == Exclusive);
if (!exclusive_queue.empty()) {
// grant next exclusive lock
auto& request = exclusive_queue.front();
exclusive_queue.pop_front();
granted.push_back(request);
} else {
// grant shared locks, if any
state = shared_queue.size();
if (state > MaxShared) {
state = MaxShared;
auto end = std::next(shared_queue.begin(), MaxShared);
granted.splice(granted.end(), shared_queue,
shared_queue.begin(), end, MaxShared);
} else {
granted.splice(granted.end(), shared_queue);
}
}
}
complete(std::move(granted), boost::system::error_code{});
}
template <typename Executor>
template <typename CompletionToken>
auto SharedMutex<Executor>::async_lock_shared(CompletionToken&& token)
{
using Signature = typename AsyncSharedRequest::Signature;
boost::asio::async_completion<CompletionToken, Signature> init(token);
auto& handler = init.completion_handler;
{
std::lock_guard lock{mutex};
if (exclusive_queue.empty() && state < MaxShared) {
state++;
auto ex2 = boost::asio::get_associated_executor(handler, ex1);
auto alloc2 = boost::asio::get_associated_allocator(handler);
auto b = bind_handler(std::move(handler), boost::system::error_code{},
std::shared_lock{*this, std::adopt_lock});
ex2.post(forward_handler(std::move(b)), alloc2);
} else {
using LockCompletion = typename AsyncSharedRequest::LockCompletion;
auto request = LockCompletion::create(ex1, std::move(handler), *this);
shared_queue.push_back(*request.release());
}
}
return init.result.get();
}
template <typename Executor>
inline void SharedMutex<Executor>::lock_shared()
{
boost::system::error_code ec;
lock_shared(ec);
if (ec) {
throw boost::system::system_error(ec);
}
}
template <typename Executor>
void SharedMutex<Executor>::lock_shared(boost::system::error_code& ec)
{
std::unique_lock lock{mutex};
if (exclusive_queue.empty() && state < MaxShared) {
state++;
ec.clear();
} else {
SyncRequest request;
shared_queue.push_back(request);
ec = request.wait(lock);
}
}
template <typename Executor>
inline bool SharedMutex<Executor>::try_lock_shared()
{
std::lock_guard lock{mutex};
if (exclusive_queue.empty() && state < MaxShared) {
state++;
return true;
}
return false;
}
template <typename Executor>
inline void SharedMutex<Executor>::unlock_shared()
{
std::lock_guard lock{mutex};
assert(state != Unlocked && state <= MaxShared);
if (state == 1 && !exclusive_queue.empty()) {
// grant next exclusive lock
state = Exclusive;
auto& request = exclusive_queue.front();
exclusive_queue.pop_front();
request.complete(boost::system::error_code{});
} else if (state == MaxShared && !shared_queue.empty() &&
exclusive_queue.empty()) {
// grant next shared lock
auto& request = shared_queue.front();
shared_queue.pop_front();
request.complete(boost::system::error_code{});
} else {
state--;
}
}
template <typename Executor>
inline void SharedMutex<Executor>::cancel()
{
RequestList canceled;
{
std::lock_guard lock{mutex};
canceled.splice(canceled.end(), shared_queue);
canceled.splice(canceled.end(), exclusive_queue);
}
complete(std::move(canceled), boost::asio::error::operation_aborted);
}
template <typename Executor>
void SharedMutex<Executor>::complete(RequestList&& requests,
boost::system::error_code ec)
{
while (!requests.empty()) {
auto& request = requests.front();
requests.pop_front();
try {
request.complete(ec);
} catch (...) {
// clean up any remaining completions and rethrow
requests.clear_and_dispose([] (LockRequest *r) { r->destroy(); });
throw;
}
}
}
} // namespace ceph::async
#endif // CEPH_ASYNC_SHARED_MUTEX_H

View File

@ -294,3 +294,7 @@ add_ceph_unittest(unittest_hobject)
add_executable(unittest_async_completion test_async_completion.cc)
add_ceph_unittest(unittest_async_completion)
target_link_libraries(unittest_async_completion Boost::system)
add_executable(unittest_async_shared_mutex test_async_shared_mutex.cc)
add_ceph_unittest(unittest_async_shared_mutex)
target_link_libraries(unittest_async_shared_mutex Boost::system)

View File

@ -0,0 +1,428 @@
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2018 Red Hat
*
* This is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software
* Foundation. See file COPYING.
*
*/
#include "common/async/shared_mutex.h"
#include <optional>
#include <gtest/gtest.h>
namespace ceph::async {
using executor_type = boost::asio::io_context::executor_type;
using unique_lock = std::unique_lock<SharedMutex<executor_type>>;
using shared_lock = std::shared_lock<SharedMutex<executor_type>>;
// return a lambda that captures its error code and lock
auto capture(std::optional<boost::system::error_code>& ec, unique_lock& lock)
{
return [&] (boost::system::error_code e, unique_lock l) {
ec = e;
lock = std::move(l);
};
}
auto capture(std::optional<boost::system::error_code>& ec, shared_lock& lock)
{
return [&] (boost::system::error_code e, shared_lock l) {
ec = e;
lock = std::move(l);
};
}
TEST(SharedMutex, async_exclusive)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
std::optional<boost::system::error_code> ec1, ec2, ec3;
unique_lock lock1, lock2, lock3;
// request three exclusive locks
mutex.async_lock(capture(ec1, lock1));
mutex.async_lock(capture(ec2, lock2));
mutex.async_lock(capture(ec3, lock3));
EXPECT_FALSE(ec1); // no callbacks until poll()
EXPECT_FALSE(ec2);
EXPECT_FALSE(ec3);
context.poll();
EXPECT_FALSE(context.stopped()); // second lock still pending
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
EXPECT_FALSE(ec2);
lock1.unlock();
EXPECT_FALSE(ec2);
context.poll();
EXPECT_FALSE(context.stopped());
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::system::errc::success, *ec2);
ASSERT_TRUE(lock2);
EXPECT_FALSE(ec3);
lock2.unlock();
EXPECT_FALSE(ec3);
context.poll();
EXPECT_TRUE(context.stopped());
ASSERT_TRUE(ec3);
EXPECT_EQ(boost::system::errc::success, *ec3);
ASSERT_TRUE(lock3);
}
TEST(SharedMutex, async_shared)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
std::optional<boost::system::error_code> ec1, ec2;
shared_lock lock1, lock2;
// request two shared locks
mutex.async_lock_shared(capture(ec1, lock1));
mutex.async_lock_shared(capture(ec2, lock2));
EXPECT_FALSE(ec1); // no callbacks until poll()
EXPECT_FALSE(ec2);
context.poll();
EXPECT_TRUE(context.stopped());
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::system::errc::success, *ec2);
ASSERT_TRUE(lock2);
}
TEST(SharedMutex, async_exclusive_while_shared)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
std::optional<boost::system::error_code> ec1, ec2;
shared_lock lock1;
unique_lock lock2;
// request a shared and exclusive lock
mutex.async_lock_shared(capture(ec1, lock1));
mutex.async_lock(capture(ec2, lock2));
EXPECT_FALSE(ec1); // no callbacks until poll()
EXPECT_FALSE(ec2);
context.poll();
EXPECT_FALSE(context.stopped()); // second lock still pending
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
EXPECT_FALSE(ec2);
lock1.unlock();
EXPECT_FALSE(ec2);
context.poll();
EXPECT_TRUE(context.stopped());
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::system::errc::success, *ec2);
ASSERT_TRUE(lock2);
}
TEST(SharedMutex, async_shared_while_exclusive)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
std::optional<boost::system::error_code> ec1, ec2;
unique_lock lock1;
shared_lock lock2;
// request an exclusive and shared lock
mutex.async_lock(capture(ec1, lock1));
mutex.async_lock_shared(capture(ec2, lock2));
EXPECT_FALSE(ec1); // no callbacks until poll()
EXPECT_FALSE(ec2);
context.poll();
EXPECT_FALSE(context.stopped()); // second lock still pending
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
EXPECT_FALSE(ec2);
lock1.unlock();
EXPECT_FALSE(ec2);
context.poll();
EXPECT_TRUE(context.stopped());
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::system::errc::success, *ec2);
ASSERT_TRUE(lock2);
}
TEST(SharedMutex, async_prioritize_exclusive)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
std::optional<boost::system::error_code> ec1, ec2, ec3;
shared_lock lock1, lock3;
unique_lock lock2;
// acquire a shared lock, then request an exclusive and another shared lock
mutex.async_lock_shared(capture(ec1, lock1));
mutex.async_lock(capture(ec2, lock2));
mutex.async_lock_shared(capture(ec3, lock3));
EXPECT_FALSE(ec1); // no callbacks until poll()
EXPECT_FALSE(ec2);
EXPECT_FALSE(ec3);
context.poll();
EXPECT_FALSE(context.stopped());
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
EXPECT_FALSE(ec2);
// exclusive waiter blocks the second shared lock
EXPECT_FALSE(ec3);
lock1.unlock();
EXPECT_FALSE(ec2);
EXPECT_FALSE(ec3);
context.poll();
EXPECT_FALSE(context.stopped());
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::system::errc::success, *ec2);
ASSERT_TRUE(lock2);
EXPECT_FALSE(ec3);
}
TEST(SharedMutex, async_cancel)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
std::optional<boost::system::error_code> ec1, ec2, ec3, ec4;
unique_lock lock1, lock2;
shared_lock lock3, lock4;
// request 2 exclusive and shared locks
mutex.async_lock(capture(ec1, lock1));
mutex.async_lock(capture(ec2, lock2));
mutex.async_lock_shared(capture(ec3, lock3));
mutex.async_lock_shared(capture(ec4, lock4));
EXPECT_FALSE(ec1); // no callbacks until poll()
EXPECT_FALSE(ec2);
EXPECT_FALSE(ec3);
EXPECT_FALSE(ec4);
context.poll();
EXPECT_FALSE(context.stopped());
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
EXPECT_FALSE(ec2);
EXPECT_FALSE(ec3);
EXPECT_FALSE(ec4);
mutex.cancel();
EXPECT_FALSE(ec2);
EXPECT_FALSE(ec3);
EXPECT_FALSE(ec4);
context.poll();
EXPECT_TRUE(context.stopped());
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::asio::error::operation_aborted, *ec2);
EXPECT_FALSE(lock2);
ASSERT_TRUE(ec3);
EXPECT_EQ(boost::asio::error::operation_aborted, *ec3);
EXPECT_FALSE(lock3);
ASSERT_TRUE(ec4);
EXPECT_EQ(boost::asio::error::operation_aborted, *ec4);
EXPECT_FALSE(lock4);
}
TEST(SharedMutex, async_destruct)
{
boost::asio::io_context context;
std::optional<boost::system::error_code> ec1, ec2, ec3, ec4;
unique_lock lock1, lock2;
shared_lock lock3, lock4;
{
SharedMutex mutex(context.get_executor());
// request 2 exclusive and shared locks
mutex.async_lock(capture(ec1, lock1));
mutex.async_lock(capture(ec2, lock2));
mutex.async_lock_shared(capture(ec3, lock3));
mutex.async_lock_shared(capture(ec4, lock4));
}
EXPECT_FALSE(ec1); // no callbacks until poll()
EXPECT_FALSE(ec2);
EXPECT_FALSE(ec3);
EXPECT_FALSE(ec4);
context.poll();
EXPECT_TRUE(context.stopped());
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::asio::error::operation_aborted, *ec2);
EXPECT_FALSE(lock2);
ASSERT_TRUE(ec3);
EXPECT_EQ(boost::asio::error::operation_aborted, *ec3);
EXPECT_FALSE(lock3);
ASSERT_TRUE(ec4);
EXPECT_EQ(boost::asio::error::operation_aborted, *ec4);
EXPECT_FALSE(lock4);
}
// return a capture() lambda that's bound to the given executor
template <typename Executor, typename ...Args>
auto capture_ex(const Executor& ex, Args&& ...args)
{
return boost::asio::bind_executor(ex, capture(std::forward<Args>(args)...));
}
TEST(SharedMutex, cross_executor)
{
boost::asio::io_context mutex_context;
SharedMutex mutex(mutex_context.get_executor());
boost::asio::io_context callback_context;
auto ex2 = callback_context.get_executor();
std::optional<boost::system::error_code> ec1, ec2;
unique_lock lock1, lock2;
// request two exclusive locks
mutex.async_lock(capture_ex(ex2, ec1, lock1));
mutex.async_lock(capture_ex(ex2, ec2, lock2));
EXPECT_FALSE(ec1);
EXPECT_FALSE(ec2);
mutex_context.poll();
EXPECT_FALSE(mutex_context.stopped()); // maintains work on both executors
EXPECT_FALSE(ec1); // no callbacks until poll() on callback_context
EXPECT_FALSE(ec2);
callback_context.poll();
EXPECT_FALSE(callback_context.stopped()); // second lock still pending
ASSERT_TRUE(ec1);
EXPECT_EQ(boost::system::errc::success, *ec1);
ASSERT_TRUE(lock1);
EXPECT_FALSE(ec2);
lock1.unlock();
mutex_context.poll();
EXPECT_TRUE(mutex_context.stopped());
EXPECT_FALSE(ec2);
callback_context.poll();
EXPECT_TRUE(callback_context.stopped());
ASSERT_TRUE(ec2);
EXPECT_EQ(boost::system::errc::success, *ec2);
ASSERT_TRUE(lock2);
}
TEST(SharedMutex, try_exclusive)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
{
std::lock_guard lock{mutex};
ASSERT_FALSE(mutex.try_lock()); // fail during exclusive
}
{
std::shared_lock lock{mutex};
ASSERT_FALSE(mutex.try_lock()); // fail during shared
}
ASSERT_TRUE(mutex.try_lock());
mutex.unlock();
}
TEST(SharedMutex, try_shared)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
{
std::lock_guard lock{mutex};
ASSERT_FALSE(mutex.try_lock_shared()); // fail during exclusive
}
{
std::shared_lock lock{mutex};
ASSERT_TRUE(mutex.try_lock_shared()); // succeed during shared
mutex.unlock_shared();
}
ASSERT_TRUE(mutex.try_lock_shared());
mutex.unlock_shared();
}
TEST(SharedMutex, cancel)
{
boost::asio::io_context context;
SharedMutex mutex(context.get_executor());
std::lock_guard l{mutex}; // exclusive lock blocks others
// make synchronous lock calls in other threads
auto f1 = std::async(std::launch::async, [&] { mutex.lock(); });
auto f2 = std::async(std::launch::async, [&] { mutex.lock_shared(); });
// this will race with spawned threads. just keep canceling until the
// futures are ready
const auto t = std::chrono::milliseconds(1);
do { mutex.cancel(); } while (f1.wait_for(t) != std::future_status::ready);
do { mutex.cancel(); } while (f2.wait_for(t) != std::future_status::ready);
EXPECT_THROW(f1.get(), boost::system::system_error);
EXPECT_THROW(f2.get(), boost::system::system_error);
}
} // namespace ceph::async