mirror of https://github.com/ceph/ceph
221 lines
6.0 KiB
C++
221 lines
6.0 KiB
C++
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
|
||
|
// vim: ts=8 sw=2 smarttab
|
||
|
/*
|
||
|
* Ceph - scalable distributed file system
|
||
|
*
|
||
|
* This is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Lesser General Public
|
||
|
* License version 2.1, as published by the Free Software
|
||
|
* Foundation. See file COPYING.
|
||
|
*/
|
||
|
|
||
|
// install the librados-dev and librbd package to get this
|
||
|
#include <rados/librados.hpp>
|
||
|
#include <rbd/librbd.hpp>
|
||
|
#include <iostream>
|
||
|
#include <string>
|
||
|
#include <sstream>
|
||
|
|
||
|
int main(int argc, const char **argv)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
// we will use all of these below
|
||
|
const char *pool_name = "hello_world_pool";
|
||
|
std::string hello("hello world!");
|
||
|
std::string object_name("hello_object");
|
||
|
librados::IoCtx io_ctx;
|
||
|
|
||
|
// first, we create a Rados object and initialize it
|
||
|
librados::Rados rados;
|
||
|
{
|
||
|
ret = rados.init("admin"); // just use the client.admin keyring
|
||
|
if (ret < 0) { // let's handle any error that might have come back
|
||
|
std::cerr << "couldn't initialize rados! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just set up a rados cluster object" << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now we need to get the rados object its config info. It can
|
||
|
* parse argv for us to find the id, monitors, etc, so let's just
|
||
|
* use that.
|
||
|
*/
|
||
|
{
|
||
|
ret = rados.conf_parse_argv(argc, argv);
|
||
|
if (ret < 0) {
|
||
|
// This really can't happen, but we need to check to be a good citizen.
|
||
|
std::cerr << "failed to parse config options! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just parsed our config options" << std::endl;
|
||
|
// We also want to apply the config file if the user specified
|
||
|
// one, and conf_parse_argv won't do that for us.
|
||
|
for (int i = 0; i < argc; ++i) {
|
||
|
if ((strcmp(argv[i], "-c") == 0) || (strcmp(argv[i], "--conf") == 0)) {
|
||
|
ret = rados.conf_read_file(argv[i+1]);
|
||
|
if (ret < 0) {
|
||
|
// This could fail if the config file is malformed, but it'd be hard.
|
||
|
std::cerr << "failed to parse config file " << argv[i+1]
|
||
|
<< "! error" << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* next, we actually connect to the cluster
|
||
|
*/
|
||
|
{
|
||
|
ret = rados.connect();
|
||
|
if (ret < 0) {
|
||
|
std::cerr << "couldn't connect to cluster! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just connected to the rados cluster" << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* let's create our own pool instead of scribbling over real data.
|
||
|
* Note that this command creates pools with default PG counts specified
|
||
|
* by the monitors, which may not be appropriate for real use -- it's fine
|
||
|
* for testing, though.
|
||
|
*/
|
||
|
{
|
||
|
ret = rados.pool_create(pool_name);
|
||
|
if (ret < 0) {
|
||
|
std::cerr << "couldn't create pool! error " << ret << std::endl;
|
||
|
return EXIT_FAILURE;
|
||
|
} else {
|
||
|
std::cout << "we just created a new pool named " << pool_name << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* create an "IoCtx" which is used to do IO to a pool
|
||
|
*/
|
||
|
{
|
||
|
ret = rados.ioctx_create(pool_name, io_ctx);
|
||
|
if (ret < 0) {
|
||
|
std::cerr << "couldn't set up ioctx! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just created an ioctx for our pool" << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* create an rbd image and write data to it
|
||
|
*/
|
||
|
{
|
||
|
std::string name = "librbd_test";
|
||
|
uint64_t size = 2 << 20;
|
||
|
int order = 0;
|
||
|
librbd::RBD rbd;
|
||
|
librbd::Image image;
|
||
|
|
||
|
ret = rbd.create(io_ctx, name.c_str(), size, &order);
|
||
|
if (ret < 0) {
|
||
|
std::cerr << "couldn't create an rbd image! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just created an rbd image" << std::endl;
|
||
|
}
|
||
|
|
||
|
ret = rbd.open(io_ctx, image, name.c_str(), NULL);
|
||
|
if (ret < 0) {
|
||
|
std::cerr << "couldn't open the rbd image! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just opened the rbd image" << std::endl;
|
||
|
}
|
||
|
|
||
|
int TEST_IO_SIZE = 512;
|
||
|
char test_data[TEST_IO_SIZE + 1];
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < TEST_IO_SIZE; ++i) {
|
||
|
test_data[i] = (char) (rand() % (126 - 33) + 33);
|
||
|
}
|
||
|
test_data[TEST_IO_SIZE] = '\0';
|
||
|
|
||
|
size_t len = strlen(test_data);
|
||
|
ceph::bufferlist bl;
|
||
|
bl.append(test_data, len);
|
||
|
|
||
|
ret = image.write(0, len, bl);
|
||
|
if (ret < 0) {
|
||
|
std::cerr << "couldn't write to the rbd image! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just wrote data to our rbd image " << std::endl;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* let's read the image and compare it to the data we wrote
|
||
|
*/
|
||
|
ceph::bufferlist bl_r;
|
||
|
int read;
|
||
|
read = image.read(0, TEST_IO_SIZE, bl_r);
|
||
|
if (read < 0) {
|
||
|
std::cerr << "we couldn't read data from the image! error" << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
std::string bl_res(bl_r.c_str(), read);
|
||
|
|
||
|
int res = memcmp(bl_res.c_str(), test_data, TEST_IO_SIZE);
|
||
|
if (res != 0) {
|
||
|
std::cerr << "what we read didn't match expected! error" << std::endl;
|
||
|
} else {
|
||
|
std::cout << "we read our data on the image successfully" << std::endl;
|
||
|
}
|
||
|
|
||
|
image.close();
|
||
|
|
||
|
/*
|
||
|
*let's now delete the image
|
||
|
*/
|
||
|
ret = rbd.remove(io_ctx, name.c_str());
|
||
|
if (ret < 0) {
|
||
|
std::cerr << "failed to delete rbd image! error " << ret << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
goto out;
|
||
|
} else {
|
||
|
std::cout << "we just deleted our rbd image " << std::endl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ret = EXIT_SUCCESS;
|
||
|
out:
|
||
|
/*
|
||
|
* And now we're done, so let's remove our pool and then
|
||
|
* shut down the connection gracefully.
|
||
|
*/
|
||
|
int delete_ret = rados.pool_delete(pool_name);
|
||
|
if (delete_ret < 0) {
|
||
|
// be careful not to
|
||
|
std::cerr << "We failed to delete our test pool!" << std::endl;
|
||
|
ret = EXIT_FAILURE;
|
||
|
}
|
||
|
|
||
|
rados.shutdown();
|
||
|
|
||
|
return ret;
|
||
|
}
|