btrfs-progs/mkfs.c

1555 lines
39 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#define _XOPEN_SOURCE 500
#define _GNU_SOURCE
#include "kerncompat.h"
#ifndef __CHECKER__
#include <sys/ioctl.h>
#include <sys/mount.h>
#include "ioctl.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/dir.h>
#include <fcntl.h>
#include <unistd.h>
#include <getopt.h>
#include <uuid/uuid.h>
#include <linux/fs.h>
#include <ctype.h>
#include <attr/xattr.h>
#include <blkid/blkid.h>
#include <ftw.h>
#include "kerncompat.h"
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "transaction.h"
#include "utils.h"
#include "version.h"
static u64 index_cnt = 2;
struct directory_name_entry {
char *dir_name;
char *path;
ino_t inum;
struct list_head list;
};
static int make_root_dir(struct btrfs_root *root, int mixed)
{
struct btrfs_trans_handle *trans;
struct btrfs_key location;
u64 bytes_used;
u64 chunk_start = 0;
u64 chunk_size = 0;
int ret;
trans = btrfs_start_transaction(root, 1);
bytes_used = btrfs_super_bytes_used(&root->fs_info->super_copy);
root->fs_info->system_allocs = 1;
ret = btrfs_make_block_group(trans, root, bytes_used,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
0, BTRFS_MKFS_SYSTEM_GROUP_SIZE);
BUG_ON(ret);
if (mixed) {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
printf("Created a data/metadata chunk of size %llu\n", chunk_size);
} else {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
}
root->fs_info->system_allocs = 0;
btrfs_commit_transaction(trans, root);
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
if (!mixed) {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_DATA);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_DATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
}
ret = btrfs_make_root_dir(trans, root->fs_info->tree_root,
BTRFS_ROOT_TREE_DIR_OBJECTID);
if (ret)
goto err;
ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID);
if (ret)
goto err;
memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location));
location.offset = (u64)-1;
ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
"default", 7,
btrfs_super_root_dir(&root->fs_info->super_copy),
&location, BTRFS_FT_DIR, 0);
if (ret)
goto err;
ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
"default", 7, location.objectid,
BTRFS_ROOT_TREE_DIR_OBJECTID, 0);
if (ret)
goto err;
btrfs_commit_transaction(trans, root);
err:
return ret;
}
static int recow_roots(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
struct extent_buffer *tmp;
struct btrfs_fs_info *info = root->fs_info;
ret = __btrfs_cow_block(trans, info->fs_root, info->fs_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->tree_root, info->tree_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->extent_root,
info->extent_root->node, NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->chunk_root, info->chunk_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->dev_root, info->dev_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->csum_root, info->csum_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
return 0;
}
static int create_one_raid_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type)
{
u64 chunk_start;
u64 chunk_size;
int ret;
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size, type);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
return ret;
}
static int create_raid_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 data_profile,
int data_profile_opt, u64 metadata_profile,
int metadata_profile_opt, int mixed, int ssd)
{
u64 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy);
u64 allowed = 0;
u64 devices_for_raid = num_devices;
int ret;
/*
* Set default profiles according to number of added devices.
* For mixed groups defaults are single/single.
*/
if (!metadata_profile_opt && !mixed) {
if (num_devices == 1 && ssd)
printf("Detected a SSD, turning off metadata "
"duplication. Mkfs with -m dup if you want to "
"force metadata duplication.\n");
metadata_profile = (num_devices > 1) ?
BTRFS_BLOCK_GROUP_RAID1 : (ssd) ? 0: BTRFS_BLOCK_GROUP_DUP;
}
if (!data_profile_opt && !mixed) {
data_profile = (num_devices > 1) ?
BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */
}
if (devices_for_raid > 4)
devices_for_raid = 4;
switch (devices_for_raid) {
default:
case 4:
allowed |= BTRFS_BLOCK_GROUP_RAID10;
case 3:
allowed |= BTRFS_BLOCK_GROUP_RAID6;
case 2:
allowed |= BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID5;
break;
case 1:
allowed |= BTRFS_BLOCK_GROUP_DUP;
}
if (metadata_profile & ~allowed) {
fprintf(stderr, "unable to create FS with metadata "
"profile %llu (have %llu devices)\n", metadata_profile,
num_devices);
exit(1);
}
if (data_profile & ~allowed) {
fprintf(stderr, "unable to create FS with data "
"profile %llu (have %llu devices)\n", data_profile,
num_devices);
exit(1);
}
/* allow dup'ed data chunks only in mixed mode */
if (!mixed && (data_profile & BTRFS_BLOCK_GROUP_DUP)) {
fprintf(stderr, "dup for data is allowed only in mixed mode\n");
exit(1);
}
if (allowed & metadata_profile) {
u64 meta_flags = BTRFS_BLOCK_GROUP_METADATA;
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_SYSTEM |
(allowed & metadata_profile));
BUG_ON(ret);
if (mixed)
meta_flags |= BTRFS_BLOCK_GROUP_DATA;
ret = create_one_raid_group(trans, root, meta_flags |
(allowed & metadata_profile));
BUG_ON(ret);
ret = recow_roots(trans, root);
BUG_ON(ret);
}
if (!mixed && num_devices > 1 && (allowed & data_profile)) {
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_DATA |
(allowed & data_profile));
BUG_ON(ret);
}
return 0;
}
static int create_data_reloc_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_key location;
struct btrfs_root_item root_item;
struct extent_buffer *tmp;
u64 objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
int ret;
ret = btrfs_copy_root(trans, root, root->node, &tmp, objectid);
BUG_ON(ret);
memcpy(&root_item, &root->root_item, sizeof(root_item));
btrfs_set_root_bytenr(&root_item, tmp->start);
btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
btrfs_set_root_generation(&root_item, trans->transid);
free_extent_buffer(tmp);
location.objectid = objectid;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
&location, &root_item);
BUG_ON(ret);
return 0;
}
static void print_usage(void)
{
fprintf(stderr, "usage: mkfs.btrfs [options] dev [ dev ... ]\n");
fprintf(stderr, "options:\n");
fprintf(stderr, "\t -A --alloc-start the offset to start the FS\n");
fprintf(stderr, "\t -b --byte-count total number of bytes in the FS\n");
fprintf(stderr, "\t -d --data data profile, raid0, raid1, raid10, dup or single\n");
fprintf(stderr, "\t -l --leafsize size of btree leaves\n");
fprintf(stderr, "\t -L --label set a label\n");
fprintf(stderr, "\t -m --metadata metadata profile, values like data profile\n");
fprintf(stderr, "\t -M --mixed mix metadata and data together\n");
fprintf(stderr, "\t -n --nodesize size of btree nodes\n");
fprintf(stderr, "\t -s --sectorsize min block allocation\n");
fprintf(stderr, "\t -r --rootdir the source directory\n");
fprintf(stderr, "\t -K --nodiscard do not perform whole device TRIM\n");
fprintf(stderr, "\t -V --version print the mkfs.btrfs version and exit\n");
fprintf(stderr, "%s\n", BTRFS_BUILD_VERSION);
exit(1);
}
static void print_version(void)
{
fprintf(stderr, "mkfs.btrfs, part of %s\n", BTRFS_BUILD_VERSION);
exit(0);
}
static u64 parse_profile(char *s)
{
if (strcmp(s, "raid0") == 0) {
return BTRFS_BLOCK_GROUP_RAID0;
} else if (strcmp(s, "raid1") == 0) {
return BTRFS_BLOCK_GROUP_RAID1;
} else if (strcmp(s, "raid5") == 0) {
return BTRFS_BLOCK_GROUP_RAID5;
} else if (strcmp(s, "raid6") == 0) {
return BTRFS_BLOCK_GROUP_RAID6;
} else if (strcmp(s, "raid10") == 0) {
return BTRFS_BLOCK_GROUP_RAID10;
} else if (strcmp(s, "dup") == 0) {
return BTRFS_BLOCK_GROUP_DUP;
} else if (strcmp(s, "single") == 0) {
return 0;
} else {
fprintf(stderr, "Unknown profile %s\n", s);
print_usage();
}
/* not reached */
return 0;
}
static char *parse_label(char *input)
{
int len = strlen(input);
if (len >= BTRFS_LABEL_SIZE) {
fprintf(stderr, "Label %s is too long (max %d)\n", input,
BTRFS_LABEL_SIZE - 1);
exit(1);
}
return strdup(input);
}
static struct option long_options[] = {
{ "alloc-start", 1, NULL, 'A'},
{ "byte-count", 1, NULL, 'b' },
{ "leafsize", 1, NULL, 'l' },
{ "label", 1, NULL, 'L'},
{ "metadata", 1, NULL, 'm' },
{ "mixed", 0, NULL, 'M' },
{ "nodesize", 1, NULL, 'n' },
{ "sectorsize", 1, NULL, 's' },
{ "data", 1, NULL, 'd' },
{ "version", 0, NULL, 'V' },
{ "rootdir", 1, NULL, 'r' },
{ "nodiscard", 0, NULL, 'K' },
{ 0, 0, 0, 0}
};
static int add_directory_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
ino_t parent_inum, const char *name,
struct stat *st, int *dir_index_cnt)
{
int ret;
int name_len;
struct btrfs_key location;
u8 filetype = 0;
name_len = strlen(name);
location.objectid = objectid;
location.offset = 0;
btrfs_set_key_type(&location, BTRFS_INODE_ITEM_KEY);
if (S_ISDIR(st->st_mode))
filetype = BTRFS_FT_DIR;
if (S_ISREG(st->st_mode))
filetype = BTRFS_FT_REG_FILE;
if (S_ISLNK(st->st_mode))
filetype = BTRFS_FT_SYMLINK;
ret = btrfs_insert_dir_item(trans, root, name, name_len,
parent_inum, &location,
filetype, index_cnt);
*dir_index_cnt = index_cnt;
index_cnt++;
return ret;
}
static int fill_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *dst, struct stat *src)
{
u64 blocks = 0;
u64 sectorsize = root->sectorsize;
/*
* btrfs_inode_item has some reserved fields
* and represents on-disk inode entry, so
* zero everything to prevent information leak
*/
memset(dst, 0, sizeof (*dst));
btrfs_set_stack_inode_generation(dst, trans->transid);
btrfs_set_stack_inode_size(dst, src->st_size);
btrfs_set_stack_inode_nbytes(dst, 0);
btrfs_set_stack_inode_block_group(dst, 0);
btrfs_set_stack_inode_nlink(dst, src->st_nlink);
btrfs_set_stack_inode_uid(dst, src->st_uid);
btrfs_set_stack_inode_gid(dst, src->st_gid);
btrfs_set_stack_inode_mode(dst, src->st_mode);
btrfs_set_stack_inode_rdev(dst, 0);
btrfs_set_stack_inode_flags(dst, 0);
btrfs_set_stack_timespec_sec(&dst->atime, src->st_atime);
btrfs_set_stack_timespec_nsec(&dst->atime, 0);
btrfs_set_stack_timespec_sec(&dst->ctime, src->st_ctime);
btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
btrfs_set_stack_timespec_sec(&dst->mtime, src->st_mtime);
btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
btrfs_set_stack_timespec_sec(&dst->otime, 0);
btrfs_set_stack_timespec_nsec(&dst->otime, 0);
if (S_ISDIR(src->st_mode)) {
btrfs_set_stack_inode_size(dst, 0);
btrfs_set_stack_inode_nlink(dst, 1);
}
if (S_ISREG(src->st_mode)) {
btrfs_set_stack_inode_size(dst, (u64)src->st_size);
if (src->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root))
btrfs_set_stack_inode_nbytes(dst, src->st_size);
else {
blocks = src->st_size / sectorsize;
if (src->st_size % sectorsize)
blocks += 1;
blocks *= sectorsize;
btrfs_set_stack_inode_nbytes(dst, blocks);
}
}
if (S_ISLNK(src->st_mode))
btrfs_set_stack_inode_nbytes(dst, src->st_size + 1);
return 0;
}
static int directory_select(const struct direct *entry)
{
if ((strncmp(entry->d_name, ".", entry->d_reclen) == 0) ||
(strncmp(entry->d_name, "..", entry->d_reclen) == 0))
return 0;
else
return 1;
}
static void free_namelist(struct direct **files, int count)
{
int i;
if (count < 0)
return;
for (i = 0; i < count; ++i)
free(files[i]);
free(files);
}
static u64 calculate_dir_inode_size(char *dirname)
{
int count, i;
struct direct **files, *cur_file;
u64 dir_inode_size = 0;
count = scandir(dirname, &files, directory_select, NULL);
for (i = 0; i < count; i++) {
cur_file = files[i];
dir_inode_size += strlen(cur_file->d_name);
}
free_namelist(files, count);
dir_inode_size *= 2;
return dir_inode_size;
}
static int add_inode_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct stat *st, char *name,
u64 self_objectid, ino_t parent_inum,
int dir_index_cnt, struct btrfs_inode_item *inode_ret)
{
int ret;
struct btrfs_key inode_key;
struct btrfs_inode_item btrfs_inode;
u64 objectid;
u64 inode_size = 0;
int name_len;
name_len = strlen(name);
fill_inode_item(trans, root, &btrfs_inode, st);
objectid = self_objectid;
if (S_ISDIR(st->st_mode)) {
inode_size = calculate_dir_inode_size(name);
btrfs_set_stack_inode_size(&btrfs_inode, inode_size);
}
inode_key.objectid = objectid;
inode_key.offset = 0;
btrfs_set_key_type(&inode_key, BTRFS_INODE_ITEM_KEY);
ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
if (ret)
goto fail;
ret = btrfs_insert_inode_ref(trans, root, name, name_len,
objectid, parent_inum, dir_index_cnt);
if (ret)
goto fail;
*inode_ret = btrfs_inode;
fail:
return ret;
}
static int add_xattr_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
const char *file_name)
{
int ret;
int cur_name_len;
char xattr_list[XATTR_LIST_MAX];
char *cur_name;
char cur_value[XATTR_SIZE_MAX];
char delimiter = '\0';
char *next_location = xattr_list;
ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX);
if (ret < 0) {
if(errno == ENOTSUP)
return 0;
fprintf(stderr, "get a list of xattr failed for %s\n",
file_name);
return ret;
}
if (ret == 0)
return ret;
cur_name = strtok(xattr_list, &delimiter);
while (cur_name != NULL) {
cur_name_len = strlen(cur_name);
next_location += cur_name_len + 1;
ret = getxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX);
if (ret < 0) {
if(errno == ENOTSUP)
return 0;
fprintf(stderr, "get a xattr value failed for %s attr %s\n",
file_name, cur_name);
return ret;
}
ret = btrfs_insert_xattr_item(trans, root, cur_name,
cur_name_len, cur_value,
ret, objectid);
if (ret) {
fprintf(stderr, "insert a xattr item failed for %s\n",
file_name);
}
cur_name = strtok(next_location, &delimiter);
}
return ret;
}
static int custom_alloc_extent(struct btrfs_root *root, u64 num_bytes,
u64 hint_byte, struct btrfs_key *ins)
{
u64 start;
u64 end;
u64 last = hint_byte;
int ret;
int wrapped = 0;
struct btrfs_block_group_cache *cache;
while (1) {
ret = find_first_extent_bit(&root->fs_info->free_space_cache,
last, &start, &end, EXTENT_DIRTY);
if (ret) {
if (wrapped++ == 0) {
last = 0;
continue;
} else {
goto fail;
}
}
start = max(last, start);
last = end + 1;
if (last - start < num_bytes)
continue;
last = start + num_bytes;
if (test_range_bit(&root->fs_info->pinned_extents,
start, last - 1, EXTENT_DIRTY, 0))
continue;
cache = btrfs_lookup_block_group(root->fs_info, start);
BUG_ON(!cache);
if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM ||
last > cache->key.objectid + cache->key.offset) {
last = cache->key.objectid + cache->key.offset;
continue;
}
if (cache->flags & (BTRFS_BLOCK_GROUP_SYSTEM |
BTRFS_BLOCK_GROUP_METADATA)) {
last = cache->key.objectid + cache->key.offset;
continue;
}
clear_extent_dirty(&root->fs_info->free_space_cache,
start, start + num_bytes - 1, 0);
ins->objectid = start;
ins->offset = num_bytes;
ins->type = BTRFS_EXTENT_ITEM_KEY;
return 0;
}
fail:
fprintf(stderr, "not enough free space\n");
return -ENOSPC;
}
static int record_file_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
struct btrfs_inode_item *inode,
u64 file_pos, u64 disk_bytenr,
u64 num_bytes)
{
int ret;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_key ins_key;
struct btrfs_path path;
struct btrfs_extent_item *ei;
btrfs_init_path(&path);
ins_key.objectid = objectid;
ins_key.offset = 0;
btrfs_set_key_type(&ins_key, BTRFS_EXTENT_DATA_KEY);
ret = btrfs_insert_empty_item(trans, root, &path, &ins_key,
sizeof(*fi));
if (ret)
goto fail;
leaf = path.nodes[0];
fi = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_file_extent_item);
btrfs_set_file_extent_generation(leaf, fi, trans->transid);
btrfs_set_file_extent_type(leaf, fi, BTRFS_FILE_EXTENT_REG);
btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
btrfs_set_file_extent_disk_num_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_offset(leaf, fi, 0);
btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
btrfs_set_file_extent_compression(leaf, fi, 0);
btrfs_set_file_extent_encryption(leaf, fi, 0);
btrfs_set_file_extent_other_encoding(leaf, fi, 0);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(root, &path);
ins_key.objectid = disk_bytenr;
ins_key.offset = num_bytes;
ins_key.type = BTRFS_EXTENT_ITEM_KEY;
ret = btrfs_insert_empty_item(trans, extent_root, &path,
&ins_key, sizeof(*ei));
if (ret == 0) {
leaf = path.nodes[0];
ei = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_extent_item);
btrfs_set_extent_refs(leaf, ei, 0);
btrfs_set_extent_generation(leaf, ei, trans->transid);
btrfs_set_extent_flags(leaf, ei, BTRFS_EXTENT_FLAG_DATA);
btrfs_mark_buffer_dirty(leaf);
ret = btrfs_update_block_group(trans, root, disk_bytenr,
num_bytes, 1, 0);
if (ret)
goto fail;
} else if (ret != -EEXIST) {
goto fail;
}
ret = btrfs_inc_extent_ref(trans, root, disk_bytenr, num_bytes, 0,
root->root_key.objectid,
objectid, 0);
fail:
btrfs_release_path(root, &path);
return ret;
}
static int add_symbolic_link(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 objectid, const char *path_name)
{
int ret;
u64 sectorsize = root->sectorsize;
char *buf = malloc(sectorsize);
ret = readlink(path_name, buf, sectorsize);
if (ret <= 0) {
fprintf(stderr, "readlink failed for %s\n", path_name);
goto fail;
}
if (ret >= sectorsize) {
fprintf(stderr, "symlink too long for %s", path_name);
ret = -1;
goto fail;
}
buf[ret] = '\0'; /* readlink does not do it for us */
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
buf, ret + 1);
fail:
free(buf);
return ret;
}
static int add_file_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *btrfs_inode, u64 objectid,
ino_t parent_inum, struct stat *st,
const char *path_name, int out_fd)
{
int ret = -1;
ssize_t ret_read;
u64 bytes_read = 0;
char *buffer = NULL;
struct btrfs_key key;
int blocks;
u32 sectorsize = root->sectorsize;
u64 first_block = 0;
u64 num_blocks = 0;
int fd;
fd = open(path_name, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "%s open failed\n", path_name);
return ret;
}
blocks = st->st_size / sectorsize;
if (st->st_size % sectorsize)
blocks += 1;
if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
buffer = malloc(st->st_size);
ret_read = pread64(fd, buffer, st->st_size, bytes_read);
if (ret_read == -1) {
fprintf(stderr, "%s read failed\n", path_name);
goto end;
}
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
buffer, st->st_size);
goto end;
}
ret = custom_alloc_extent(root, blocks * sectorsize, 0, &key);
if (ret)
goto end;
first_block = key.objectid;
bytes_read = 0;
buffer = malloc(sectorsize);
do {
memset(buffer, 0, sectorsize);
ret_read = pread64(fd, buffer, sectorsize, bytes_read);
if (ret_read == -1) {
fprintf(stderr, "%s read failed\n", path_name);
goto end;
}
ret = pwrite64(out_fd, buffer, sectorsize,
first_block + bytes_read);
if (ret != sectorsize) {
fprintf(stderr, "output file write failed\n");
goto end;
}
/* checksum for file data */
ret = btrfs_csum_file_block(trans, root->fs_info->csum_root,
first_block + (blocks * sectorsize),
first_block + bytes_read,
buffer, sectorsize);
if (ret) {
fprintf(stderr, "%s checksum failed\n", path_name);
goto end;
}
bytes_read += ret_read;
num_blocks++;
} while (ret_read == sectorsize);
if (num_blocks > 0) {
ret = record_file_extent(trans, root, objectid, btrfs_inode,
first_block, first_block,
blocks * sectorsize);
if (ret)
goto end;
}
end:
if (buffer)
free(buffer);
close(fd);
return ret;
}
static char *make_path(char *dir, char *name)
{
char *path;
path = malloc(strlen(dir) + strlen(name) + 2);
if (!path)
return NULL;
strcpy(path, dir);
if (dir[strlen(dir) - 1] != '/')
strcat(path, "/");
strcat(path, name);
return path;
}
static int traverse_directory(struct btrfs_trans_handle *trans,
struct btrfs_root *root, char *dir_name,
struct directory_name_entry *dir_head, int out_fd)
{
int ret = 0;
struct btrfs_inode_item cur_inode;
struct btrfs_inode_item *inode_item;
int count, i, dir_index_cnt;
struct direct **files;
struct stat st;
struct directory_name_entry *dir_entry, *parent_dir_entry;
struct direct *cur_file;
ino_t parent_inum, cur_inum;
ino_t highest_inum = 0;
char *parent_dir_name;
struct btrfs_path path;
struct extent_buffer *leaf;
struct btrfs_key root_dir_key;
u64 root_dir_inode_size = 0;
/* Add list for source directory */
dir_entry = malloc(sizeof(struct directory_name_entry));
dir_entry->dir_name = dir_name;
dir_entry->path = strdup(dir_name);
parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID;
dir_entry->inum = parent_inum;
list_add_tail(&dir_entry->list, &dir_head->list);
btrfs_init_path(&path);
root_dir_key.objectid = btrfs_root_dirid(&root->root_item);
root_dir_key.offset = 0;
btrfs_set_key_type(&root_dir_key, BTRFS_INODE_ITEM_KEY);
ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1);
if (ret) {
fprintf(stderr, "root dir lookup error\n");
return -1;
}
leaf = path.nodes[0];
inode_item = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_inode_item);
root_dir_inode_size = calculate_dir_inode_size(dir_name);
btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(root, &path);
do {
parent_dir_entry = list_entry(dir_head->list.next,
struct directory_name_entry,
list);
list_del(&parent_dir_entry->list);
parent_inum = parent_dir_entry->inum;
parent_dir_name = parent_dir_entry->dir_name;
if (chdir(parent_dir_entry->path)) {
fprintf(stderr, "chdir error for %s\n",
parent_dir_name);
goto fail_no_files;
}
count = scandir(parent_dir_entry->path, &files,
directory_select, NULL);
if (count == -1)
{
fprintf(stderr, "scandir for %s failed: %s\n",
parent_dir_name, strerror (errno));
goto fail;
}
for (i = 0; i < count; i++) {
cur_file = files[i];
if (lstat(cur_file->d_name, &st) == -1) {
fprintf(stderr, "lstat failed for file %s\n",
cur_file->d_name);
goto fail;
}
cur_inum = ++highest_inum + BTRFS_FIRST_FREE_OBJECTID;
ret = add_directory_items(trans, root,
cur_inum, parent_inum,
cur_file->d_name,
&st, &dir_index_cnt);
if (ret) {
fprintf(stderr, "add_directory_items failed\n");
goto fail;
}
ret = add_inode_items(trans, root, &st,
cur_file->d_name, cur_inum,
parent_inum, dir_index_cnt,
&cur_inode);
if (ret) {
fprintf(stderr, "add_inode_items failed\n");
goto fail;
}
ret = add_xattr_item(trans, root,
cur_inum, cur_file->d_name);
if (ret) {
fprintf(stderr, "add_xattr_item failed\n");
if(ret != -ENOTSUP)
goto fail;
}
if (S_ISDIR(st.st_mode)) {
dir_entry = malloc(sizeof(struct directory_name_entry));
dir_entry->dir_name = cur_file->d_name;
dir_entry->path = make_path(parent_dir_entry->path,
cur_file->d_name);
dir_entry->inum = cur_inum;
list_add_tail(&dir_entry->list, &dir_head->list);
} else if (S_ISREG(st.st_mode)) {
ret = add_file_items(trans, root, &cur_inode,
cur_inum, parent_inum, &st,
cur_file->d_name, out_fd);
if (ret) {
fprintf(stderr, "add_file_items failed\n");
goto fail;
}
} else if (S_ISLNK(st.st_mode)) {
ret = add_symbolic_link(trans, root,
cur_inum, cur_file->d_name);
if (ret) {
fprintf(stderr, "add_symbolic_link failed\n");
goto fail;
}
}
}
free_namelist(files, count);
free(parent_dir_entry->path);
free(parent_dir_entry);
index_cnt = 2;
} while (!list_empty(&dir_head->list));
return 0;
fail:
free_namelist(files, count);
fail_no_files:
free(parent_dir_entry->path);
free(parent_dir_entry);
return -1;
}
static int open_target(char *output_name)
{
int output_fd;
output_fd = open(output_name, O_CREAT | O_RDWR | O_TRUNC,
S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH);
return output_fd;
}
static int create_chunks(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 num_of_meta_chunks,
u64 size_of_data)
{
u64 chunk_start;
u64 chunk_size;
u64 meta_type = BTRFS_BLOCK_GROUP_METADATA;
u64 data_type = BTRFS_BLOCK_GROUP_DATA;
u64 minimum_data_chunk_size = 8 * 1024 * 1024;
u64 i;
int ret;
for (i = 0; i < num_of_meta_chunks; i++) {
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size, meta_type);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
meta_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
set_extent_dirty(&root->fs_info->free_space_cache,
chunk_start, chunk_start + chunk_size - 1, 0);
}
if (size_of_data < minimum_data_chunk_size)
size_of_data = minimum_data_chunk_size;
ret = btrfs_alloc_data_chunk(trans, root->fs_info->extent_root,
&chunk_start, size_of_data, data_type);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
data_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
chunk_start, size_of_data);
BUG_ON(ret);
set_extent_dirty(&root->fs_info->free_space_cache,
chunk_start, chunk_start + size_of_data - 1, 0);
return ret;
}
static int make_image(char *source_dir, struct btrfs_root *root, int out_fd)
{
int ret;
struct btrfs_trans_handle *trans;
struct stat root_st;
struct directory_name_entry dir_head;
ret = lstat(source_dir, &root_st);
if (ret) {
fprintf(stderr, "unable to lstat the %s\n", source_dir);
goto fail;
}
INIT_LIST_HEAD(&dir_head.list);
trans = btrfs_start_transaction(root, 1);
ret = traverse_directory(trans, root, source_dir, &dir_head, out_fd);
if (ret) {
fprintf(stderr, "unable to traverse_directory\n");
goto fail;
}
btrfs_commit_transaction(trans, root);
printf("Making image is completed.\n");
return 0;
fail:
fprintf(stderr, "Making image is aborted.\n");
return -1;
}
/*
* This ignores symlinks with unreadable targets and subdirs that can't
* be read. It's a best-effort to give a rough estimate of the size of
* a subdir. It doesn't guarantee that prepopulating btrfs from this
* tree won't still run out of space.
*
* The rounding up to 4096 is questionable. Previous code used du -B 4096.
*/
static u64 global_total_size;
static int ftw_add_entry_size(const char *fpath, const struct stat *st,
int type)
{
if (type == FTW_F || type == FTW_D)
global_total_size += round_up(st->st_size, 4096);
return 0;
}
static u64 size_sourcedir(char *dir_name, u64 sectorsize,
u64 *num_of_meta_chunks_ret, u64 *size_of_data_ret)
{
u64 dir_size = 0;
u64 total_size = 0;
int ret;
u64 default_chunk_size = 8 * 1024 * 1024; /* 8MB */
u64 allocated_meta_size = 8 * 1024 * 1024; /* 8MB */
u64 allocated_total_size = 20 * 1024 * 1024; /* 20MB */
u64 num_of_meta_chunks = 0;
u64 num_of_allocated_meta_chunks =
allocated_meta_size / default_chunk_size;
global_total_size = 0;
ret = ftw(dir_name, ftw_add_entry_size, 10);
dir_size = global_total_size;
if (ret < 0) {
fprintf(stderr, "ftw subdir walk of '%s' failed: %s\n",
dir_name, strerror(errno));
exit(1);
}
num_of_meta_chunks = (dir_size / 2) / default_chunk_size;
if (((dir_size / 2) % default_chunk_size) != 0)
num_of_meta_chunks++;
if (num_of_meta_chunks <= num_of_allocated_meta_chunks)
num_of_meta_chunks = 0;
else
num_of_meta_chunks -= num_of_allocated_meta_chunks;
total_size = allocated_total_size + dir_size +
(num_of_meta_chunks * default_chunk_size);
*num_of_meta_chunks_ret = num_of_meta_chunks;
return total_size;
}
static int zero_output_file(int out_fd, u64 size, u32 sectorsize)
{
int len = sectorsize;
int loop_num = size / sectorsize;
u64 location = 0;
char *buf = malloc(len);
int ret = 0, i;
ssize_t written;
if (!buf)
return -ENOMEM;
memset(buf, 0, len);
for (i = 0; i < loop_num; i++) {
written = pwrite64(out_fd, buf, len, location);
if (written != len)
ret = -EIO;
location += sectorsize;
}
free(buf);
return ret;
}
static int check_leaf_or_node_size(u32 size, u32 sectorsize)
{
if (size < sectorsize) {
fprintf(stderr,
"Illegal leafsize (or nodesize) %u (smaller than %u)\n",
size, sectorsize);
return -1;
} else if (size > BTRFS_MAX_METADATA_BLOCKSIZE) {
fprintf(stderr,
"Illegal leafsize (or nodesize) %u (larger than %u)\n",
size, BTRFS_MAX_METADATA_BLOCKSIZE);
return -1;
} else if (size & (sectorsize - 1)) {
fprintf(stderr,
"Illegal leafsize (or nodesize) %u (not align to %u)\n",
size, sectorsize);
return -1;
}
return 0;
}
static int is_ssd(const char *file)
{
char *devname;
blkid_probe probe;
char *dev;
char path[PATH_MAX];
dev_t disk;
int fd;
char rotational;
probe = blkid_new_probe_from_filename(file);
if (!probe)
return 0;
/*
* We want to use blkid_devno_to_wholedisk() but it's broken for some
* reason on F17 at least so we'll do this trickery
*/
disk = blkid_probe_get_wholedisk_devno(probe);
if (!disk)
return 0;
devname = blkid_devno_to_devname(disk);
if (!devname)
return 0;
dev = strrchr(devname, '/');
dev++;
snprintf(path, PATH_MAX, "/sys/block/%s/queue/rotational", dev);
free(devname);
blkid_free_probe(probe);
fd = open(path, O_RDONLY);
if (fd < 0) {
return 0;
}
if (read(fd, &rotational, sizeof(char)) < sizeof(char)) {
close(fd);
return 0;
}
close(fd);
return !atoi((const char *)&rotational);
}
int main(int ac, char **av)
{
char *file;
struct btrfs_root *root;
struct btrfs_trans_handle *trans;
char *label = NULL;
char *first_file;
u64 block_count = 0;
u64 dev_block_count = 0;
u64 blocks[7];
u64 alloc_start = 0;
u64 metadata_profile = 0;
u64 data_profile = 0;
u32 leafsize = sysconf(_SC_PAGESIZE);
u32 sectorsize = 4096;
u32 nodesize = leafsize;
u32 stripesize = 4096;
int zero_end = 1;
int option_index = 0;
int fd;
int ret;
int i;
int mixed = 0;
int data_profile_opt = 0;
int metadata_profile_opt = 0;
int nodiscard = 0;
int ssd = 0;
char *source_dir = NULL;
int source_dir_set = 0;
u64 num_of_meta_chunks = 0;
u64 size_of_data = 0;
u64 source_dir_size = 0;
char *pretty_buf;
struct btrfs_super_block *super;
u64 flags;
while(1) {
int c;
c = getopt_long(ac, av, "A:b:l:n:s:m:d:L:r:VMK", long_options,
&option_index);
if (c < 0)
break;
switch(c) {
case 'A':
alloc_start = parse_size(optarg);
break;
case 'd':
data_profile = parse_profile(optarg);
data_profile_opt = 1;
break;
case 'l':
case 'n':
nodesize = parse_size(optarg);
leafsize = parse_size(optarg);
break;
case 'L':
label = parse_label(optarg);
break;
case 'm':
metadata_profile = parse_profile(optarg);
metadata_profile_opt = 1;
break;
case 'M':
mixed = 1;
break;
case 's':
sectorsize = parse_size(optarg);
break;
case 'b':
block_count = parse_size(optarg);
if (block_count <= 1024*1024*1024) {
printf("SMALL VOLUME: forcing mixed "
"metadata/data groups\n");
mixed = 1;
}
zero_end = 0;
break;
case 'V':
print_version();
break;
case 'r':
source_dir = optarg;
source_dir_set = 1;
break;
case 'K':
nodiscard=1;
break;
default:
print_usage();
}
}
sectorsize = max(sectorsize, (u32)sysconf(_SC_PAGESIZE));
if (check_leaf_or_node_size(leafsize, sectorsize))
exit(1);
if (check_leaf_or_node_size(nodesize, sectorsize))
exit(1);
ac = ac - optind;
if (ac == 0)
print_usage();
printf("\nWARNING! - %s IS EXPERIMENTAL\n", BTRFS_BUILD_VERSION);
printf("WARNING! - see http://btrfs.wiki.kernel.org before using\n\n");
if (source_dir == 0) {
file = av[optind++];
ret = check_mounted(file);
if (ret < 0) {
fprintf(stderr, "error checking %s mount status\n", file);
exit(1);
}
if (ret == 1) {
fprintf(stderr, "%s is mounted\n", file);
exit(1);
}
ac--;
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s\n", file);
exit(1);
}
first_file = file;
ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count,
block_count, &mixed, nodiscard);
if (block_count && block_count > dev_block_count) {
fprintf(stderr, "%s is smaller than requested size\n", file);
exit(1);
}
} else {
ac = 0;
file = av[optind++];
fd = open_target(file);
if (fd < 0) {
fprintf(stderr, "unable to open the %s\n", file);
exit(1);
}
first_file = file;
source_dir_size = size_sourcedir(source_dir, sectorsize,
&num_of_meta_chunks, &size_of_data);
if(block_count < source_dir_size)
block_count = source_dir_size;
ret = zero_output_file(fd, block_count, sectorsize);
if (ret) {
fprintf(stderr, "unable to zero the output file\n");
exit(1);
}
/* our "device" is the new image file */
dev_block_count = block_count;
}
ssd = is_ssd(file);
if (mixed) {
if (metadata_profile != data_profile) {
fprintf(stderr, "With mixed block groups data and metadata "
"profiles must be the same\n");
exit(1);
}
}
blocks[0] = BTRFS_SUPER_INFO_OFFSET;
for (i = 1; i < 7; i++) {
blocks[i] = BTRFS_SUPER_INFO_OFFSET + 1024 * 1024 +
leafsize * i;
}
ret = make_btrfs(fd, file, label, blocks, dev_block_count,
nodesize, leafsize,
sectorsize, stripesize);
if (ret) {
fprintf(stderr, "error during mkfs %d\n", ret);
exit(1);
}
root = open_ctree(file, 0, O_RDWR);
if (!root) {
fprintf(stderr, "Open ctree failed\n");
close(fd);
exit(1);
}
root->fs_info->alloc_start = alloc_start;
ret = make_root_dir(root, mixed);
if (ret) {
fprintf(stderr, "failed to setup the root directory\n");
exit(1);
}
trans = btrfs_start_transaction(root, 1);
if (ac == 0)
goto raid_groups;
btrfs_register_one_device(file);
zero_end = 1;
while(ac-- > 0) {
int old_mixed = mixed;
file = av[optind++];
ret = check_mounted(file);
if (ret < 0) {
fprintf(stderr, "error checking %s mount status\n",
file);
exit(1);
}
if (ret == 1) {
fprintf(stderr, "%s is mounted\n", file);
exit(1);
}
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s\n", file);
exit(1);
}
ret = btrfs_device_already_in_root(root, fd,
BTRFS_SUPER_INFO_OFFSET);
if (ret) {
fprintf(stderr, "skipping duplicate device %s in FS\n",
file);
close(fd);
continue;
}
ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count,
block_count, &mixed, nodiscard);
mixed = old_mixed;
BUG_ON(ret);
ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count,
sectorsize, sectorsize, sectorsize);
BUG_ON(ret);
btrfs_register_one_device(file);
}
raid_groups:
if (!source_dir_set) {
ret = create_raid_groups(trans, root, data_profile,
data_profile_opt, metadata_profile,
metadata_profile_opt, mixed, ssd);
BUG_ON(ret);
}
ret = create_data_reloc_tree(trans, root);
BUG_ON(ret);
super = &root->fs_info->super_copy;
flags = btrfs_super_incompat_flags(super);
flags |= BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF;
if (mixed)
flags |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS;
btrfs_set_super_incompat_flags(super, flags);
if ((data_profile | metadata_profile) &
(BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
struct btrfs_super_block *super = &root->fs_info->super_copy;
u64 flags = btrfs_super_incompat_flags(super);
flags |= BTRFS_FEATURE_INCOMPAT_RAID56;
btrfs_set_super_incompat_flags(super, flags);
printf("Setting RAID5/6 feature flag\n");
}
printf("fs created label %s on %s\n\tnodesize %u leafsize %u "
"sectorsize %u size %s\n",
label, first_file, nodesize, leafsize, sectorsize,
pretty_buf = pretty_sizes(btrfs_super_total_bytes(&root->fs_info->super_copy)));
free(pretty_buf);
printf("%s\n", BTRFS_BUILD_VERSION);
btrfs_commit_transaction(trans, root);
if (source_dir_set) {
trans = btrfs_start_transaction(root, 1);
ret = create_chunks(trans, root,
num_of_meta_chunks, size_of_data);
BUG_ON(ret);
btrfs_commit_transaction(trans, root);
ret = make_image(source_dir, root, fd);
BUG_ON(ret);
}
ret = close_ctree(root);
BUG_ON(ret);
free(label);
return 0;
}