ceph/src/common/crc32c_aarch64.c

270 lines
8.3 KiB
C
Raw Normal View History

#include "acconfig.h"
#include "include/int_types.h"
#include "common/crc32c_aarch64.h"
#ifndef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
/* Request crc extension capabilities from the assembler */
asm(".arch_extension crc");
#ifdef HAVE_ARMV8_CRYPTO
/* Request crypto extension capabilities from the assembler */
asm(".arch_extension crypto");
#endif
#define CRC32CX(crc, value) __asm__("crc32cx %w[c], %w[c], %x[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CW(crc, value) __asm__("crc32cw %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CH(crc, value) __asm__("crc32ch %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32CB(crc, value) __asm__("crc32cb %w[c], %w[c], %w[v]":[c]"+r"(crc):[v]"r"(value))
#define CRC32C3X8(ITR) \
__asm__("crc32cx %w[c1], %w[c1], %x[v]":[c1]"+r"(crc1):[v]"r"(*((const uint64_t *)buffer + 42*1 + (ITR))));\
__asm__("crc32cx %w[c2], %w[c2], %x[v]":[c2]"+r"(crc2):[v]"r"(*((const uint64_t *)buffer + 42*2 + (ITR))));\
__asm__("crc32cx %w[c0], %w[c0], %x[v]":[c0]"+r"(crc0):[v]"r"(*((const uint64_t *)buffer + 42*0 + (ITR))));
#define CRC32C3X8_ZERO \
__asm__("crc32cx %w[c0], %w[c0], xzr":[c0]"+r"(crc0));
#else /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
#include <arm_acle.h>
#include <arm_neon.h>
#define CRC32CX(crc, value) (crc) = __crc32cd((crc), (value))
#define CRC32CW(crc, value) (crc) = __crc32cw((crc), (value))
#define CRC32CH(crc, value) (crc) = __crc32ch((crc), (value))
#define CRC32CB(crc, value) (crc) = __crc32cb((crc), (value))
#define CRC32C3X8(ITR) \
crc1 = __crc32cd(crc1, *((const uint64_t *)buffer + 42*1 + (ITR)));\
crc2 = __crc32cd(crc2, *((const uint64_t *)buffer + 42*2 + (ITR)));\
crc0 = __crc32cd(crc0, *((const uint64_t *)buffer + 42*0 + (ITR)));
#define CRC32C3X8_ZERO \
crc0 = __crc32cd(crc0, (const uint64_t)0);
#endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
#define CRC32C7X3X8(ITR) do {\
CRC32C3X8((ITR)*7+0) \
CRC32C3X8((ITR)*7+1) \
CRC32C3X8((ITR)*7+2) \
CRC32C3X8((ITR)*7+3) \
CRC32C3X8((ITR)*7+4) \
CRC32C3X8((ITR)*7+5) \
CRC32C3X8((ITR)*7+6) \
} while(0)
#define CRC32C7X3X8_ZERO do {\
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
CRC32C3X8_ZERO \
} while(0)
#define PREF4X64L1(PREF_OFFSET, ITR) \
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\
__asm__("PRFM PLDL1KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64));
#define PREF1KL1(PREF_OFFSET) \
PREF4X64L1((PREF_OFFSET), 0) \
PREF4X64L1((PREF_OFFSET), 4) \
PREF4X64L1((PREF_OFFSET), 8) \
PREF4X64L1((PREF_OFFSET), 12)
#define PREF4X64L2(PREF_OFFSET, ITR) \
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 0)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 1)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 2)*64));\
__asm__("PRFM PLDL2KEEP, [%x[v],%[c]]"::[v]"r"(buffer), [c]"I"((PREF_OFFSET) + ((ITR) + 3)*64));
#define PREF1KL2(PREF_OFFSET) \
PREF4X64L2((PREF_OFFSET), 0) \
PREF4X64L2((PREF_OFFSET), 4) \
PREF4X64L2((PREF_OFFSET), 8) \
PREF4X64L2((PREF_OFFSET), 12)
uint32_t ceph_crc32c_aarch64(uint32_t crc, unsigned char const *buffer, unsigned len)
{
int64_t length = len;
uint32_t crc0, crc1, crc2;
if (buffer) {
#ifdef HAVE_ARMV8_CRYPTO
#ifdef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
/* Calculate reflected crc with PMULL Instruction */
const poly64_t k1 = 0xe417f38a, k2 = 0x8f158014;
uint64_t t0, t1;
/* crc done "by 3" for fixed input block size of 1024 bytes */
while ((length -= 1024) >= 0) {
/* Prefetch data for following block to avoid cache miss */
PREF1KL2(1024*3);
/* Do first 8 bytes here for better pipelining */
crc0 = __crc32cd(crc, *(const uint64_t *)buffer);
crc1 = 0;
crc2 = 0;
buffer += sizeof(uint64_t);
/* Process block inline
Process crc0 last to avoid dependency with above */
CRC32C7X3X8(0);
CRC32C7X3X8(1);
CRC32C7X3X8(2);
CRC32C7X3X8(3);
CRC32C7X3X8(4);
CRC32C7X3X8(5);
buffer += 42*3*sizeof(uint64_t);
/* Prefetch data for following block to avoid cache miss */
PREF1KL1(1024);
/* Merge crc0 and crc1 into crc2
crc1 multiply by K2
crc0 multiply by K1 */
t1 = (uint64_t)vmull_p64(crc1, k2);
t0 = (uint64_t)vmull_p64(crc0, k1);
crc = __crc32cd(crc2, *(const uint64_t *)buffer);
crc1 = __crc32cd(0, t1);
crc ^= crc1;
crc0 = __crc32cd(0, t0);
crc ^= crc0;
buffer += sizeof(uint64_t);
}
#else /* !HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
__asm__("mov x16, #0xf38a \n\t"
"movk x16, #0xe417, lsl 16 \n\t"
"mov v1.2d[0], x16 \n\t"
"mov x16, #0x8014 \n\t"
"movk x16, #0x8f15, lsl 16 \n\t"
"mov v0.2d[0], x16 \n\t"
:::"x16");
while ((length -= 1024) >= 0) {
PREF1KL2(1024*3);
__asm__("crc32cx %w[c0], %w[c], %x[v]\n\t"
:[c0]"=r"(crc0):[c]"r"(crc), [v]"r"(*(const uint64_t *)buffer):);
crc1 = 0;
crc2 = 0;
buffer += sizeof(uint64_t);
CRC32C7X3X8(0);
CRC32C7X3X8(1);
CRC32C7X3X8(2);
CRC32C7X3X8(3);
CRC32C7X3X8(4);
CRC32C7X3X8(5);
buffer += 42*3*sizeof(uint64_t);
PREF1KL1(1024);
__asm__("mov v2.2d[0], %x[c1] \n\t"
"pmull v2.1q, v2.1d, v0.1d \n\t"
"mov v3.2d[0], %x[c0] \n\t"
"pmull v3.1q, v3.1d, v1.1d \n\t"
"crc32cx %w[c], %w[c2], %x[v] \n\t"
"mov %x[c1], v2.2d[0] \n\t"
"crc32cx %w[c1], wzr, %x[c1] \n\t"
"eor %w[c], %w[c], %w[c1] \n\t"
"mov %x[c0], v3.2d[0] \n\t"
"crc32cx %w[c0], wzr, %x[c0] \n\t"
"eor %w[c], %w[c], %w[c0] \n\t"
:[c1]"+r"(crc1), [c0]"+r"(crc0), [c2]"+r"(crc2), [c]"+r"(crc)
:[v]"r"(*((const uint64_t *)buffer)));
buffer += sizeof(uint64_t);
}
#endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
if(!(length += 1024))
return crc;
#endif /* HAVE_ARMV8_CRYPTO */
while ((length -= sizeof(uint64_t)) >= 0) {
CRC32CX(crc, *(uint64_t *)buffer);
buffer += sizeof(uint64_t);
}
/* The following is more efficient than the straight loop */
if (length & sizeof(uint32_t)) {
CRC32CW(crc, *(uint32_t *)buffer);
buffer += sizeof(uint32_t);
}
if (length & sizeof(uint16_t)) {
CRC32CH(crc, *(uint16_t *)buffer);
buffer += sizeof(uint16_t);
}
if (length & sizeof(uint8_t))
CRC32CB(crc, *buffer);
} else {
#ifdef HAVE_ARMV8_CRYPTO
#ifdef HAVE_ARMV8_CRC_CRYPTO_INTRINSICS
const poly64_t k1 = 0xe417f38a;
uint64_t t0;
while ((length -= 1024) >= 0) {
crc0 = __crc32cd(crc, 0);
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
/* Merge crc0 into crc: crc0 multiply by K1 */
t0 = (uint64_t)vmull_p64(crc0, k1);
crc = __crc32cd(0, t0);
}
#else /* !HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
__asm__("mov x16, #0xf38a \n\t"
"movk x16, #0xe417, lsl 16 \n\t"
"mov v1.2d[0], x16 \n\t"
:::"x16");
while ((length -= 1024) >= 0) {
__asm__("crc32cx %w[c0], %w[c], xzr\n\t"
:[c0]"=r"(crc0):[c]"r"(crc));
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
CRC32C7X3X8_ZERO;
__asm__("mov v3.2d[0], %x[c0] \n\t"
"pmull v3.1q, v3.1d, v1.1d \n\t"
"mov %x[c0], v3.2d[0] \n\t"
"crc32cx %w[c], wzr, %x[c0] \n\t"
:[c]"=r"(crc)
:[c0]"r"(crc0));
}
#endif /* HAVE_ARMV8_CRC_CRYPTO_INTRINSICS */
if(!(length += 1024))
return crc;
#endif /* HAVE_ARMV8_CRYPTO */
while ((length -= sizeof(uint64_t)) >= 0)
CRC32CX(crc, 0);
/* The following is more efficient than the straight loop */
if (length & sizeof(uint32_t))
CRC32CW(crc, 0);
if (length & sizeof(uint16_t))
CRC32CH(crc, 0);
if (length & sizeof(uint8_t))
CRC32CB(crc, 0);
}
return crc;
}