1934 lines
48 KiB
C
1934 lines
48 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include "kerncompat.h"
|
|
#include <sys/stat.h>
|
|
#include <linux/fs.h>
|
|
#include <errno.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <pthread.h>
|
|
#include <zlib.h>
|
|
#include "kernel-lib/list.h"
|
|
#include "kernel-lib/rbtree.h"
|
|
#include "kernel-lib/rbtree_types.h"
|
|
#include "kernel-lib/sizes.h"
|
|
#include "kernel-shared/accessors.h"
|
|
#include "kernel-shared/ctree.h"
|
|
#include "kernel-shared/extent_io.h"
|
|
#include "kernel-shared/uapi/btrfs_tree.h"
|
|
#include "kernel-shared/disk-io.h"
|
|
#include "kernel-shared/volumes.h"
|
|
#include "kernel-shared/transaction.h"
|
|
#include "kernel-shared/tree-checker.h"
|
|
#include "common/internal.h"
|
|
#include "common/messages.h"
|
|
#include "common/extent-cache.h"
|
|
#include "image/common.h"
|
|
#include "image/metadump.h"
|
|
|
|
static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads)
|
|
{
|
|
struct rb_node *n;
|
|
int i;
|
|
|
|
while ((n = rb_first(&mdres->chunk_tree))) {
|
|
struct fs_chunk *entry;
|
|
|
|
entry = rb_entry(n, struct fs_chunk, l);
|
|
rb_erase(n, &mdres->chunk_tree);
|
|
rb_erase(&entry->p, &mdres->physical_tree);
|
|
free(entry);
|
|
}
|
|
free_extent_cache_tree(&mdres->sys_chunks);
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
mdres->done = 1;
|
|
pthread_cond_broadcast(&mdres->cond);
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
for (i = 0; i < num_threads; i++)
|
|
pthread_join(mdres->threads[i], NULL);
|
|
|
|
pthread_cond_destroy(&mdres->cond);
|
|
pthread_mutex_destroy(&mdres->mutex);
|
|
free(mdres->original_super);
|
|
}
|
|
|
|
static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
|
|
{
|
|
u32 nritems;
|
|
u32 old_size;
|
|
u32 old_data_start;
|
|
u32 size_diff;
|
|
u32 data_end;
|
|
int i;
|
|
|
|
old_size = btrfs_item_size(eb, slot);
|
|
if (old_size == new_size)
|
|
return;
|
|
|
|
nritems = btrfs_header_nritems(eb);
|
|
data_end = btrfs_item_offset(eb, nritems - 1);
|
|
|
|
old_data_start = btrfs_item_offset(eb, slot);
|
|
size_diff = old_size - new_size;
|
|
|
|
for (i = slot; i < nritems; i++) {
|
|
u32 ioff;
|
|
ioff = btrfs_item_offset(eb, i);
|
|
btrfs_set_item_offset(eb, i, ioff + size_diff);
|
|
}
|
|
|
|
memmove_extent_buffer(eb, btrfs_item_nr_offset(eb, 0) + data_end + size_diff,
|
|
btrfs_item_nr_offset(eb, 0) + data_end,
|
|
old_data_start + new_size - data_end);
|
|
btrfs_set_item_size(eb, slot, new_size);
|
|
}
|
|
|
|
static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
|
|
{
|
|
struct extent_buffer *eb;
|
|
|
|
eb = calloc(1, sizeof(struct extent_buffer) + size);
|
|
if (!eb)
|
|
return NULL;
|
|
|
|
eb->start = bytenr;
|
|
eb->len = size;
|
|
return eb;
|
|
}
|
|
|
|
static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
|
|
{
|
|
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l);
|
|
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l);
|
|
|
|
if (fuzz && ins->logical >= entry->logical &&
|
|
ins->logical < entry->logical + entry->bytes)
|
|
return 0;
|
|
|
|
if (ins->logical < entry->logical)
|
|
return -1;
|
|
else if (ins->logical > entry->logical)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static struct rb_node *tree_search(struct rb_root *root,
|
|
struct rb_node *search,
|
|
int (*cmp)(struct rb_node *a,
|
|
struct rb_node *b, int fuzz),
|
|
int fuzz)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
int dir;
|
|
|
|
while (n) {
|
|
dir = cmp(n, search, fuzz);
|
|
if (dir < 0)
|
|
n = n->rb_left;
|
|
else if (dir > 0)
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical,
|
|
u64 *size, u64 *physical_dup)
|
|
{
|
|
struct fs_chunk *fs_chunk;
|
|
struct rb_node *entry;
|
|
struct fs_chunk search;
|
|
u64 offset;
|
|
|
|
if (logical == BTRFS_SUPER_INFO_OFFSET)
|
|
return logical;
|
|
|
|
search.logical = logical;
|
|
entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1);
|
|
if (!entry) {
|
|
if (mdres->in != stdin)
|
|
warning("cannot find a chunk, using logical");
|
|
return logical;
|
|
}
|
|
fs_chunk = rb_entry(entry, struct fs_chunk, l);
|
|
if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical)
|
|
BUG();
|
|
offset = search.logical - fs_chunk->logical;
|
|
|
|
if (physical_dup) {
|
|
/* Only in dup case, physical_dup is not equal to 0 */
|
|
if (fs_chunk->physical_dup)
|
|
*physical_dup = fs_chunk->physical_dup + offset;
|
|
else
|
|
*physical_dup = 0;
|
|
}
|
|
|
|
*size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical);
|
|
return fs_chunk->physical + offset;
|
|
}
|
|
|
|
static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
|
|
struct async_work *async, u8 *buffer,
|
|
size_t size)
|
|
{
|
|
struct extent_buffer *eb;
|
|
size_t size_left = size;
|
|
u64 bytenr = async->start;
|
|
int i;
|
|
|
|
if (btrfs_super_num_devices(mdres->original_super) == 1)
|
|
return 0;
|
|
if (size_left % mdres->nodesize)
|
|
return 0;
|
|
|
|
eb = alloc_dummy_eb(bytenr, mdres->nodesize);
|
|
if (!eb)
|
|
return -ENOMEM;
|
|
|
|
while (size_left) {
|
|
eb->start = bytenr;
|
|
memcpy(eb->data, buffer, mdres->nodesize);
|
|
|
|
if (btrfs_header_bytenr(eb) != bytenr)
|
|
break;
|
|
if (memcmp(mdres->fsid,
|
|
eb->data + offsetof(struct btrfs_header, fsid),
|
|
BTRFS_FSID_SIZE))
|
|
break;
|
|
|
|
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
|
|
goto next;
|
|
|
|
if (btrfs_header_level(eb) != 0)
|
|
goto next;
|
|
|
|
for (i = 0; i < btrfs_header_nritems(eb); i++) {
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_key key;
|
|
u64 type, physical, physical_dup;
|
|
u64 found_size = (u64)-1;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
if (key.type != BTRFS_CHUNK_ITEM_KEY)
|
|
continue;
|
|
|
|
physical = logical_to_physical(mdres, key.offset,
|
|
&found_size, &physical_dup);
|
|
|
|
if (!physical_dup)
|
|
truncate_item(eb, i, sizeof(*chunk));
|
|
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
|
|
|
|
|
|
/* Zero out the RAID profile */
|
|
type = btrfs_chunk_type(eb, chunk);
|
|
type &= (BTRFS_BLOCK_GROUP_DATA |
|
|
BTRFS_BLOCK_GROUP_SYSTEM |
|
|
BTRFS_BLOCK_GROUP_METADATA |
|
|
BTRFS_BLOCK_GROUP_DUP);
|
|
btrfs_set_chunk_type(eb, chunk, type);
|
|
|
|
if (!physical_dup)
|
|
btrfs_set_chunk_num_stripes(eb, chunk, 1);
|
|
btrfs_set_chunk_sub_stripes(eb, chunk, 0);
|
|
btrfs_set_stripe_devid_nr(eb, chunk, 0, mdres->devid);
|
|
btrfs_set_stripe_offset_nr(eb, chunk, 0, physical);
|
|
/* update stripe 2 offset */
|
|
if (physical_dup)
|
|
btrfs_set_stripe_offset_nr(eb, chunk, 1,
|
|
physical_dup);
|
|
|
|
write_extent_buffer(eb, mdres->uuid,
|
|
(unsigned long)btrfs_stripe_dev_uuid_nr(
|
|
chunk, 0),
|
|
BTRFS_UUID_SIZE);
|
|
}
|
|
memcpy(buffer, eb->data, eb->len);
|
|
csum_block(buffer, eb->len);
|
|
next:
|
|
size_left -= mdres->nodesize;
|
|
buffer += mdres->nodesize;
|
|
bytenr += mdres->nodesize;
|
|
}
|
|
|
|
free(eb);
|
|
return 0;
|
|
}
|
|
|
|
static int update_super(struct mdrestore_struct *mdres, u8 *buffer)
|
|
{
|
|
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_key key;
|
|
u64 flags = btrfs_super_flags(super);
|
|
u32 new_array_size = 0;
|
|
u32 array_size;
|
|
u32 cur = 0;
|
|
u8 *ptr, *write_ptr;
|
|
int old_num_stripes;
|
|
|
|
/* No need to fix, use all data as is */
|
|
if (btrfs_super_num_devices(mdres->original_super) == 1) {
|
|
new_array_size = btrfs_super_sys_array_size(super);
|
|
goto finish;
|
|
}
|
|
|
|
write_ptr = ptr = super->sys_chunk_array;
|
|
array_size = btrfs_super_sys_array_size(super);
|
|
|
|
while (cur < array_size) {
|
|
disk_key = (struct btrfs_disk_key *)ptr;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
new_array_size += sizeof(*disk_key);
|
|
memmove(write_ptr, ptr, sizeof(*disk_key));
|
|
|
|
write_ptr += sizeof(*disk_key);
|
|
ptr += sizeof(*disk_key);
|
|
cur += sizeof(*disk_key);
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
u64 type, physical, physical_dup, size = 0;
|
|
|
|
chunk = (struct btrfs_chunk *)ptr;
|
|
old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
|
|
chunk = (struct btrfs_chunk *)write_ptr;
|
|
|
|
memmove(write_ptr, ptr, sizeof(*chunk));
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
|
|
type = btrfs_stack_chunk_type(chunk);
|
|
if (type & BTRFS_BLOCK_GROUP_DUP) {
|
|
new_array_size += sizeof(struct btrfs_stripe);
|
|
write_ptr += sizeof(struct btrfs_stripe);
|
|
} else {
|
|
btrfs_set_stack_chunk_num_stripes(chunk, 1);
|
|
btrfs_set_stack_chunk_type(chunk,
|
|
BTRFS_BLOCK_GROUP_SYSTEM);
|
|
}
|
|
chunk->stripe.devid = super->dev_item.devid;
|
|
physical = logical_to_physical(mdres, key.offset,
|
|
&size, &physical_dup);
|
|
if (size != (u64)-1)
|
|
btrfs_set_stack_stripe_offset(&chunk->stripe,
|
|
physical);
|
|
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
new_array_size += sizeof(*chunk);
|
|
} else {
|
|
error("bogus key in the sys array %d", key.type);
|
|
return -EIO;
|
|
}
|
|
write_ptr += sizeof(*chunk);
|
|
ptr += btrfs_chunk_item_size(old_num_stripes);
|
|
cur += btrfs_chunk_item_size(old_num_stripes);
|
|
}
|
|
|
|
finish:
|
|
if (mdres->clear_space_cache)
|
|
btrfs_set_super_cache_generation(super, 0);
|
|
|
|
if (current_version->extra_sb_flags)
|
|
flags |= BTRFS_SUPER_FLAG_METADUMP_V2;
|
|
btrfs_set_super_flags(super, flags);
|
|
btrfs_set_super_sys_array_size(super, new_array_size);
|
|
btrfs_set_super_num_devices(super, 1);
|
|
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void update_super_old(u8 *buffer)
|
|
{
|
|
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_disk_key *key;
|
|
u32 sectorsize = btrfs_super_sectorsize(super);
|
|
u64 flags = btrfs_super_flags(super);
|
|
|
|
if (current_version->extra_sb_flags)
|
|
flags |= BTRFS_SUPER_FLAG_METADUMP;
|
|
btrfs_set_super_flags(super, flags);
|
|
|
|
key = (struct btrfs_disk_key *)(super->sys_chunk_array);
|
|
chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
|
|
sizeof(struct btrfs_disk_key));
|
|
|
|
btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
|
|
btrfs_set_disk_key_offset(key, 0);
|
|
|
|
btrfs_set_stack_chunk_length(chunk, (u64)-1);
|
|
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
|
|
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
|
|
btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
|
|
btrfs_set_stack_chunk_io_align(chunk, sectorsize);
|
|
btrfs_set_stack_chunk_io_width(chunk, sectorsize);
|
|
btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
|
|
btrfs_set_stack_chunk_num_stripes(chunk, 1);
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
|
|
chunk->stripe.devid = super->dev_item.devid;
|
|
btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
|
|
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
|
|
btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
|
|
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Restore one item.
|
|
*
|
|
* For uncompressed data, it's just reading from work->buf then write to output.
|
|
* For compressed data, since we can have very large decompressed data
|
|
* (up to 256M), we need to consider memory usage. So here we will fill buffer
|
|
* then write the decompressed buffer to output.
|
|
*/
|
|
static int restore_one_work(struct mdrestore_struct *mdres,
|
|
struct async_work *async, u8 *buffer, int bufsize)
|
|
{
|
|
z_stream strm;
|
|
/* Offset inside work->buffer */
|
|
int buf_offset = 0;
|
|
/* Offset for output */
|
|
int out_offset = 0;
|
|
int out_len;
|
|
int outfd = fileno(mdres->out);
|
|
int compress_method = mdres->compress_method;
|
|
int ret;
|
|
|
|
UASSERT(is_power_of_2(bufsize));
|
|
|
|
if (compress_method == COMPRESS_ZLIB) {
|
|
strm.zalloc = Z_NULL;
|
|
strm.zfree = Z_NULL;
|
|
strm.opaque = Z_NULL;
|
|
strm.avail_in = async->bufsize;
|
|
strm.next_in = async->buffer;
|
|
strm.avail_out = 0;
|
|
strm.next_out = Z_NULL;
|
|
ret = inflateInit(&strm);
|
|
if (ret != Z_OK) {
|
|
error("failed to initialize decompress parameters: %d", ret);
|
|
return ret;
|
|
}
|
|
}
|
|
while (buf_offset < async->bufsize) {
|
|
bool compress_end = false;
|
|
int read_size = min_t(u64, async->bufsize - buf_offset, bufsize);
|
|
|
|
/* Read part */
|
|
if (compress_method == COMPRESS_ZLIB) {
|
|
if (strm.avail_out == 0) {
|
|
strm.avail_out = bufsize;
|
|
strm.next_out = buffer;
|
|
}
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
ret = inflate(&strm, Z_NO_FLUSH);
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
switch (ret) {
|
|
case Z_NEED_DICT:
|
|
ret = Z_DATA_ERROR;
|
|
fallthrough;
|
|
case Z_DATA_ERROR:
|
|
case Z_MEM_ERROR:
|
|
goto out;
|
|
}
|
|
if (ret == Z_STREAM_END) {
|
|
ret = 0;
|
|
compress_end = true;
|
|
}
|
|
out_len = bufsize - strm.avail_out;
|
|
} else {
|
|
/* No compress, read as much data as possible */
|
|
memcpy(buffer, async->buffer + buf_offset, read_size);
|
|
|
|
buf_offset += read_size;
|
|
out_len = read_size;
|
|
}
|
|
|
|
/* Fixup part */
|
|
if (!mdres->multi_devices) {
|
|
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
|
|
memcpy(mdres->original_super, buffer,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (mdres->old_restore) {
|
|
update_super_old(buffer);
|
|
} else {
|
|
ret = update_super(mdres, buffer);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
} else if (!mdres->old_restore) {
|
|
ret = fixup_chunk_tree_block(mdres, async,
|
|
buffer, out_len);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Write part */
|
|
if (!mdres->fixup_offset) {
|
|
int size = out_len;
|
|
off_t offset = 0;
|
|
|
|
while (size) {
|
|
u64 logical = async->start + out_offset + offset;
|
|
u64 chunk_size = size;
|
|
u64 physical_dup = 0;
|
|
u64 bytenr;
|
|
|
|
if (!mdres->multi_devices && !mdres->old_restore)
|
|
bytenr = logical_to_physical(mdres,
|
|
logical, &chunk_size,
|
|
&physical_dup);
|
|
else
|
|
bytenr = logical;
|
|
|
|
ret = pwrite(outfd, buffer + offset, chunk_size, bytenr);
|
|
if (ret != chunk_size)
|
|
goto write_error;
|
|
|
|
if (physical_dup)
|
|
ret = pwrite(outfd, buffer + offset,
|
|
chunk_size, physical_dup);
|
|
if (ret != chunk_size)
|
|
goto write_error;
|
|
|
|
size -= chunk_size;
|
|
offset += chunk_size;
|
|
continue;
|
|
}
|
|
} else if (async->start != BTRFS_SUPER_INFO_OFFSET) {
|
|
ret = write_data_to_disk(mdres->info, buffer,
|
|
async->start, out_len);
|
|
if (ret) {
|
|
error("failed to write data");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* backup super blocks are already there at fixup_offset stage */
|
|
if (async->start == BTRFS_SUPER_INFO_OFFSET &&
|
|
!mdres->multi_devices)
|
|
write_backup_supers(outfd, buffer);
|
|
out_offset += out_len;
|
|
if (compress_end) {
|
|
inflateEnd(&strm);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
|
|
write_error:
|
|
if (ret < 0) {
|
|
error("unable to write to device: %m");
|
|
ret = -errno;
|
|
} else {
|
|
error("short write");
|
|
ret = -EIO;
|
|
}
|
|
out:
|
|
if (compress_method == COMPRESS_ZLIB)
|
|
inflateEnd(&strm);
|
|
return ret;
|
|
}
|
|
|
|
static void *restore_worker(void *data)
|
|
{
|
|
struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
|
|
struct async_work *async;
|
|
u8 *buffer;
|
|
int ret;
|
|
int buffer_size = SZ_512K;
|
|
|
|
buffer = malloc(buffer_size);
|
|
if (!buffer) {
|
|
error_msg(ERROR_MSG_MEMORY, "restore worker buffer");
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
if (!mdres->error)
|
|
mdres->error = -ENOMEM;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
while (1) {
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
while (!mdres->nodesize || list_empty(&mdres->list)) {
|
|
if (mdres->done) {
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
goto out;
|
|
}
|
|
pthread_cond_wait(&mdres->cond, &mdres->mutex);
|
|
}
|
|
async = list_entry(mdres->list.next, struct async_work, list);
|
|
list_del_init(&async->list);
|
|
|
|
ret = restore_one_work(mdres, async, buffer, buffer_size);
|
|
if (ret < 0) {
|
|
mdres->error = ret;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
goto out;
|
|
}
|
|
mdres->num_items--;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
free(async->buffer);
|
|
free(async);
|
|
}
|
|
out:
|
|
free(buffer);
|
|
pthread_exit(NULL);
|
|
}
|
|
|
|
static int mdrestore_init(struct mdrestore_struct *mdres,
|
|
FILE *in, FILE *out, int old_restore,
|
|
int num_threads, int fixup_offset,
|
|
struct btrfs_fs_info *info, int multi_devices)
|
|
{
|
|
int i, ret = 0;
|
|
|
|
ret = detect_version(in);
|
|
if (ret < 0)
|
|
return ret;
|
|
memset(mdres, 0, sizeof(*mdres));
|
|
pthread_cond_init(&mdres->cond, NULL);
|
|
pthread_mutex_init(&mdres->mutex, NULL);
|
|
INIT_LIST_HEAD(&mdres->list);
|
|
INIT_LIST_HEAD(&mdres->overlapping_chunks);
|
|
cache_tree_init(&mdres->sys_chunks);
|
|
mdres->in = in;
|
|
mdres->out = out;
|
|
mdres->old_restore = old_restore;
|
|
mdres->chunk_tree.rb_node = NULL;
|
|
mdres->fixup_offset = fixup_offset;
|
|
mdres->info = info;
|
|
mdres->multi_devices = multi_devices;
|
|
mdres->clear_space_cache = 0;
|
|
mdres->last_physical_offset = 0;
|
|
mdres->alloced_chunks = 0;
|
|
|
|
mdres->original_super = malloc(BTRFS_SUPER_INFO_SIZE);
|
|
if (!mdres->original_super)
|
|
return -ENOMEM;
|
|
|
|
if (!num_threads)
|
|
return 0;
|
|
|
|
mdres->num_threads = num_threads;
|
|
for (i = 0; i < num_threads; i++) {
|
|
ret = pthread_create(&mdres->threads[i], NULL, restore_worker,
|
|
mdres);
|
|
if (ret) {
|
|
/* pthread_create returns errno directly */
|
|
ret = -ret;
|
|
break;
|
|
}
|
|
}
|
|
if (ret)
|
|
mdrestore_destroy(mdres, i + 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Add system chunks in super blocks into mdres->sys_chunks, so later we can
|
|
* determine if an item is a chunk tree block.
|
|
*/
|
|
static int add_sys_array(struct mdrestore_struct *mdres,
|
|
struct btrfs_super_block *sb)
|
|
{
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_key key;
|
|
struct btrfs_chunk *chunk;
|
|
struct cache_extent *cache;
|
|
u32 cur_offset;
|
|
u32 len = 0;
|
|
u32 array_size;
|
|
u8 *array_ptr;
|
|
int ret = 0;
|
|
|
|
array_size = btrfs_super_sys_array_size(sb);
|
|
array_ptr = sb->sys_chunk_array;
|
|
cur_offset = 0;
|
|
|
|
while (cur_offset < array_size) {
|
|
u32 num_stripes;
|
|
|
|
disk_key = (struct btrfs_disk_key *)array_ptr;
|
|
len = sizeof(*disk_key);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
array_ptr += len;
|
|
cur_offset += len;
|
|
|
|
if (key.type != BTRFS_CHUNK_ITEM_KEY) {
|
|
error("unexpected item type %u in sys_array offset %u",
|
|
key.type, cur_offset);
|
|
ret = -EUCLEAN;
|
|
break;
|
|
}
|
|
chunk = (struct btrfs_chunk *)array_ptr;
|
|
|
|
/*
|
|
* At least one btrfs_chunk with one stripe must be present,
|
|
* exact stripe count check comes afterwards
|
|
*/
|
|
len = btrfs_chunk_item_size(1);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
|
|
if (!num_stripes) {
|
|
error(
|
|
"invalid number of stripes %u in sys_array at offset %u",
|
|
num_stripes, cur_offset);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
len = btrfs_chunk_item_size(num_stripes);
|
|
if (cur_offset + len > array_size)
|
|
goto out_short_read;
|
|
if (btrfs_stack_chunk_type(chunk) &
|
|
BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = add_merge_cache_extent(&mdres->sys_chunks,
|
|
key.offset,
|
|
btrfs_stack_chunk_length(chunk));
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
array_ptr += len;
|
|
cur_offset += len;
|
|
}
|
|
|
|
/* Get the last system chunk end as a quicker check */
|
|
cache = last_cache_extent(&mdres->sys_chunks);
|
|
if (!cache) {
|
|
error("no system chunk found in super block");
|
|
return -EUCLEAN;
|
|
}
|
|
mdres->sys_chunk_end = cache->start + cache->size - 1;
|
|
return ret;
|
|
out_short_read:
|
|
error("sys_array too short to read %u bytes at offset %u",
|
|
len, cur_offset);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
static void tree_insert(struct rb_root *root, struct rb_node *ins,
|
|
int (*cmp)(struct rb_node *a, struct rb_node *b,
|
|
int fuzz))
|
|
{
|
|
struct rb_node ** p = &root->rb_node;
|
|
struct rb_node * parent = NULL;
|
|
int dir;
|
|
|
|
while(*p) {
|
|
parent = *p;
|
|
|
|
dir = cmp(*p, ins, 1);
|
|
if (dir < 0)
|
|
p = &(*p)->rb_left;
|
|
else if (dir > 0)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
rb_link_node(ins, parent, p);
|
|
rb_insert_color(ins, root);
|
|
}
|
|
|
|
static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
|
|
{
|
|
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p);
|
|
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p);
|
|
|
|
if (fuzz && ins->physical >= entry->physical &&
|
|
ins->physical < entry->physical + entry->bytes)
|
|
return 0;
|
|
|
|
if (fuzz && entry->physical >= ins->physical &&
|
|
entry->physical < ins->physical + ins->bytes)
|
|
return 0;
|
|
|
|
if (ins->physical < entry->physical)
|
|
return -1;
|
|
else if (ins->physical > entry->physical)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
static int read_chunk_tree_block(struct mdrestore_struct *mdres,
|
|
struct extent_buffer *eb)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < btrfs_header_nritems(eb); i++) {
|
|
struct btrfs_chunk *chunk;
|
|
struct fs_chunk *fs_chunk;
|
|
struct btrfs_key key;
|
|
u64 type;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
if (key.type != BTRFS_CHUNK_ITEM_KEY)
|
|
continue;
|
|
|
|
fs_chunk = malloc(sizeof(struct fs_chunk));
|
|
if (!fs_chunk) {
|
|
error_msg(ERROR_MSG_MEMORY, "allocate chunk");
|
|
return -ENOMEM;
|
|
}
|
|
memset(fs_chunk, 0, sizeof(*fs_chunk));
|
|
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
|
|
|
|
fs_chunk->logical = key.offset;
|
|
fs_chunk->physical = btrfs_stripe_offset_nr(eb, chunk, 0);
|
|
fs_chunk->bytes = btrfs_chunk_length(eb, chunk);
|
|
INIT_LIST_HEAD(&fs_chunk->list);
|
|
|
|
if (tree_search(&mdres->physical_tree, &fs_chunk->p,
|
|
physical_cmp, 1) != NULL)
|
|
list_add(&fs_chunk->list, &mdres->overlapping_chunks);
|
|
else
|
|
tree_insert(&mdres->physical_tree, &fs_chunk->p,
|
|
physical_cmp);
|
|
type = btrfs_chunk_type(eb, chunk);
|
|
if (type & BTRFS_BLOCK_GROUP_DUP) {
|
|
fs_chunk->physical_dup =
|
|
btrfs_stripe_offset_nr(eb, chunk, 1);
|
|
}
|
|
if (fs_chunk->physical_dup + fs_chunk->bytes >
|
|
mdres->last_physical_offset)
|
|
mdres->last_physical_offset = fs_chunk->physical_dup +
|
|
fs_chunk->bytes;
|
|
else if (fs_chunk->physical + fs_chunk->bytes >
|
|
mdres->last_physical_offset)
|
|
mdres->last_physical_offset = fs_chunk->physical +
|
|
fs_chunk->bytes;
|
|
mdres->alloced_chunks += fs_chunk->bytes;
|
|
/* in dup case, fs_chunk->bytes should add twice */
|
|
if (fs_chunk->physical_dup)
|
|
mdres->alloced_chunks += fs_chunk->bytes;
|
|
tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if a range [start, start + len] has ANY bytes covered by system chunk
|
|
* ranges.
|
|
*/
|
|
static bool is_in_sys_chunks(struct mdrestore_struct *mdres, u64 start, u64 len)
|
|
{
|
|
struct rb_node *node = mdres->sys_chunks.root.rb_node;
|
|
struct cache_extent *entry;
|
|
struct cache_extent *next;
|
|
struct cache_extent *prev;
|
|
|
|
if (start > mdres->sys_chunk_end)
|
|
return false;
|
|
|
|
while (node) {
|
|
entry = rb_entry(node, struct cache_extent, rb_node);
|
|
if (start > entry->start) {
|
|
if (!node->rb_right)
|
|
break;
|
|
node = node->rb_right;
|
|
} else if (start < entry->start) {
|
|
if (!node->rb_left)
|
|
break;
|
|
node = node->rb_left;
|
|
} else {
|
|
/* Already in a system chunk */
|
|
return true;
|
|
}
|
|
}
|
|
if (!node)
|
|
return false;
|
|
entry = rb_entry(node, struct cache_extent, rb_node);
|
|
/* Now we have entry which is the nearst chunk around @start */
|
|
if (start > entry->start) {
|
|
prev = entry;
|
|
next = next_cache_extent(entry);
|
|
} else {
|
|
prev = prev_cache_extent(entry);
|
|
next = entry;
|
|
}
|
|
if (prev && prev->start + prev->size > start)
|
|
return true;
|
|
if (next && start + len > next->start)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer,
|
|
u64 item_bytenr, u32 bufsize,
|
|
u64 cluster_bytenr)
|
|
{
|
|
struct extent_buffer *eb;
|
|
u32 nodesize = mdres->nodesize;
|
|
u64 bytenr;
|
|
size_t cur_offset;
|
|
int ret = 0;
|
|
|
|
eb = alloc_dummy_eb(0, mdres->nodesize);
|
|
if (!eb)
|
|
return -ENOMEM;
|
|
|
|
for (cur_offset = 0; cur_offset < bufsize; cur_offset += nodesize) {
|
|
bytenr = item_bytenr + cur_offset;
|
|
if (!is_in_sys_chunks(mdres, bytenr, nodesize))
|
|
continue;
|
|
memcpy(eb->data, buffer + cur_offset, nodesize);
|
|
if (btrfs_header_bytenr(eb) != bytenr) {
|
|
error(
|
|
"eb bytenr does not match found bytenr: %llu != %llu",
|
|
btrfs_header_bytenr(eb), bytenr);
|
|
ret = -EUCLEAN;
|
|
break;
|
|
}
|
|
if (memcmp(mdres->fsid, eb->data +
|
|
offsetof(struct btrfs_header, fsid),
|
|
BTRFS_FSID_SIZE)) {
|
|
error(
|
|
"filesystem metadata UUID of eb %llu does not match",
|
|
bytenr);
|
|
ret = -EUCLEAN;
|
|
break;
|
|
}
|
|
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) {
|
|
error("wrong eb %llu owner %llu",
|
|
bytenr, btrfs_header_owner(eb));
|
|
ret = -EUCLEAN;
|
|
break;
|
|
}
|
|
/*
|
|
* No need to search node, as we will iterate all tree blocks
|
|
* in chunk tree, only need to bother leaves.
|
|
*/
|
|
if (btrfs_header_level(eb))
|
|
continue;
|
|
ret = read_chunk_tree_block(mdres, eb);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
free(eb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function will try to find all chunk items in the dump image.
|
|
*
|
|
* This function will iterate all clusters, and find any item inside system
|
|
* chunk ranges. For such item, it will try to read them as tree blocks, and
|
|
* find CHUNK_ITEMs, add them to @mdres.
|
|
*/
|
|
static int search_for_chunk_blocks(struct mdrestore_struct *mdres)
|
|
{
|
|
struct meta_cluster *cluster;
|
|
struct meta_cluster_header *header;
|
|
struct meta_cluster_item *item;
|
|
u64 current_cluster = 0, bytenr;
|
|
u64 item_bytenr;
|
|
u32 bufsize, nritems, i;
|
|
u32 max_size = current_version->max_pending_size * 2;
|
|
u8 *buffer, *tmp = NULL;
|
|
int ret = 0;
|
|
|
|
cluster = malloc(IMAGE_BLOCK_SIZE);
|
|
if (!cluster) {
|
|
error_msg(ERROR_MSG_MEMORY, NULL);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
buffer = malloc(max_size);
|
|
if (!buffer) {
|
|
error_msg(ERROR_MSG_MEMORY, NULL);
|
|
free(cluster);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
tmp = malloc(max_size);
|
|
if (!tmp) {
|
|
error_msg(ERROR_MSG_MEMORY, NULL);
|
|
free(cluster);
|
|
free(buffer);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
bytenr = current_cluster;
|
|
/* Main loop, iterating all clusters */
|
|
while (1) {
|
|
if (fseek(mdres->in, current_cluster, SEEK_SET)) {
|
|
error("seek failed: %m");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
ret = fread(cluster, IMAGE_BLOCK_SIZE, 1, mdres->in);
|
|
if (ret == 0) {
|
|
if (feof(mdres->in))
|
|
goto out;
|
|
error(
|
|
"unknown state after reading cluster at %llu, probably corrupted data",
|
|
current_cluster);
|
|
ret = -EIO;
|
|
goto out;
|
|
} else if (ret < 0) {
|
|
error("unable to read image at %llu: %m",
|
|
current_cluster);
|
|
goto out;
|
|
}
|
|
ret = 0;
|
|
|
|
header = &cluster->header;
|
|
if (le64_to_cpu(header->magic) != current_version->magic_cpu ||
|
|
le64_to_cpu(header->bytenr) != current_cluster) {
|
|
error("bad header in metadump image");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* We're already over the system chunk end, no need to search*/
|
|
if (current_cluster > mdres->sys_chunk_end)
|
|
goto out;
|
|
|
|
bytenr += IMAGE_BLOCK_SIZE;
|
|
nritems = le32_to_cpu(header->nritems);
|
|
|
|
/* Search items for tree blocks in sys chunks */
|
|
for (i = 0; i < nritems; i++) {
|
|
size_t size;
|
|
|
|
item = &cluster->items[i];
|
|
bufsize = le32_to_cpu(item->size);
|
|
item_bytenr = le64_to_cpu(item->bytenr);
|
|
|
|
/*
|
|
* Only data extent/free space cache can be that big,
|
|
* adjacent tree blocks won't be able to be merged
|
|
* beyond max_size. Also, we can skip super block.
|
|
*/
|
|
if (bufsize > max_size ||
|
|
!is_in_sys_chunks(mdres, item_bytenr, bufsize) ||
|
|
item_bytenr == BTRFS_SUPER_INFO_OFFSET) {
|
|
ret = fseek(mdres->in, bufsize, SEEK_CUR);
|
|
if (ret < 0) {
|
|
error("failed to seek: %m");
|
|
ret = -errno;
|
|
goto out;
|
|
}
|
|
bytenr += bufsize;
|
|
continue;
|
|
}
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
ret = fread(tmp, bufsize, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("read error: %m");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
size = max_size;
|
|
ret = uncompress(buffer,
|
|
(unsigned long *)&size, tmp,
|
|
bufsize);
|
|
if (ret != Z_OK) {
|
|
error("decompression failed with %d",
|
|
ret);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
} else {
|
|
ret = fread(buffer, bufsize, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("read error: %m");
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
size = bufsize;
|
|
}
|
|
ret = 0;
|
|
|
|
ret = read_chunk_block(mdres, buffer, item_bytenr, size,
|
|
current_cluster);
|
|
if (ret < 0) {
|
|
error(
|
|
"failed to search tree blocks in item bytenr %llu size %zu",
|
|
item_bytenr, size);
|
|
goto out;
|
|
}
|
|
bytenr += bufsize;
|
|
}
|
|
if (bytenr & IMAGE_BLOCK_MASK)
|
|
bytenr += IMAGE_BLOCK_SIZE - (bytenr & IMAGE_BLOCK_MASK);
|
|
current_cluster = bytenr;
|
|
}
|
|
|
|
out:
|
|
free(tmp);
|
|
free(buffer);
|
|
free(cluster);
|
|
return ret;
|
|
}
|
|
|
|
static int build_chunk_tree(struct mdrestore_struct *mdres,
|
|
struct meta_cluster *cluster)
|
|
{
|
|
struct btrfs_super_block *super;
|
|
struct meta_cluster_header *header;
|
|
struct meta_cluster_item *item = NULL;
|
|
u32 i, nritems;
|
|
u8 *buffer;
|
|
int ret;
|
|
|
|
/* We can't seek with stdin so don't bother doing this */
|
|
if (mdres->in == stdin)
|
|
return 0;
|
|
|
|
ret = fread(cluster, IMAGE_BLOCK_SIZE, 1, mdres->in);
|
|
if (ret <= 0) {
|
|
error("unable to read cluster: %m");
|
|
return -EIO;
|
|
}
|
|
ret = 0;
|
|
|
|
header = &cluster->header;
|
|
if (le64_to_cpu(header->magic) != current_version->magic_cpu ||
|
|
le64_to_cpu(header->bytenr) != 0) {
|
|
error("bad header in metadump image");
|
|
return -EIO;
|
|
}
|
|
|
|
mdres->compress_method = header->compress;
|
|
nritems = le32_to_cpu(header->nritems);
|
|
for (i = 0; i < nritems; i++) {
|
|
item = &cluster->items[i];
|
|
|
|
if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET)
|
|
break;
|
|
if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) {
|
|
error("seek failed: %m");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) {
|
|
error("did not find superblock at %llu",
|
|
le64_to_cpu(item->bytenr));
|
|
return -EINVAL;
|
|
}
|
|
|
|
buffer = malloc(le32_to_cpu(item->size));
|
|
if (!buffer) {
|
|
error_msg(ERROR_MSG_MEMORY, NULL);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("unable to read buffer: %m");
|
|
free(buffer);
|
|
return -EIO;
|
|
}
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
size_t size = BTRFS_SUPER_INFO_SIZE;
|
|
u8 *tmp;
|
|
|
|
tmp = malloc(size);
|
|
if (!tmp) {
|
|
free(buffer);
|
|
return -ENOMEM;
|
|
}
|
|
ret = uncompress(tmp, (unsigned long *)&size,
|
|
buffer, le32_to_cpu(item->size));
|
|
if (ret != Z_OK) {
|
|
error("decompression failed with %d", ret);
|
|
free(buffer);
|
|
free(tmp);
|
|
return -EIO;
|
|
}
|
|
free(buffer);
|
|
buffer = tmp;
|
|
}
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
super = (struct btrfs_super_block *)buffer;
|
|
ret = btrfs_check_super(super, 0);
|
|
if (ret < 0) {
|
|
error("invalid superblock");
|
|
return ret;
|
|
}
|
|
ret = add_sys_array(mdres, super);
|
|
if (ret < 0) {
|
|
error("failed to read system chunk array");
|
|
free(buffer);
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
return ret;
|
|
}
|
|
mdres->nodesize = btrfs_super_nodesize(super);
|
|
if (btrfs_super_incompat_flags(super) &
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
|
|
memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
|
|
else
|
|
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
|
|
|
|
memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
|
|
mdres->devid = le64_to_cpu(super->dev_item.devid);
|
|
free(buffer);
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
return search_for_chunk_blocks(mdres);
|
|
}
|
|
|
|
static bool range_contains_super(u64 physical, u64 bytes)
|
|
{
|
|
u64 super_bytenr;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
super_bytenr = btrfs_sb_offset(i);
|
|
if (super_bytenr >= physical &&
|
|
super_bytenr < physical + bytes)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void remap_overlapping_chunks(struct mdrestore_struct *mdres)
|
|
{
|
|
struct fs_chunk *fs_chunk;
|
|
|
|
while (!list_empty(&mdres->overlapping_chunks)) {
|
|
fs_chunk = list_first_entry(&mdres->overlapping_chunks,
|
|
struct fs_chunk, list);
|
|
list_del_init(&fs_chunk->list);
|
|
if (range_contains_super(fs_chunk->physical,
|
|
fs_chunk->bytes)) {
|
|
warning(
|
|
"remapping a chunk that had a super mirror inside of it, clearing space cache so we don't end up with corruption");
|
|
mdres->clear_space_cache = 1;
|
|
}
|
|
fs_chunk->physical = mdres->last_physical_offset;
|
|
tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp);
|
|
mdres->last_physical_offset += fs_chunk->bytes;
|
|
}
|
|
}
|
|
|
|
static int fill_mdres_info(struct mdrestore_struct *mdres,
|
|
struct async_work *async)
|
|
{
|
|
struct btrfs_super_block *super;
|
|
u8 *buffer = NULL;
|
|
u8 *outbuf;
|
|
int ret;
|
|
|
|
/* We've already been initialized */
|
|
if (mdres->nodesize)
|
|
return 0;
|
|
|
|
if (mdres->compress_method == COMPRESS_ZLIB) {
|
|
/*
|
|
* We know this item is superblock, its should only be 4K.
|
|
* Don't need to waste memory following max_pending_size as it
|
|
* can be as large as 256M.
|
|
*/
|
|
size_t size = BTRFS_SUPER_INFO_SIZE;
|
|
|
|
buffer = malloc(size);
|
|
if (!buffer)
|
|
return -ENOMEM;
|
|
ret = uncompress(buffer, (unsigned long *)&size,
|
|
async->buffer, async->bufsize);
|
|
if (ret != Z_OK) {
|
|
error("decompression failed with %d", ret);
|
|
free(buffer);
|
|
return -EIO;
|
|
}
|
|
outbuf = buffer;
|
|
} else {
|
|
outbuf = async->buffer;
|
|
}
|
|
|
|
super = (struct btrfs_super_block *)outbuf;
|
|
mdres->nodesize = btrfs_super_nodesize(super);
|
|
if (btrfs_super_incompat_flags(super) &
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
|
|
memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
|
|
else
|
|
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
|
|
memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
|
|
mdres->devid = le64_to_cpu(super->dev_item.devid);
|
|
free(buffer);
|
|
return 0;
|
|
}
|
|
|
|
static int add_cluster(struct meta_cluster *cluster,
|
|
struct mdrestore_struct *mdres, u64 *next)
|
|
{
|
|
struct meta_cluster_item *item;
|
|
struct meta_cluster_header *header = &cluster->header;
|
|
struct async_work *async;
|
|
u64 bytenr;
|
|
u32 i, nritems;
|
|
int ret;
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
mdres->compress_method = header->compress;
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
|
|
bytenr = le64_to_cpu(header->bytenr) + IMAGE_BLOCK_SIZE;
|
|
nritems = le32_to_cpu(header->nritems);
|
|
for (i = 0; i < nritems; i++) {
|
|
item = &cluster->items[i];
|
|
async = calloc(1, sizeof(*async));
|
|
if (!async) {
|
|
error_msg(ERROR_MSG_MEMORY, "async data");
|
|
return -ENOMEM;
|
|
}
|
|
async->start = le64_to_cpu(item->bytenr);
|
|
async->bufsize = le32_to_cpu(item->size);
|
|
async->buffer = malloc(async->bufsize);
|
|
if (!async->buffer) {
|
|
error_msg(ERROR_MSG_MEMORY, "async buffer");
|
|
free(async);
|
|
return -ENOMEM;
|
|
}
|
|
ret = fread(async->buffer, async->bufsize, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("unable to read buffer: %m");
|
|
free(async->buffer);
|
|
free(async);
|
|
return -EIO;
|
|
}
|
|
bytenr += async->bufsize;
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
|
|
ret = fill_mdres_info(mdres, async);
|
|
if (ret) {
|
|
error("unable to set up restore state");
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
free(async->buffer);
|
|
free(async);
|
|
return ret;
|
|
}
|
|
}
|
|
list_add_tail(&async->list, &mdres->list);
|
|
mdres->num_items++;
|
|
pthread_cond_signal(&mdres->cond);
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
}
|
|
if (bytenr & IMAGE_BLOCK_MASK) {
|
|
char buffer[IMAGE_BLOCK_MASK];
|
|
size_t size = IMAGE_BLOCK_SIZE - (bytenr & IMAGE_BLOCK_MASK);
|
|
|
|
bytenr += size;
|
|
ret = fread(buffer, size, 1, mdres->in);
|
|
if (ret != 1) {
|
|
error("failed to read buffer: %m");
|
|
return -EIO;
|
|
}
|
|
}
|
|
*next = bytenr;
|
|
return 0;
|
|
}
|
|
|
|
static int wait_for_worker(struct mdrestore_struct *mdres)
|
|
{
|
|
int ret = 0;
|
|
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
ret = mdres->error;
|
|
while (!ret && mdres->num_items > 0) {
|
|
struct timespec ts = {
|
|
.tv_sec = 0,
|
|
.tv_nsec = 10000000,
|
|
};
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
nanosleep(&ts, NULL);
|
|
pthread_mutex_lock(&mdres->mutex);
|
|
ret = mdres->error;
|
|
}
|
|
pthread_mutex_unlock(&mdres->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int iter_tree_blocks(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb, bool pin)
|
|
{
|
|
void (*func)(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes);
|
|
struct btrfs_tree_parent_check check = { 0 };
|
|
int nritems;
|
|
int level;
|
|
int i;
|
|
int ret;
|
|
|
|
if (pin)
|
|
func = btrfs_pin_extent;
|
|
else
|
|
func = btrfs_unpin_extent;
|
|
|
|
func(fs_info, eb->start, eb->len);
|
|
|
|
level = btrfs_header_level(eb);
|
|
nritems = btrfs_header_nritems(eb);
|
|
if (level == 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
u64 bytenr;
|
|
struct extent_buffer *tmp;
|
|
|
|
if (level == 0) {
|
|
struct btrfs_root_item *ri;
|
|
struct btrfs_key key;
|
|
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
if (key.type != BTRFS_ROOT_ITEM_KEY)
|
|
continue;
|
|
ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
|
|
bytenr = btrfs_disk_root_bytenr(eb, ri);
|
|
tmp = read_tree_block(fs_info, bytenr, &check);
|
|
if (!extent_buffer_uptodate(tmp)) {
|
|
error("unable to read log root block");
|
|
return -EIO;
|
|
}
|
|
ret = iter_tree_blocks(fs_info, tmp, pin);
|
|
free_extent_buffer(tmp);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
bytenr = btrfs_node_blockptr(eb, i);
|
|
tmp = read_tree_block(fs_info, bytenr, &check);
|
|
if (!extent_buffer_uptodate(tmp)) {
|
|
error("unable to read log root block");
|
|
return -EIO;
|
|
}
|
|
ret = iter_tree_blocks(fs_info, tmp, pin);
|
|
free_extent_buffer(tmp);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int remove_all_dev_extents(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root = fs_info->dev_root;
|
|
struct btrfs_path path = { 0 };
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
int slot;
|
|
int ret;
|
|
|
|
key.objectid = 1;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to search dev tree: %m");
|
|
return ret;
|
|
}
|
|
|
|
while (1) {
|
|
slot = path.slots[0];
|
|
leaf = path.nodes[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, &path);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to search dev tree: %m");
|
|
goto out;
|
|
}
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.type != BTRFS_DEV_EXTENT_KEY)
|
|
break;
|
|
ret = btrfs_del_item(trans, root, &path);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to delete dev extent %llu, %llu: %m",
|
|
key.objectid, key.offset);
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
btrfs_release_path(&path);
|
|
return ret;
|
|
}
|
|
|
|
static int fixup_dev_extents(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct btrfs_device *dev;
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
u64 devid = btrfs_stack_device_id(&fs_info->super_copy->dev_item);
|
|
int i;
|
|
int ret;
|
|
|
|
ret = remove_all_dev_extents(trans);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to remove all existing dev extents: %m");
|
|
}
|
|
|
|
dev = btrfs_find_device(fs_info, devid, NULL, NULL);
|
|
if (!dev) {
|
|
error("failed to find devid %llu", devid);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Rebuild all dev extents using chunk maps */
|
|
for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
|
|
ce = next_cache_extent(ce)) {
|
|
u64 stripe_len;
|
|
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
stripe_len = calc_stripe_length(map->type, ce->size,
|
|
map->num_stripes);
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
ret = btrfs_insert_dev_extent(trans, dev, ce->start,
|
|
stripe_len, map->stripes[i].physical);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error(
|
|
"failed to insert dev extent %llu %llu: %m",
|
|
devid, map->stripes[i].physical);
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void fixup_block_groups(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *bg;
|
|
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
u64 extra_flags;
|
|
|
|
for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
|
|
ce = next_cache_extent(ce)) {
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
|
|
bg = btrfs_lookup_block_group(fs_info, ce->start);
|
|
if (!bg) {
|
|
warning(
|
|
"cannot find block group %llu, filesystem may not be mountable",
|
|
ce->start);
|
|
continue;
|
|
}
|
|
extra_flags = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
|
|
if (bg->flags == map->type)
|
|
continue;
|
|
|
|
/* Update the block group item and mark the bg dirty */
|
|
bg->flags = map->type;
|
|
if (list_empty(&bg->dirty_list))
|
|
list_add_tail(&bg->dirty_list, &trans->dirty_bgs);
|
|
/*
|
|
* Chunk and bg flags can be different, changing bg flags
|
|
* without update avail_data/meta_alloc_bits will lead to
|
|
* ENOSPC.
|
|
* So here we set avail_*_alloc_bits to match chunk types.
|
|
*/
|
|
if (map->type & BTRFS_BLOCK_GROUP_DATA)
|
|
fs_info->avail_data_alloc_bits = extra_flags;
|
|
if (map->type & BTRFS_BLOCK_GROUP_METADATA)
|
|
fs_info->avail_metadata_alloc_bits = extra_flags;
|
|
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM)
|
|
fs_info->avail_system_alloc_bits = extra_flags;
|
|
}
|
|
}
|
|
|
|
static int fixup_device_size(struct btrfs_trans_handle *trans,
|
|
struct mdrestore_struct *mdres, int out_fd)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct btrfs_dev_extent *dev_ext;
|
|
struct btrfs_device *dev;
|
|
struct btrfs_path path = { 0 };
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
struct btrfs_key key;
|
|
struct stat buf;
|
|
u64 devid, cur_devid;
|
|
u64 dev_size; /* Get from last dev extents */
|
|
int ret;
|
|
|
|
dev_item = &fs_info->super_copy->dev_item;
|
|
|
|
devid = btrfs_stack_device_id(dev_item);
|
|
|
|
key.objectid = devid;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
dev = list_first_entry(&fs_info->fs_devices->devices,
|
|
struct btrfs_device, dev_list);
|
|
ret = btrfs_search_slot(NULL, fs_info->dev_root, &key, &path, 0, 0);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to locate last dev extent of devid %llu: %m",
|
|
devid);
|
|
btrfs_release_path(&path);
|
|
return ret;
|
|
}
|
|
if (ret == 0) {
|
|
error("found invalid dev extent devid %llu offset -1", devid);
|
|
btrfs_release_path(&path);
|
|
return -EUCLEAN;
|
|
}
|
|
ret = btrfs_previous_item(fs_info->dev_root, &path, devid,
|
|
BTRFS_DEV_EXTENT_KEY);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to locate last dev extent of devid %llu: %m",
|
|
devid);
|
|
btrfs_release_path(&path);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
dev_ext = btrfs_item_ptr(path.nodes[0], path.slots[0],
|
|
struct btrfs_dev_extent);
|
|
dev_size = key.offset + btrfs_dev_extent_length(path.nodes[0], dev_ext);
|
|
btrfs_release_path(&path);
|
|
|
|
btrfs_set_stack_device_total_bytes(dev_item, dev_size);
|
|
btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks);
|
|
dev->total_bytes = dev_size;
|
|
dev->bytes_used = mdres->alloced_chunks;
|
|
btrfs_set_super_total_bytes(fs_info->super_copy, dev_size);
|
|
ret = fstat(out_fd, &buf);
|
|
if (ret < 0) {
|
|
error("failed to stat result image: %m");
|
|
return -errno;
|
|
}
|
|
if (S_ISREG(buf.st_mode)) {
|
|
/* Don't forget to enlarge the real file */
|
|
ret = ftruncate(out_fd, dev_size);
|
|
if (ret < 0) {
|
|
error("failed to enlarge result image: %m");
|
|
return -errno;
|
|
}
|
|
}
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
again:
|
|
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
|
|
if (ret < 0) {
|
|
error("search failed: %d", ret);
|
|
return ret;
|
|
}
|
|
|
|
while (1) {
|
|
leaf = path.nodes[0];
|
|
if (path.slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, &path);
|
|
if (ret < 0) {
|
|
error("cannot go to next leaf %d", ret);
|
|
exit(1);
|
|
}
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
leaf = path.nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
|
|
if (key.type > BTRFS_DEV_ITEM_KEY)
|
|
break;
|
|
if (key.type != BTRFS_DEV_ITEM_KEY) {
|
|
path.slots[0]++;
|
|
continue;
|
|
}
|
|
|
|
dev_item = btrfs_item_ptr(leaf, path.slots[0],
|
|
struct btrfs_dev_item);
|
|
cur_devid = btrfs_device_id(leaf, dev_item);
|
|
if (devid != cur_devid) {
|
|
ret = btrfs_del_item(trans, root, &path);
|
|
if (ret) {
|
|
error("cannot delete item: %d", ret);
|
|
exit(1);
|
|
}
|
|
btrfs_release_path(&path);
|
|
goto again;
|
|
}
|
|
|
|
btrfs_set_device_total_bytes(leaf, dev_item, dev_size);
|
|
btrfs_set_device_bytes_used(leaf, dev_item,
|
|
mdres->alloced_chunks);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
path.slots[0]++;
|
|
}
|
|
|
|
btrfs_release_path(&path);
|
|
return 0;
|
|
}
|
|
|
|
static int fixup_chunks_and_devices(struct btrfs_fs_info *fs_info,
|
|
struct mdrestore_struct *mdres, int out_fd)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
if (btrfs_super_log_root(fs_info->super_copy)) {
|
|
warning(
|
|
"log tree detected, its generation will not match superblock");
|
|
}
|
|
trans = btrfs_start_transaction(fs_info->tree_root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
errno = -ret;
|
|
error_msg(ERROR_MSG_START_TRANS, "%m");
|
|
return ret;
|
|
}
|
|
|
|
if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree)
|
|
iter_tree_blocks(fs_info, fs_info->log_root_tree->node, true);
|
|
fixup_block_groups(trans);
|
|
ret = fixup_dev_extents(trans);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = fixup_device_size(trans, mdres, out_fd);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
ret = btrfs_commit_transaction(trans, fs_info->tree_root);
|
|
if (ret) {
|
|
errno = -ret;
|
|
error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
|
|
return ret;
|
|
}
|
|
if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree)
|
|
iter_tree_blocks(fs_info, fs_info->log_root_tree->node, false);
|
|
return 0;
|
|
error:
|
|
errno = -ret;
|
|
error(
|
|
"failed to fix chunks and devices mapping, the fs may not be mountable: %m");
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
int restore_metadump(const char *input, FILE *out, int old_restore,
|
|
int num_threads, int fixup_offset, const char *target,
|
|
int multi_devices)
|
|
{
|
|
struct meta_cluster *cluster = NULL;
|
|
struct meta_cluster_header *header;
|
|
struct mdrestore_struct mdrestore;
|
|
struct btrfs_fs_info *info = NULL;
|
|
u64 bytenr = 0;
|
|
FILE *in = NULL;
|
|
int ret = 0;
|
|
|
|
if (!strcmp(input, "-")) {
|
|
in = stdin;
|
|
} else {
|
|
in = fopen(input, "r");
|
|
if (!in) {
|
|
error("unable to open metadump image: %m");
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* NOTE: open with write mode */
|
|
if (fixup_offset) {
|
|
struct open_ctree_args oca = { 0 };
|
|
|
|
oca.filename = target;
|
|
oca.flags = OPEN_CTREE_WRITES | OPEN_CTREE_RESTORE |
|
|
OPEN_CTREE_PARTIAL | OPEN_CTREE_SKIP_LEAF_ITEM_CHECKS;
|
|
info = open_ctree_fs_info(&oca);
|
|
if (!info) {
|
|
error("open ctree failed");
|
|
ret = -EIO;
|
|
goto failed_open;
|
|
}
|
|
}
|
|
|
|
cluster = malloc(IMAGE_BLOCK_SIZE);
|
|
if (!cluster) {
|
|
error_msg(ERROR_MSG_MEMORY, NULL);
|
|
ret = -ENOMEM;
|
|
goto failed_info;
|
|
}
|
|
|
|
ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads,
|
|
fixup_offset, info, multi_devices);
|
|
if (ret) {
|
|
error("failed to initialize metadata restore state: %d", ret);
|
|
goto failed_cluster;
|
|
}
|
|
|
|
if (!multi_devices && !old_restore) {
|
|
ret = build_chunk_tree(&mdrestore, cluster);
|
|
if (ret) {
|
|
error("failed to build chunk tree");
|
|
goto out;
|
|
}
|
|
if (!list_empty(&mdrestore.overlapping_chunks))
|
|
remap_overlapping_chunks(&mdrestore);
|
|
}
|
|
|
|
if (in != stdin && fseek(in, 0, SEEK_SET)) {
|
|
error("seek failed: %m");
|
|
goto out;
|
|
}
|
|
|
|
while (!mdrestore.error) {
|
|
ret = fread(cluster, IMAGE_BLOCK_SIZE, 1, in);
|
|
if (!ret)
|
|
break;
|
|
|
|
header = &cluster->header;
|
|
if (le64_to_cpu(header->magic) != current_version->magic_cpu ||
|
|
le64_to_cpu(header->bytenr) != bytenr) {
|
|
error("bad header in metadump image");
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
ret = add_cluster(cluster, &mdrestore, &bytenr);
|
|
if (ret) {
|
|
error("failed to add cluster: %d", ret);
|
|
break;
|
|
}
|
|
}
|
|
ret = wait_for_worker(&mdrestore);
|
|
|
|
if (!ret && !multi_devices && !old_restore &&
|
|
btrfs_super_num_devices(mdrestore.original_super) != 1) {
|
|
struct btrfs_root *root;
|
|
|
|
root = open_ctree_fd(fileno(out), target, 0,
|
|
OPEN_CTREE_PARTIAL |
|
|
OPEN_CTREE_WRITES |
|
|
OPEN_CTREE_NO_DEVICES |
|
|
OPEN_CTREE_ALLOW_TRANSID_MISMATCH |
|
|
OPEN_CTREE_SKIP_LEAF_ITEM_CHECKS);
|
|
if (!root) {
|
|
error("open ctree failed in %s", target);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
info = root->fs_info;
|
|
|
|
ret = fixup_chunks_and_devices(info, &mdrestore, fileno(out));
|
|
close_ctree(info->chunk_root);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
struct btrfs_root *root;
|
|
struct stat st;
|
|
u64 dev_size;
|
|
|
|
if (!info) {
|
|
root = open_ctree_fd(fileno(out), target, 0,
|
|
OPEN_CTREE_ALLOW_TRANSID_MISMATCH |
|
|
OPEN_CTREE_SKIP_LEAF_ITEM_CHECKS);
|
|
if (!root) {
|
|
error("open ctree failed in %s", target);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
info = root->fs_info;
|
|
|
|
dev_size = btrfs_stack_device_total_bytes(
|
|
&info->super_copy->dev_item);
|
|
close_ctree(root);
|
|
info = NULL;
|
|
} else {
|
|
dev_size = btrfs_stack_device_total_bytes(
|
|
&info->super_copy->dev_item);
|
|
}
|
|
|
|
/*
|
|
* We don't need extra tree modification, but if the output is
|
|
* a file, we need to enlarge the output file so that 5.11+
|
|
* kernel won't report an error.
|
|
*/
|
|
ret = fstat(fileno(out), &st);
|
|
if (ret < 0) {
|
|
error("failed to stat result image: %m");
|
|
ret = -errno;
|
|
goto out;
|
|
}
|
|
if (S_ISREG(st.st_mode) && st.st_size < dev_size) {
|
|
ret = ftruncate(fileno(out), dev_size);
|
|
if (ret < 0) {
|
|
error(
|
|
"failed to enlarge result image file from %llu to %llu: %m",
|
|
(unsigned long long)st.st_size, dev_size);
|
|
ret = -errno;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
mdrestore_destroy(&mdrestore, num_threads);
|
|
failed_cluster:
|
|
free(cluster);
|
|
failed_info:
|
|
if (fixup_offset && info)
|
|
close_ctree(info->chunk_root);
|
|
failed_open:
|
|
if (in != stdin)
|
|
fclose(in);
|
|
return ret;
|
|
}
|