btrfs-progs/volumes.h
Qu Wenruo 0dd9031159 btrfs-progs: Port kernel fs_devices::total_rw_bytes
Unlike kernel, btrfs-progs doesn't (yet) support devices grow/shrink,
the port only needs to handle open_ctree() time initialization (at
read_one_dev()), and btrfs_add_device() used for mkfs.

This provide the basis for incoming unification of chunk allocator
behavior.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-03-01 17:26:02 +01:00

312 lines
9.2 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __BTRFS_VOLUMES_H__
#define __BTRFS_VOLUMES_H__
#include "kerncompat.h"
#include "ctree.h"
#define BTRFS_STRIPE_LEN SZ_64K
struct btrfs_device {
struct list_head dev_list;
struct btrfs_root *dev_root;
struct btrfs_fs_devices *fs_devices;
u64 total_ios;
int fd;
int writeable;
char *name;
/* these are read off the super block, only in the progs */
char *label;
u64 total_devs;
u64 super_bytes_used;
u64 generation;
/* the internal btrfs device id */
u64 devid;
/* size of the device */
u64 total_bytes;
/* bytes used */
u64 bytes_used;
/* optimal io alignment for this device */
u32 io_align;
/* optimal io width for this device */
u32 io_width;
/* minimal io size for this device */
u32 sector_size;
/* type and info about this device */
u64 type;
/* physical drive uuid (or lvm uuid) */
u8 uuid[BTRFS_UUID_SIZE];
};
struct btrfs_fs_devices {
u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
u8 metadata_uuid[BTRFS_FSID_SIZE]; /* FS specific uuid */
/* the device with this id has the most recent copy of the super */
u64 latest_devid;
u64 latest_trans;
u64 lowest_devid;
u64 total_rw_bytes;
int latest_bdev;
int lowest_bdev;
struct list_head devices;
struct list_head list;
int seeding;
struct btrfs_fs_devices *seed;
};
struct btrfs_bio_stripe {
struct btrfs_device *dev;
u64 physical;
};
struct btrfs_multi_bio {
int error;
int num_stripes;
struct btrfs_bio_stripe stripes[];
};
struct map_lookup {
struct cache_extent ce;
u64 type;
int io_align;
int io_width;
int stripe_len;
int sector_size;
int num_stripes;
int sub_stripes;
struct btrfs_bio_stripe stripes[];
};
struct btrfs_raid_attr {
int sub_stripes; /* sub_stripes info for map */
int dev_stripes; /* stripes per dev */
int devs_max; /* max devs to use */
int devs_min; /* min devs needed */
int tolerated_failures; /* max tolerated fail devs */
int devs_increment; /* ndevs has to be a multiple of this */
int ncopies; /* how many copies to data has */
};
extern const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES];
static inline enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
{
if (flags & BTRFS_BLOCK_GROUP_RAID10)
return BTRFS_RAID_RAID10;
else if (flags & BTRFS_BLOCK_GROUP_RAID1)
return BTRFS_RAID_RAID1;
else if (flags & BTRFS_BLOCK_GROUP_DUP)
return BTRFS_RAID_DUP;
else if (flags & BTRFS_BLOCK_GROUP_RAID0)
return BTRFS_RAID_RAID0;
else if (flags & BTRFS_BLOCK_GROUP_RAID5)
return BTRFS_RAID_RAID5;
else if (flags & BTRFS_BLOCK_GROUP_RAID6)
return BTRFS_RAID_RAID6;
return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
}
#define btrfs_multi_bio_size(n) (sizeof(struct btrfs_multi_bio) + \
(sizeof(struct btrfs_bio_stripe) * (n)))
#define btrfs_map_lookup_size(n) (sizeof(struct map_lookup) + \
(sizeof(struct btrfs_bio_stripe) * (n)))
/*
* Restriper's general type filter
*/
#define BTRFS_BALANCE_DATA (1ULL << 0)
#define BTRFS_BALANCE_SYSTEM (1ULL << 1)
#define BTRFS_BALANCE_METADATA (1ULL << 2)
#define BTRFS_BALANCE_TYPE_MASK (BTRFS_BALANCE_DATA | \
BTRFS_BALANCE_SYSTEM | \
BTRFS_BALANCE_METADATA)
#define BTRFS_BALANCE_FORCE (1ULL << 3)
#define BTRFS_BALANCE_RESUME (1ULL << 4)
/*
* Balance filters
*/
#define BTRFS_BALANCE_ARGS_PROFILES (1ULL << 0)
#define BTRFS_BALANCE_ARGS_USAGE (1ULL << 1)
#define BTRFS_BALANCE_ARGS_DEVID (1ULL << 2)
#define BTRFS_BALANCE_ARGS_DRANGE (1ULL << 3)
#define BTRFS_BALANCE_ARGS_VRANGE (1ULL << 4)
#define BTRFS_BALANCE_ARGS_LIMIT (1ULL << 5)
#define BTRFS_BALANCE_ARGS_LIMIT_RANGE (1ULL << 6)
#define BTRFS_BALANCE_ARGS_STRIPES_RANGE (1ULL << 7)
#define BTRFS_BALANCE_ARGS_USAGE_RANGE (1ULL << 10)
/*
* Profile changing flags. When SOFT is set we won't relocate chunk if
* it already has the target profile (even though it may be
* half-filled).
*/
#define BTRFS_BALANCE_ARGS_CONVERT (1ULL << 8)
#define BTRFS_BALANCE_ARGS_SOFT (1ULL << 9)
#define BTRFS_RAID5_P_STRIPE ((u64)-2)
#define BTRFS_RAID6_Q_STRIPE ((u64)-1)
/*
* Check if the given range cross stripes.
* To ensure kernel scrub won't causing bug on with METADATA in mixed
* block group
*
* Return 1 if the range crosses STRIPE boundary
* Return 0 if the range doesn't cross STRIPE boundary or it
* doesn't belong to any block group (no boundary to cross)
*/
static inline int check_crossing_stripes(struct btrfs_fs_info *fs_info,
u64 start, u64 len)
{
struct btrfs_block_group_cache *bg_cache;
u64 bg_offset;
bg_cache = btrfs_lookup_block_group(fs_info, start);
/*
* Does not belong to block group, no boundary to cross
* although it's a bigger problem, but here we don't care.
*/
if (!bg_cache)
return 0;
bg_offset = start - bg_cache->key.objectid;
return (bg_offset / BTRFS_STRIPE_LEN !=
(bg_offset + len - 1) / BTRFS_STRIPE_LEN);
}
static inline u64 calc_stripe_length(u64 type, u64 length, int num_stripes)
{
u64 stripe_size;
if (type & BTRFS_BLOCK_GROUP_RAID0) {
stripe_size = length;
stripe_size /= num_stripes;
} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
stripe_size = length * 2;
stripe_size /= num_stripes;
} else if (type & BTRFS_BLOCK_GROUP_RAID5) {
stripe_size = length;
stripe_size /= (num_stripes - 1);
} else if (type & BTRFS_BLOCK_GROUP_RAID6) {
stripe_size = length;
stripe_size /= (num_stripes - 2);
} else {
stripe_size = length;
}
return stripe_size;
}
int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
u64 logical, u64 *length, u64 *type,
struct btrfs_multi_bio **multi_ret, int mirror_num,
u64 **raid_map);
int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
u64 logical, u64 *length,
struct btrfs_multi_bio **multi_ret, int mirror_num,
u64 **raid_map_ret);
int btrfs_next_bg(struct btrfs_fs_info *map_tree, u64 *logical,
u64 *size, u64 type);
static inline int btrfs_next_bg_metadata(struct btrfs_fs_info *fs_info,
u64 *logical, u64 *size)
{
return btrfs_next_bg(fs_info, logical, size,
BTRFS_BLOCK_GROUP_METADATA);
}
static inline int btrfs_next_bg_system(struct btrfs_fs_info *fs_info,
u64 *logical, u64 *size)
{
return btrfs_next_bg(fs_info, logical, size,
BTRFS_BLOCK_GROUP_SYSTEM);
}
int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
u64 chunk_start, u64 physical, u64 **logical,
int *naddrs, int *stripe_len);
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info);
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info);
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info, u64 *start,
u64 *num_bytes, u64 type);
int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info, u64 *start,
u64 num_bytes, u64 type, int convert);
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
int flags);
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices);
void btrfs_close_all_devices(void);
int btrfs_insert_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 chunk_offset, u64 num_bytes, u64 start);
int btrfs_add_device(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info,
struct btrfs_device *device);
int btrfs_update_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device);
int btrfs_scan_one_device(int fd, const char *path,
struct btrfs_fs_devices **fs_devices_ret,
u64 *total_devs, u64 super_offset, unsigned sbflags);
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len);
struct list_head *btrfs_scanned_uuids(void);
int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
struct btrfs_chunk *chunk, int item_size);
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset);
struct btrfs_device *
btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
u64 devid, int instance);
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
u8 *uuid, u8 *fsid);
int write_raid56_with_parity(struct btrfs_fs_info *info,
struct extent_buffer *eb,
struct btrfs_multi_bio *multi,
u64 stripe_len, u64 *raid_map);
int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_chunk *chunk,
int slot, u64 logical);
u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_chunk *chunk);
int btrfs_fix_device_size(struct btrfs_fs_info *fs_info,
struct btrfs_device *device);
int btrfs_fix_super_size(struct btrfs_fs_info *fs_info);
int btrfs_fix_device_and_super_size(struct btrfs_fs_info *fs_info);
#endif