ceph/src/test/crypto.cc

180 lines
5.0 KiB
C++
Raw Normal View History

#include <errno.h>
#include <time.h>
#include "include/types.h"
#include "auth/Crypto.h"
#include "common/ceph_crypto.h"
#include "gtest/gtest.h"
class CryptoEnvironment: public ::testing::Environment {
public:
void SetUp() {
ceph::crypto::init();
}
};
::testing::Environment* const crypto_env = ::testing::AddGlobalTestEnvironment(new CryptoEnvironment);
TEST(AES, ValidateSecret) {
CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES);
int l;
for (l=0; l<16; l++) {
bufferptr bp(l);
int err;
err = h->validate_secret(bp);
EXPECT_EQ(-EINVAL, err);
}
for (l=16; l<50; l++) {
bufferptr bp(l);
int err;
err = h->validate_secret(bp);
EXPECT_EQ(0, err);
}
}
TEST(AES, Encrypt) {
CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES);
char secret_s[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};
bufferptr secret(secret_s, sizeof(secret_s));
char plaintext_s[] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
};
bufferlist plaintext;
plaintext.append(plaintext_s, sizeof(plaintext_s));
bufferlist cipher;
int success;
success = h->encrypt(secret, plaintext, cipher);
ASSERT_NE(false, success);
// C defines booleans as non-zero, so the above is sort of enough
// and more correct, but let's be strict to avoid confusion in
// callers
ASSERT_EQ(true, success);
char want_cipher[] = {
0xb3, 0x8f, 0x5b, 0xc9, 0x35, 0x4c, 0xf8, 0xc6,
0x13, 0x15, 0x66, 0x6f, 0x37, 0xd7, 0x79, 0x3a,
0x11, 0x90, 0x7b, 0xe9, 0xd8, 0x3c, 0x35, 0x70,
0x58, 0x7b, 0x97, 0x9b, 0x03, 0xd2, 0xa5, 0x01,
};
char cipher_s[sizeof(want_cipher)];
ASSERT_EQ(sizeof(cipher_s), cipher.length());
cipher.copy(0, sizeof(cipher_s), &cipher_s[0]);
int err;
err = memcmp(cipher_s, want_cipher, sizeof(want_cipher));
ASSERT_EQ(0, err);
}
TEST(AES, Decrypt) {
CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES);
char secret_s[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
};
bufferptr secret(secret_s, sizeof(secret_s));
char cipher_s[] = {
0xb3, 0x8f, 0x5b, 0xc9, 0x35, 0x4c, 0xf8, 0xc6,
0x13, 0x15, 0x66, 0x6f, 0x37, 0xd7, 0x79, 0x3a,
0x11, 0x90, 0x7b, 0xe9, 0xd8, 0x3c, 0x35, 0x70,
0x58, 0x7b, 0x97, 0x9b, 0x03, 0xd2, 0xa5, 0x01,
};
bufferlist cipher;
cipher.append(cipher_s, sizeof(cipher_s));
char want_plaintext[] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
};
char plaintext_s[sizeof(want_plaintext)];
bufferlist plaintext;
int err;
err = h->decrypt(secret, cipher, plaintext);
ASSERT_EQ((int)sizeof(want_plaintext), err);
ASSERT_EQ(sizeof(plaintext_s), plaintext.length());
plaintext.copy(0, sizeof(plaintext_s), &plaintext_s[0]);
err = memcmp(plaintext_s, want_plaintext, sizeof(want_plaintext));
ASSERT_EQ(0, err);
}
TEST(AES, Benchmark) {
int err;
struct timespec before;
struct timespec after;
err = clock_gettime(CLOCK_MONOTONIC, &before);
ASSERT_EQ(0, err);
char secret_s[16];
err = get_random_bytes(secret_s, sizeof(secret_s));
ASSERT_EQ(0, err);
bufferptr secret(secret_s, sizeof(secret_s));
char orig_plaintext_s[1024];
err = get_random_bytes(orig_plaintext_s, sizeof(orig_plaintext_s));
ASSERT_EQ(0, err);
bufferlist plaintext;
plaintext.append(orig_plaintext_s, sizeof(orig_plaintext_s));
for (int i=0; i<10000; i++) {
bufferlist cipher;
{
CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES);
int success;
success = h->encrypt(secret, plaintext, cipher);
ASSERT_NE(false, success);
}
plaintext.clear();
{
CryptoHandler *h = ceph_crypto_mgr.get_crypto(CEPH_CRYPTO_AES);
int err;
err = h->decrypt(secret, cipher, plaintext);
ASSERT_EQ((int)sizeof(orig_plaintext_s), err);
}
}
err = clock_gettime(CLOCK_MONOTONIC, &after);
ASSERT_EQ(0, err);
char plaintext_s[sizeof(orig_plaintext_s)];
plaintext.copy(0, sizeof(plaintext_s), &plaintext_s[0]);
err = memcmp(plaintext_s, orig_plaintext_s, sizeof(orig_plaintext_s));
ASSERT_EQ(0, err);
// 64 bits of nanoseconds a lot, but nothing guarantees what if any
// epoch CLOCK_MONOTONIC has; shift measurements closer to 0 epoch
ASSERT_LE(before.tv_sec, after.tv_sec);
after.tv_sec -= before.tv_sec;
before.tv_sec = 0;
u_int64_t before_ns = before.tv_sec*1000000000 + before.tv_nsec;
u_int64_t after_ns = after.tv_sec*1000000000 + after.tv_nsec;
ASSERT_LE(before_ns, after_ns);
u_int64_t duration_ns = after_ns - before_ns;
// my desktop machine completes this in ~200ms with CryptoPP, ~750ms
// right now for NSS (too slow!), this allows for 1s before flagging
// a problem; not really robust but need something to detect really
// severe regressions
EXPECT_LT(duration_ns, 1000000000u);
RecordProperty("durationnanoseconds", duration_ns);
}