btrfs-progs/chunk-recover.c
Qu Wenruo 37ddab31fd btrfs-progs: Refactor btrfs_add_system_chunk to use btrfs_fs_info
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2017-07-12 17:53:44 +02:00

2414 lines
60 KiB
C

/*
* Copyright (C) 2013 FUJITSU LIMITED. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include "androidcompat.h"
#include <stdio.h>
#include <stdio_ext.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <pthread.h>
#include "list.h"
#include "radix-tree.h"
#include "ctree.h"
#include "extent-cache.h"
#include "disk-io.h"
#include "volumes.h"
#include "transaction.h"
#include "crc32c.h"
#include "utils.h"
#include "btrfsck.h"
#include "commands.h"
struct recover_control {
int verbose;
int yes;
u16 csum_size;
u32 sectorsize;
u32 nodesize;
u64 generation;
u64 chunk_root_generation;
struct btrfs_fs_devices *fs_devices;
struct cache_tree chunk;
struct block_group_tree bg;
struct device_extent_tree devext;
struct cache_tree eb_cache;
struct list_head good_chunks;
struct list_head bad_chunks;
struct list_head rebuild_chunks;
struct list_head unrepaired_chunks;
pthread_mutex_t rc_lock;
};
struct extent_record {
struct cache_extent cache;
u64 generation;
u8 csum[BTRFS_CSUM_SIZE];
struct btrfs_device *devices[BTRFS_MAX_MIRRORS];
u64 offsets[BTRFS_MAX_MIRRORS];
int nmirrors;
};
struct device_scan {
struct recover_control *rc;
struct btrfs_device *dev;
int fd;
u64 bytenr;
};
static struct extent_record *btrfs_new_extent_record(struct extent_buffer *eb)
{
struct extent_record *rec;
rec = calloc(1, sizeof(*rec));
if (!rec) {
fprintf(stderr, "Fail to allocate memory for extent record.\n");
exit(1);
}
rec->cache.start = btrfs_header_bytenr(eb);
rec->cache.size = eb->len;
rec->generation = btrfs_header_generation(eb);
read_extent_buffer(eb, rec->csum, (unsigned long)btrfs_header_csum(eb),
BTRFS_CSUM_SIZE);
return rec;
}
static int process_extent_buffer(struct cache_tree *eb_cache,
struct extent_buffer *eb,
struct btrfs_device *device, u64 offset)
{
struct extent_record *rec;
struct extent_record *exist;
struct cache_extent *cache;
int ret = 0;
rec = btrfs_new_extent_record(eb);
if (!rec->cache.size)
goto free_out;
again:
cache = lookup_cache_extent(eb_cache,
rec->cache.start,
rec->cache.size);
if (cache) {
exist = container_of(cache, struct extent_record, cache);
if (exist->generation > rec->generation)
goto free_out;
if (exist->generation == rec->generation) {
if (exist->cache.start != rec->cache.start ||
exist->cache.size != rec->cache.size ||
memcmp(exist->csum, rec->csum, BTRFS_CSUM_SIZE)) {
ret = -EEXIST;
} else {
BUG_ON(exist->nmirrors >= BTRFS_MAX_MIRRORS);
exist->devices[exist->nmirrors] = device;
exist->offsets[exist->nmirrors] = offset;
exist->nmirrors++;
}
goto free_out;
}
remove_cache_extent(eb_cache, cache);
free(exist);
goto again;
}
rec->devices[0] = device;
rec->offsets[0] = offset;
rec->nmirrors++;
ret = insert_cache_extent(eb_cache, &rec->cache);
BUG_ON(ret);
out:
return ret;
free_out:
free(rec);
goto out;
}
static void free_extent_record(struct cache_extent *cache)
{
struct extent_record *er;
er = container_of(cache, struct extent_record, cache);
free(er);
}
FREE_EXTENT_CACHE_BASED_TREE(extent_record, free_extent_record);
static struct btrfs_chunk *create_chunk_item(struct chunk_record *record)
{
struct btrfs_chunk *ret;
struct btrfs_stripe *chunk_stripe;
int i;
if (!record || record->num_stripes == 0)
return NULL;
ret = malloc(btrfs_chunk_item_size(record->num_stripes));
if (!ret)
return NULL;
btrfs_set_stack_chunk_length(ret, record->length);
btrfs_set_stack_chunk_owner(ret, record->owner);
btrfs_set_stack_chunk_stripe_len(ret, record->stripe_len);
btrfs_set_stack_chunk_type(ret, record->type_flags);
btrfs_set_stack_chunk_io_align(ret, record->io_align);
btrfs_set_stack_chunk_io_width(ret, record->io_width);
btrfs_set_stack_chunk_sector_size(ret, record->sector_size);
btrfs_set_stack_chunk_num_stripes(ret, record->num_stripes);
btrfs_set_stack_chunk_sub_stripes(ret, record->sub_stripes);
for (i = 0, chunk_stripe = &ret->stripe; i < record->num_stripes;
i++, chunk_stripe++) {
btrfs_set_stack_stripe_devid(chunk_stripe,
record->stripes[i].devid);
btrfs_set_stack_stripe_offset(chunk_stripe,
record->stripes[i].offset);
memcpy(chunk_stripe->dev_uuid, record->stripes[i].dev_uuid,
BTRFS_UUID_SIZE);
}
return ret;
}
static void init_recover_control(struct recover_control *rc, int verbose,
int yes)
{
memset(rc, 0, sizeof(struct recover_control));
cache_tree_init(&rc->chunk);
cache_tree_init(&rc->eb_cache);
block_group_tree_init(&rc->bg);
device_extent_tree_init(&rc->devext);
INIT_LIST_HEAD(&rc->good_chunks);
INIT_LIST_HEAD(&rc->bad_chunks);
INIT_LIST_HEAD(&rc->rebuild_chunks);
INIT_LIST_HEAD(&rc->unrepaired_chunks);
rc->verbose = verbose;
rc->yes = yes;
pthread_mutex_init(&rc->rc_lock, NULL);
}
static void free_recover_control(struct recover_control *rc)
{
free_block_group_tree(&rc->bg);
free_chunk_cache_tree(&rc->chunk);
free_device_extent_tree(&rc->devext);
free_extent_record_tree(&rc->eb_cache);
pthread_mutex_destroy(&rc->rc_lock);
}
static int process_block_group_item(struct block_group_tree *bg_cache,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct block_group_record *rec;
struct block_group_record *exist;
struct cache_extent *cache;
int ret = 0;
rec = btrfs_new_block_group_record(leaf, key, slot);
if (!rec->cache.size)
goto free_out;
again:
cache = lookup_cache_extent(&bg_cache->tree,
rec->cache.start,
rec->cache.size);
if (cache) {
exist = container_of(cache, struct block_group_record, cache);
/*check the generation and replace if needed*/
if (exist->generation > rec->generation)
goto free_out;
if (exist->generation == rec->generation) {
int offset = offsetof(struct block_group_record,
generation);
/*
* According to the current kernel code, the following
* case is impossible, or there is something wrong in
* the kernel code.
*/
if (memcmp(((void *)exist) + offset,
((void *)rec) + offset,
sizeof(*rec) - offset))
ret = -EEXIST;
goto free_out;
}
remove_cache_extent(&bg_cache->tree, cache);
list_del_init(&exist->list);
free(exist);
/*
* We must do search again to avoid the following cache.
* /--old bg 1--//--old bg 2--/
* /--new bg--/
*/
goto again;
}
ret = insert_block_group_record(bg_cache, rec);
BUG_ON(ret);
out:
return ret;
free_out:
free(rec);
goto out;
}
static int process_chunk_item(struct cache_tree *chunk_cache,
struct extent_buffer *leaf, struct btrfs_key *key,
int slot)
{
struct chunk_record *rec;
struct chunk_record *exist;
struct cache_extent *cache;
int ret = 0;
rec = btrfs_new_chunk_record(leaf, key, slot);
if (!rec->cache.size)
goto free_out;
again:
cache = lookup_cache_extent(chunk_cache, rec->offset, rec->length);
if (cache) {
exist = container_of(cache, struct chunk_record, cache);
if (exist->generation > rec->generation)
goto free_out;
if (exist->generation == rec->generation) {
int num_stripes = rec->num_stripes;
int rec_size = btrfs_chunk_record_size(num_stripes);
int offset = offsetof(struct chunk_record, generation);
if (exist->num_stripes != rec->num_stripes ||
memcmp(((void *)exist) + offset,
((void *)rec) + offset,
rec_size - offset))
ret = -EEXIST;
goto free_out;
}
remove_cache_extent(chunk_cache, cache);
free(exist);
goto again;
}
ret = insert_cache_extent(chunk_cache, &rec->cache);
BUG_ON(ret);
out:
return ret;
free_out:
free(rec);
goto out;
}
static int process_device_extent_item(struct device_extent_tree *devext_cache,
struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct device_extent_record *rec;
struct device_extent_record *exist;
struct cache_extent *cache;
int ret = 0;
rec = btrfs_new_device_extent_record(leaf, key, slot);
if (!rec->cache.size)
goto free_out;
again:
cache = lookup_cache_extent2(&devext_cache->tree,
rec->cache.objectid,
rec->cache.start,
rec->cache.size);
if (cache) {
exist = container_of(cache, struct device_extent_record, cache);
if (exist->generation > rec->generation)
goto free_out;
if (exist->generation == rec->generation) {
int offset = offsetof(struct device_extent_record,
generation);
if (memcmp(((void *)exist) + offset,
((void *)rec) + offset,
sizeof(*rec) - offset))
ret = -EEXIST;
goto free_out;
}
remove_cache_extent(&devext_cache->tree, cache);
list_del_init(&exist->chunk_list);
list_del_init(&exist->device_list);
free(exist);
goto again;
}
ret = insert_device_extent_record(devext_cache, rec);
BUG_ON(ret);
out:
return ret;
free_out:
free(rec);
goto out;
}
static void print_block_group_info(struct block_group_record *rec, char *prefix)
{
if (prefix)
printf("%s", prefix);
printf("Block Group: start = %llu, len = %llu, flag = %llx\n",
rec->objectid, rec->offset, rec->flags);
}
static void print_block_group_tree(struct block_group_tree *tree)
{
struct cache_extent *cache;
struct block_group_record *rec;
printf("All Block Groups:\n");
for (cache = first_cache_extent(&tree->tree); cache;
cache = next_cache_extent(cache)) {
rec = container_of(cache, struct block_group_record, cache);
print_block_group_info(rec, "\t");
}
printf("\n");
}
static void print_stripe_info(struct stripe *data, char *prefix1, char *prefix2,
int index)
{
if (prefix1)
printf("%s", prefix1);
if (prefix2)
printf("%s", prefix2);
printf("[%2d] Stripe: devid = %llu, offset = %llu\n",
index, data->devid, data->offset);
}
static void print_chunk_self_info(struct chunk_record *rec, char *prefix)
{
int i;
if (prefix)
printf("%s", prefix);
printf("Chunk: start = %llu, len = %llu, type = %llx, num_stripes = %u\n",
rec->offset, rec->length, rec->type_flags, rec->num_stripes);
if (prefix)
printf("%s", prefix);
printf(" Stripes list:\n");
for (i = 0; i < rec->num_stripes; i++)
print_stripe_info(&rec->stripes[i], prefix, " ", i);
}
static void print_chunk_tree(struct cache_tree *tree)
{
struct cache_extent *n;
struct chunk_record *entry;
printf("All Chunks:\n");
for (n = first_cache_extent(tree); n;
n = next_cache_extent(n)) {
entry = container_of(n, struct chunk_record, cache);
print_chunk_self_info(entry, "\t");
}
printf("\n");
}
static void print_device_extent_info(struct device_extent_record *rec,
char *prefix)
{
if (prefix)
printf("%s", prefix);
printf("Device extent: devid = %llu, start = %llu, len = %llu, chunk offset = %llu\n",
rec->objectid, rec->offset, rec->length, rec->chunk_offset);
}
static void print_device_extent_tree(struct device_extent_tree *tree)
{
struct cache_extent *n;
struct device_extent_record *entry;
printf("All Device Extents:\n");
for (n = first_cache_extent(&tree->tree); n;
n = next_cache_extent(n)) {
entry = container_of(n, struct device_extent_record, cache);
print_device_extent_info(entry, "\t");
}
printf("\n");
}
static void print_device_info(struct btrfs_device *device, char *prefix)
{
if (prefix)
printf("%s", prefix);
printf("Device: id = %llu, name = %s\n",
device->devid, device->name);
}
static void print_all_devices(struct list_head *devices)
{
struct btrfs_device *dev;
printf("All Devices:\n");
list_for_each_entry(dev, devices, dev_list)
print_device_info(dev, "\t");
printf("\n");
}
static void print_scan_result(struct recover_control *rc)
{
if (!rc->verbose)
return;
printf("DEVICE SCAN RESULT:\n");
printf("Filesystem Information:\n");
printf("\tsectorsize: %d\n", rc->sectorsize);
printf("\tnodesize: %d\n", rc->nodesize);
printf("\ttree root generation: %llu\n", rc->generation);
printf("\tchunk root generation: %llu\n", rc->chunk_root_generation);
printf("\n");
print_all_devices(&rc->fs_devices->devices);
print_block_group_tree(&rc->bg);
print_chunk_tree(&rc->chunk);
print_device_extent_tree(&rc->devext);
}
static void print_chunk_info(struct chunk_record *chunk, char *prefix)
{
struct device_extent_record *devext;
int i;
print_chunk_self_info(chunk, prefix);
if (prefix)
printf("%s", prefix);
if (chunk->bg_rec)
print_block_group_info(chunk->bg_rec, " ");
else
printf(" No block group.\n");
if (prefix)
printf("%s", prefix);
if (list_empty(&chunk->dextents)) {
printf(" No device extent.\n");
} else {
printf(" Device extent list:\n");
i = 0;
list_for_each_entry(devext, &chunk->dextents, chunk_list) {
if (prefix)
printf("%s", prefix);
printf("%s[%2d]", " ", i);
print_device_extent_info(devext, NULL);
i++;
}
}
}
static void print_check_result(struct recover_control *rc)
{
struct chunk_record *chunk;
struct block_group_record *bg;
struct device_extent_record *devext;
int total = 0;
int good = 0;
int bad = 0;
if (!rc->verbose)
return;
printf("CHECK RESULT:\n");
printf("Recoverable Chunks:\n");
list_for_each_entry(chunk, &rc->good_chunks, list) {
print_chunk_info(chunk, " ");
good++;
total++;
}
list_for_each_entry(chunk, &rc->rebuild_chunks, list) {
print_chunk_info(chunk, " ");
good++;
total++;
}
list_for_each_entry(chunk, &rc->unrepaired_chunks, list) {
print_chunk_info(chunk, " ");
good++;
total++;
}
printf("Unrecoverable Chunks:\n");
list_for_each_entry(chunk, &rc->bad_chunks, list) {
print_chunk_info(chunk, " ");
bad++;
total++;
}
printf("\n");
printf("Total Chunks:\t\t%d\n", total);
printf(" Recoverable:\t\t%d\n", good);
printf(" Unrecoverable:\t%d\n", bad);
printf("\n");
printf("Orphan Block Groups:\n");
list_for_each_entry(bg, &rc->bg.block_groups, list)
print_block_group_info(bg, " ");
printf("\n");
printf("Orphan Device Extents:\n");
list_for_each_entry(devext, &rc->devext.no_chunk_orphans, chunk_list)
print_device_extent_info(devext, " ");
printf("\n");
}
static int check_chunk_by_metadata(struct recover_control *rc,
struct btrfs_root *root,
struct chunk_record *chunk, int bg_only)
{
int ret;
int i;
int slot;
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_root *dev_root;
struct stripe *stripe;
struct btrfs_dev_extent *dev_extent;
struct btrfs_block_group_item *bg_ptr;
struct extent_buffer *l;
btrfs_init_path(&path);
if (bg_only)
goto bg_check;
dev_root = root->fs_info->dev_root;
for (i = 0; i < chunk->num_stripes; i++) {
stripe = &chunk->stripes[i];
key.objectid = stripe->devid;
key.offset = stripe->offset;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_search_slot(NULL, dev_root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "Search device extent failed(%d)\n",
ret);
btrfs_release_path(&path);
return ret;
} else if (ret > 0) {
if (rc->verbose)
fprintf(stderr,
"No device extent[%llu, %llu]\n",
stripe->devid, stripe->offset);
btrfs_release_path(&path);
return -ENOENT;
}
l = path.nodes[0];
slot = path.slots[0];
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
if (chunk->offset !=
btrfs_dev_extent_chunk_offset(l, dev_extent)) {
if (rc->verbose)
fprintf(stderr,
"Device tree mismatch with chunks dev_extent[%llu, %llu], chunk[%llu, %llu]\n",
btrfs_dev_extent_chunk_offset(l,
dev_extent),
btrfs_dev_extent_length(l, dev_extent),
chunk->offset, chunk->length);
btrfs_release_path(&path);
return -ENOENT;
}
btrfs_release_path(&path);
}
bg_check:
key.objectid = chunk->offset;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
key.offset = chunk->length;
ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, &path,
0, 0);
if (ret < 0) {
fprintf(stderr, "Search block group failed(%d)\n", ret);
btrfs_release_path(&path);
return ret;
} else if (ret > 0) {
if (rc->verbose)
fprintf(stderr, "No block group[%llu, %llu]\n",
key.objectid, key.offset);
btrfs_release_path(&path);
return -ENOENT;
}
l = path.nodes[0];
slot = path.slots[0];
bg_ptr = btrfs_item_ptr(l, slot, struct btrfs_block_group_item);
if (chunk->type_flags != btrfs_disk_block_group_flags(l, bg_ptr)) {
if (rc->verbose)
fprintf(stderr,
"Chunk[%llu, %llu]'s type(%llu) is different with Block Group's type(%llu)\n",
chunk->offset, chunk->length, chunk->type_flags,
btrfs_disk_block_group_flags(l, bg_ptr));
btrfs_release_path(&path);
return -ENOENT;
}
btrfs_release_path(&path);
return 0;
}
static int check_all_chunks_by_metadata(struct recover_control *rc,
struct btrfs_root *root)
{
struct chunk_record *chunk;
struct chunk_record *next;
LIST_HEAD(orphan_chunks);
int ret = 0;
int err;
list_for_each_entry_safe(chunk, next, &rc->good_chunks, list) {
err = check_chunk_by_metadata(rc, root, chunk, 0);
if (err) {
if (err == -ENOENT)
list_move_tail(&chunk->list, &orphan_chunks);
else if (err && !ret)
ret = err;
}
}
list_for_each_entry_safe(chunk, next, &rc->unrepaired_chunks, list) {
err = check_chunk_by_metadata(rc, root, chunk, 1);
if (err == -ENOENT)
list_move_tail(&chunk->list, &orphan_chunks);
else if (err && !ret)
ret = err;
}
list_for_each_entry(chunk, &rc->bad_chunks, list) {
err = check_chunk_by_metadata(rc, root, chunk, 1);
if (err != -ENOENT && !ret)
ret = err ? err : -EINVAL;
}
list_splice(&orphan_chunks, &rc->bad_chunks);
return ret;
}
static int extract_metadata_record(struct recover_control *rc,
struct extent_buffer *leaf)
{
struct btrfs_key key;
int ret = 0;
int i;
u32 nritems;
nritems = btrfs_header_nritems(leaf);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(leaf, &key, i);
switch (key.type) {
case BTRFS_BLOCK_GROUP_ITEM_KEY:
pthread_mutex_lock(&rc->rc_lock);
ret = process_block_group_item(&rc->bg, leaf, &key, i);
pthread_mutex_unlock(&rc->rc_lock);
break;
case BTRFS_CHUNK_ITEM_KEY:
pthread_mutex_lock(&rc->rc_lock);
ret = process_chunk_item(&rc->chunk, leaf, &key, i);
pthread_mutex_unlock(&rc->rc_lock);
break;
case BTRFS_DEV_EXTENT_KEY:
pthread_mutex_lock(&rc->rc_lock);
ret = process_device_extent_item(&rc->devext, leaf,
&key, i);
pthread_mutex_unlock(&rc->rc_lock);
break;
}
if (ret)
break;
}
return ret;
}
static inline int is_super_block_address(u64 offset)
{
int i;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
if (offset == btrfs_sb_offset(i))
return 1;
}
return 0;
}
static int scan_one_device(void *dev_scan_struct)
{
struct extent_buffer *buf;
u64 bytenr;
int ret = 0;
struct device_scan *dev_scan = (struct device_scan *)dev_scan_struct;
struct recover_control *rc = dev_scan->rc;
struct btrfs_device *device = dev_scan->dev;
int fd = dev_scan->fd;
int oldtype;
ret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldtype);
if (ret)
return 1;
buf = malloc(sizeof(*buf) + rc->nodesize);
if (!buf)
return -ENOMEM;
buf->len = rc->nodesize;
bytenr = 0;
while (1) {
dev_scan->bytenr = bytenr;
if (is_super_block_address(bytenr))
bytenr += rc->sectorsize;
if (pread64(fd, buf->data, rc->nodesize, bytenr) <
rc->nodesize)
break;
if (memcmp_extent_buffer(buf, rc->fs_devices->fsid,
btrfs_header_fsid(),
BTRFS_FSID_SIZE)) {
bytenr += rc->sectorsize;
continue;
}
if (verify_tree_block_csum_silent(buf, rc->csum_size)) {
bytenr += rc->sectorsize;
continue;
}
pthread_mutex_lock(&rc->rc_lock);
ret = process_extent_buffer(&rc->eb_cache, buf, device, bytenr);
pthread_mutex_unlock(&rc->rc_lock);
if (ret)
goto out;
if (btrfs_header_level(buf) != 0)
goto next_node;
switch (btrfs_header_owner(buf)) {
case BTRFS_EXTENT_TREE_OBJECTID:
case BTRFS_DEV_TREE_OBJECTID:
/* different tree use different generation */
if (btrfs_header_generation(buf) > rc->generation)
break;
ret = extract_metadata_record(rc, buf);
if (ret)
goto out;
break;
case BTRFS_CHUNK_TREE_OBJECTID:
if (btrfs_header_generation(buf) >
rc->chunk_root_generation)
break;
ret = extract_metadata_record(rc, buf);
if (ret)
goto out;
break;
}
next_node:
bytenr += rc->nodesize;
}
out:
close(fd);
free(buf);
return ret;
}
static int scan_devices(struct recover_control *rc)
{
int ret = 0;
int fd;
struct btrfs_device *dev;
struct device_scan *dev_scans;
pthread_t *t_scans;
long *t_rets;
int devnr = 0;
int devidx = 0;
int i;
int all_done;
list_for_each_entry(dev, &rc->fs_devices->devices, dev_list)
devnr++;
dev_scans = (struct device_scan *)malloc(sizeof(struct device_scan)
* devnr);
if (!dev_scans)
return -ENOMEM;
t_scans = (pthread_t *)malloc(sizeof(pthread_t) * devnr);
if (!t_scans) {
free(dev_scans);
return -ENOMEM;
}
t_rets = (long *)malloc(sizeof(long) * devnr);
if (!t_rets) {
free(dev_scans);
free(t_scans);
return -ENOMEM;
}
list_for_each_entry(dev, &rc->fs_devices->devices, dev_list) {
fd = open(dev->name, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "Failed to open device %s\n",
dev->name);
ret = 1;
goto out2;
}
dev_scans[devidx].rc = rc;
dev_scans[devidx].dev = dev;
dev_scans[devidx].fd = fd;
dev_scans[devidx].bytenr = -1;
devidx++;
}
for (i = 0; i < devidx; i++) {
ret = pthread_create(&t_scans[i], NULL,
(void *)scan_one_device,
(void *)&dev_scans[i]);
if (ret)
goto out1;
dev_scans[i].bytenr = 0;
}
while (1) {
all_done = 1;
for (i = 0; i < devidx; i++) {
if (dev_scans[i].bytenr == -1)
continue;
ret = pthread_tryjoin_np(t_scans[i],
(void **)&t_rets[i]);
if (ret == EBUSY) {
all_done = 0;
continue;
}
if (ret || t_rets[i]) {
ret = 1;
goto out1;
}
dev_scans[i].bytenr = -1;
}
printf("\rScanning: ");
for (i = 0; i < devidx; i++) {
if (dev_scans[i].bytenr == -1)
printf("%sDONE in dev%d",
i ? ", " : "", i);
else
printf("%s%llu in dev%d",
i ? ", " : "", dev_scans[i].bytenr, i);
}
/* clear chars if exist in tail */
printf(" ");
printf("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");
fflush(stdout);
if (all_done) {
printf("\n");
break;
}
sleep(1);
}
out1:
for (i = 0; i < devidx; i++) {
if (dev_scans[i].bytenr == -1)
continue;
pthread_cancel(t_scans[i]);
}
out2:
free(dev_scans);
free(t_scans);
free(t_rets);
return !!ret;
}
static int build_device_map_by_chunk_record(struct btrfs_root *root,
struct chunk_record *chunk)
{
int ret = 0;
int i;
u64 devid;
u8 uuid[BTRFS_UUID_SIZE];
u16 num_stripes;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_mapping_tree *map_tree;
struct map_lookup *map;
struct stripe *stripe;
map_tree = &fs_info->mapping_tree;
num_stripes = chunk->num_stripes;
map = malloc(btrfs_map_lookup_size(num_stripes));
if (!map)
return -ENOMEM;
map->ce.start = chunk->offset;
map->ce.size = chunk->length;
map->num_stripes = num_stripes;
map->io_width = chunk->io_width;
map->io_align = chunk->io_align;
map->sector_size = chunk->sector_size;
map->stripe_len = chunk->stripe_len;
map->type = chunk->type_flags;
map->sub_stripes = chunk->sub_stripes;
for (i = 0, stripe = chunk->stripes; i < num_stripes; i++, stripe++) {
devid = stripe->devid;
memcpy(uuid, stripe->dev_uuid, BTRFS_UUID_SIZE);
map->stripes[i].physical = stripe->offset;
map->stripes[i].dev = btrfs_find_device(fs_info, devid,
uuid, NULL);
if (!map->stripes[i].dev) {
free(map);
return -EIO;
}
}
ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
return ret;
}
static int build_device_maps_by_chunk_records(struct recover_control *rc,
struct btrfs_root *root)
{
int ret = 0;
struct chunk_record *chunk;
list_for_each_entry(chunk, &rc->good_chunks, list) {
ret = build_device_map_by_chunk_record(root, chunk);
if (ret)
return ret;
}
list_for_each_entry(chunk, &rc->rebuild_chunks, list) {
ret = build_device_map_by_chunk_record(root, chunk);
if (ret)
return ret;
}
return ret;
}
static int block_group_remove_all_extent_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct block_group_record *bg)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_key key;
struct btrfs_path path;
struct extent_buffer *leaf;
u64 start = bg->objectid;
u64 end = bg->objectid + bg->offset;
u64 old_val;
int nitems;
int ret;
int i;
int del_s, del_nr;
btrfs_init_path(&path);
root = root->fs_info->extent_root;
key.objectid = start;
key.offset = 0;
key.type = BTRFS_EXTENT_ITEM_KEY;
again:
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
if (ret < 0)
goto err;
else if (ret > 0)
ret = 0;
leaf = path.nodes[0];
nitems = btrfs_header_nritems(leaf);
if (!nitems) {
/* The tree is empty. */
ret = 0;
goto err;
}
if (path.slots[0] >= nitems) {
ret = btrfs_next_leaf(root, &path);
if (ret < 0)
goto err;
if (ret > 0) {
ret = 0;
goto err;
}
leaf = path.nodes[0];
btrfs_item_key_to_cpu(leaf, &key, 0);
if (key.objectid >= end)
goto err;
btrfs_release_path(&path);
goto again;
}
del_nr = 0;
del_s = -1;
for (i = path.slots[0]; i < nitems; i++) {
btrfs_item_key_to_cpu(leaf, &key, i);
if (key.objectid >= end)
break;
if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
if (del_nr == 0)
continue;
else
break;
}
if (del_s == -1)
del_s = i;
del_nr++;
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY) {
old_val = btrfs_super_bytes_used(fs_info->super_copy);
if (key.type == BTRFS_METADATA_ITEM_KEY)
old_val += fs_info->nodesize;
else
old_val += key.offset;
btrfs_set_super_bytes_used(fs_info->super_copy,
old_val);
}
}
if (del_nr) {
ret = btrfs_del_items(trans, root, &path, del_s, del_nr);
if (ret)
goto err;
}
if (key.objectid < end) {
if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
key.objectid += fs_info->sectorsize;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = 0;
}
btrfs_release_path(&path);
goto again;
}
err:
btrfs_release_path(&path);
return ret;
}
static int block_group_free_all_extent(struct btrfs_root *root,
struct block_group_record *bg)
{
struct btrfs_block_group_cache *cache;
struct btrfs_fs_info *info;
u64 start;
u64 end;
info = root->fs_info;
cache = btrfs_lookup_block_group(info, bg->objectid);
if (!cache)
return -ENOENT;
start = cache->key.objectid;
end = start + cache->key.offset - 1;
set_extent_bits(&info->block_group_cache, start, end,
BLOCK_GROUP_DIRTY);
set_extent_dirty(&info->free_space_cache, start, end);
btrfs_set_block_group_used(&cache->item, 0);
return 0;
}
static int remove_chunk_extent_item(struct btrfs_trans_handle *trans,
struct recover_control *rc,
struct btrfs_root *root)
{
struct chunk_record *chunk;
int ret = 0;
list_for_each_entry(chunk, &rc->good_chunks, list) {
if (!(chunk->type_flags & BTRFS_BLOCK_GROUP_SYSTEM))
continue;
ret = block_group_remove_all_extent_items(trans, root,
chunk->bg_rec);
if (ret)
return ret;
ret = block_group_free_all_extent(root, chunk->bg_rec);
if (ret)
return ret;
}
return ret;
}
static int __rebuild_chunk_root(struct btrfs_trans_handle *trans,
struct recover_control *rc,
struct btrfs_root *root)
{
u64 min_devid = -1;
struct btrfs_device *dev;
struct extent_buffer *cow;
struct btrfs_disk_key disk_key;
int ret = 0;
list_for_each_entry(dev, &rc->fs_devices->devices, dev_list) {
if (min_devid > dev->devid)
min_devid = dev->devid;
}
btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID);
btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY);
btrfs_set_disk_key_offset(&disk_key, min_devid);
cow = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize,
BTRFS_CHUNK_TREE_OBJECTID,
&disk_key, 0, 0, 0);
btrfs_set_header_bytenr(cow, cow->start);
btrfs_set_header_generation(cow, trans->transid);
btrfs_set_header_nritems(cow, 0);
btrfs_set_header_level(cow, 0);
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(cow, BTRFS_CHUNK_TREE_OBJECTID);
write_extent_buffer(cow, root->fs_info->fsid,
btrfs_header_fsid(), BTRFS_FSID_SIZE);
write_extent_buffer(cow, root->fs_info->chunk_tree_uuid,
btrfs_header_chunk_tree_uuid(cow),
BTRFS_UUID_SIZE);
root->node = cow;
btrfs_mark_buffer_dirty(cow);
return ret;
}
static int __rebuild_device_items(struct btrfs_trans_handle *trans,
struct recover_control *rc,
struct btrfs_root *root)
{
struct btrfs_device *dev;
struct btrfs_key key;
struct btrfs_dev_item dev_item_tmp;
struct btrfs_dev_item *dev_item = &dev_item_tmp;
int ret = 0;
list_for_each_entry(dev, &rc->fs_devices->devices, dev_list) {
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = dev->devid;
btrfs_set_stack_device_generation(dev_item, 0);
btrfs_set_stack_device_type(dev_item, dev->type);
btrfs_set_stack_device_id(dev_item, dev->devid);
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
ret = btrfs_insert_item(trans, root, &key,
dev_item, sizeof(*dev_item));
}
return ret;
}
static int __insert_chunk_item(struct btrfs_trans_handle *trans,
struct chunk_record *chunk_rec,
struct btrfs_root *chunk_root)
{
struct btrfs_key key;
struct btrfs_chunk *chunk = NULL;
int ret = 0;
chunk = create_chunk_item(chunk_rec);
if (!chunk)
return -ENOMEM;
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.type = BTRFS_CHUNK_ITEM_KEY;
key.offset = chunk_rec->offset;
ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
btrfs_chunk_item_size(chunk_rec->num_stripes));
free(chunk);
return ret;
}
static int __rebuild_chunk_items(struct btrfs_trans_handle *trans,
struct recover_control *rc,
struct btrfs_root *root)
{
struct btrfs_root *chunk_root;
struct chunk_record *chunk_rec;
int ret;
chunk_root = root->fs_info->chunk_root;
list_for_each_entry(chunk_rec, &rc->good_chunks, list) {
ret = __insert_chunk_item(trans, chunk_rec, chunk_root);
if (ret)
return ret;
}
list_for_each_entry(chunk_rec, &rc->rebuild_chunks, list) {
ret = __insert_chunk_item(trans, chunk_rec, chunk_root);
if (ret)
return ret;
}
return 0;
}
static int rebuild_chunk_tree(struct btrfs_trans_handle *trans,
struct recover_control *rc,
struct btrfs_root *root)
{
int ret = 0;
root = root->fs_info->chunk_root;
ret = __rebuild_chunk_root(trans, rc, root);
if (ret)
return ret;
ret = __rebuild_device_items(trans, rc, root);
if (ret)
return ret;
ret = __rebuild_chunk_items(trans, rc, root);
return ret;
}
static int rebuild_sys_array(struct recover_control *rc,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_chunk *chunk;
struct btrfs_key key;
struct chunk_record *chunk_rec;
int ret = 0;
u16 num_stripes;
btrfs_set_super_sys_array_size(fs_info->super_copy, 0);
list_for_each_entry(chunk_rec, &rc->good_chunks, list) {
if (!(chunk_rec->type_flags & BTRFS_BLOCK_GROUP_SYSTEM))
continue;
num_stripes = chunk_rec->num_stripes;
chunk = create_chunk_item(chunk_rec);
if (!chunk) {
ret = -ENOMEM;
break;
}
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.type = BTRFS_CHUNK_ITEM_KEY;
key.offset = chunk_rec->offset;
ret = btrfs_add_system_chunk(fs_info, &key, chunk,
btrfs_chunk_item_size(num_stripes));
free(chunk);
if (ret)
break;
}
return ret;
}
static int calculate_bg_used(struct btrfs_root *extent_root,
struct chunk_record *chunk_rec,
struct btrfs_path *path,
u64 *used)
{
struct extent_buffer *node;
struct btrfs_key found_key;
int slot;
int ret = 0;
u64 used_ret = 0;
while (1) {
node = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(node, &found_key, slot);
if (found_key.objectid >= chunk_rec->offset + chunk_rec->length)
break;
if (found_key.type != BTRFS_METADATA_ITEM_KEY &&
found_key.type != BTRFS_EXTENT_DATA_KEY)
goto next;
if (found_key.type == BTRFS_METADATA_ITEM_KEY)
used_ret += extent_root->fs_info->nodesize;
else
used_ret += found_key.offset;
next:
if (slot + 1 < btrfs_header_nritems(node)) {
slot++;
} else {
ret = btrfs_next_leaf(extent_root, path);
if (ret > 0) {
ret = 0;
break;
}
if (ret < 0)
break;
}
}
if (!ret)
*used = used_ret;
return ret;
}
static int __insert_block_group(struct btrfs_trans_handle *trans,
struct chunk_record *chunk_rec,
struct btrfs_root *extent_root,
u64 used)
{
struct btrfs_block_group_item bg_item;
struct btrfs_key key;
int ret = 0;
btrfs_set_block_group_used(&bg_item, used);
btrfs_set_block_group_chunk_objectid(&bg_item, used);
btrfs_set_block_group_flags(&bg_item, chunk_rec->type_flags);
key.objectid = chunk_rec->offset;
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
key.offset = chunk_rec->length;
ret = btrfs_insert_item(trans, extent_root, &key, &bg_item,
sizeof(bg_item));
return ret;
}
/*
* Search through the extent tree to rebuild the 'used' member of the block
* group.
* However, since block group and extent item shares the extent tree,
* the extent item may also missing.
* In that case, we fill the 'used' with the length of the block group to
* ensure no write into the block group.
* Btrfsck will hate it but we will inform user to call '--init-extent-tree'
* if possible, or just salvage as much data as possible from the fs.
*/
static int rebuild_block_group(struct btrfs_trans_handle *trans,
struct recover_control *rc,
struct btrfs_root *root)
{
struct chunk_record *chunk_rec;
struct btrfs_key search_key;
struct btrfs_path path;
u64 used = 0;
int ret = 0;
if (list_empty(&rc->rebuild_chunks))
return 0;
btrfs_init_path(&path);
list_for_each_entry(chunk_rec, &rc->rebuild_chunks, list) {
search_key.objectid = chunk_rec->offset;
search_key.type = BTRFS_EXTENT_ITEM_KEY;
search_key.offset = 0;
ret = btrfs_search_slot(NULL, root->fs_info->extent_root,
&search_key, &path, 0, 0);
if (ret < 0)
goto out;
ret = calculate_bg_used(root->fs_info->extent_root,
chunk_rec, &path, &used);
/*
* Extent tree is damaged, better to rebuild the whole extent
* tree. Currently, change the used to chunk's len to prevent
* write/block reserve happening in that block group.
*/
if (ret < 0) {
fprintf(stderr,
"Fail to search extent tree for block group: [%llu,%llu]\n",
chunk_rec->offset,
chunk_rec->offset + chunk_rec->length);
fprintf(stderr,
"Mark the block group full to prevent block rsv problems\n");
used = chunk_rec->length;
}
btrfs_release_path(&path);
ret = __insert_block_group(trans, chunk_rec,
root->fs_info->extent_root,
used);
if (ret < 0)
goto out;
}
out:
btrfs_release_path(&path);
return ret;
}
static struct btrfs_root *
open_ctree_with_broken_chunk(struct recover_control *rc)
{
struct btrfs_fs_info *fs_info;
struct btrfs_super_block *disk_super;
struct extent_buffer *eb;
int ret;
fs_info = btrfs_new_fs_info(1, BTRFS_SUPER_INFO_OFFSET);
if (!fs_info) {
fprintf(stderr, "Failed to allocate memory for fs_info\n");
return ERR_PTR(-ENOMEM);
}
fs_info->is_chunk_recover = 1;
fs_info->fs_devices = rc->fs_devices;
ret = btrfs_open_devices(fs_info->fs_devices, O_RDWR);
if (ret)
goto out;
disk_super = fs_info->super_copy;
ret = btrfs_read_dev_super(fs_info->fs_devices->latest_bdev,
disk_super, fs_info->super_bytenr,
SBREAD_RECOVER);
if (ret) {
fprintf(stderr, "No valid btrfs found\n");
goto out_devices;
}
memcpy(fs_info->fsid, &disk_super->fsid, BTRFS_FSID_SIZE);
fs_info->sectorsize = btrfs_super_sectorsize(disk_super);
fs_info->nodesize = btrfs_super_nodesize(disk_super);
fs_info->stripesize = btrfs_super_stripesize(disk_super);
ret = btrfs_check_fs_compatibility(disk_super, OPEN_CTREE_WRITES);
if (ret)
goto out_devices;
btrfs_setup_root(fs_info->chunk_root, fs_info,
BTRFS_CHUNK_TREE_OBJECTID);
ret = build_device_maps_by_chunk_records(rc, fs_info->chunk_root);
if (ret)
goto out_cleanup;
ret = btrfs_setup_all_roots(fs_info, 0, 0);
if (ret)
goto out_failed;
eb = fs_info->tree_root->node;
read_extent_buffer(eb, fs_info->chunk_tree_uuid,
btrfs_header_chunk_tree_uuid(eb),
BTRFS_UUID_SIZE);
return fs_info->fs_root;
out_failed:
btrfs_release_all_roots(fs_info);
out_cleanup:
btrfs_cleanup_all_caches(fs_info);
out_devices:
btrfs_close_devices(fs_info->fs_devices);
out:
btrfs_free_fs_info(fs_info);
return ERR_PTR(ret);
}
static int recover_prepare(struct recover_control *rc, char *path)
{
int ret;
int fd;
struct btrfs_super_block *sb;
char buf[BTRFS_SUPER_INFO_SIZE];
struct btrfs_fs_devices *fs_devices;
ret = 0;
fd = open(path, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "open %s\n error.\n", path);
return -1;
}
sb = (struct btrfs_super_block*)buf;
ret = btrfs_read_dev_super(fd, sb, BTRFS_SUPER_INFO_OFFSET,
SBREAD_RECOVER);
if (ret) {
fprintf(stderr, "read super block error\n");
goto out_close_fd;
}
rc->sectorsize = btrfs_super_sectorsize(sb);
rc->nodesize = btrfs_super_nodesize(sb);
rc->generation = btrfs_super_generation(sb);
rc->chunk_root_generation = btrfs_super_chunk_root_generation(sb);
rc->csum_size = btrfs_super_csum_size(sb);
/* if seed, the result of scanning below will be partial */
if (btrfs_super_flags(sb) & BTRFS_SUPER_FLAG_SEEDING) {
fprintf(stderr, "this device is seed device\n");
ret = -1;
goto out_close_fd;
}
ret = btrfs_scan_fs_devices(fd, path, &fs_devices, 0, SBREAD_RECOVER, 0);
if (ret)
goto out_close_fd;
rc->fs_devices = fs_devices;
if (rc->verbose)
print_all_devices(&rc->fs_devices->devices);
out_close_fd:
close(fd);
return ret;
}
static int btrfs_get_device_extents(u64 chunk_object,
struct list_head *orphan_devexts,
struct list_head *ret_list)
{
struct device_extent_record *devext;
struct device_extent_record *next;
int count = 0;
list_for_each_entry_safe(devext, next, orphan_devexts, chunk_list) {
if (devext->chunk_offset == chunk_object) {
list_move_tail(&devext->chunk_list, ret_list);
count++;
}
}
return count;
}
static int calc_num_stripes(u64 type)
{
if (type & (BTRFS_BLOCK_GROUP_RAID0 |
BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_RAID6))
return 0;
else if (type & (BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_DUP))
return 2;
else
return 1;
}
static inline int calc_sub_nstripes(u64 type)
{
if (type & BTRFS_BLOCK_GROUP_RAID10)
return 2;
else
return 1;
}
static int btrfs_verify_device_extents(struct block_group_record *bg,
struct list_head *devexts, int ndevexts)
{
struct device_extent_record *devext;
u64 stripe_length;
int expected_num_stripes;
expected_num_stripes = calc_num_stripes(bg->flags);
if (expected_num_stripes && expected_num_stripes != ndevexts)
return 1;
if (check_num_stripes(bg->flags, ndevexts) < 0)
return 1;
stripe_length = calc_stripe_length(bg->flags, bg->offset, ndevexts);
list_for_each_entry(devext, devexts, chunk_list) {
if (devext->length != stripe_length)
return 1;
}
return 0;
}
static int btrfs_rebuild_unordered_chunk_stripes(struct recover_control *rc,
struct chunk_record *chunk)
{
struct device_extent_record *devext;
struct btrfs_device *device;
int i;
devext = list_first_entry(&chunk->dextents, struct device_extent_record,
chunk_list);
for (i = 0; i < chunk->num_stripes; i++) {
chunk->stripes[i].devid = devext->objectid;
chunk->stripes[i].offset = devext->offset;
device = btrfs_find_device_by_devid(rc->fs_devices,
devext->objectid,
0);
if (!device)
return -ENOENT;
BUG_ON(btrfs_find_device_by_devid(rc->fs_devices,
devext->objectid,
1));
memcpy(chunk->stripes[i].dev_uuid, device->uuid,
BTRFS_UUID_SIZE);
devext = list_next_entry(devext, chunk_list);
}
return 0;
}
static int btrfs_calc_stripe_index(struct chunk_record *chunk, u64 logical)
{
u64 offset = logical - chunk->offset;
int stripe_nr;
int nr_data_stripes;
int index;
stripe_nr = offset / chunk->stripe_len;
if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID0) {
index = stripe_nr % chunk->num_stripes;
} else if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID10) {
index = stripe_nr % (chunk->num_stripes / chunk->sub_stripes);
index *= chunk->sub_stripes;
} else if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID5) {
nr_data_stripes = chunk->num_stripes - 1;
index = stripe_nr % nr_data_stripes;
stripe_nr /= nr_data_stripes;
index = (index + stripe_nr) % chunk->num_stripes;
} else if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID6) {
nr_data_stripes = chunk->num_stripes - 2;
index = stripe_nr % nr_data_stripes;
stripe_nr /= nr_data_stripes;
index = (index + stripe_nr) % chunk->num_stripes;
} else {
return -1;
}
return index;
}
/* calc the logical offset which is the start of the next stripe. */
static inline u64 btrfs_next_stripe_logical_offset(struct chunk_record *chunk,
u64 logical)
{
u64 offset = logical - chunk->offset;
offset /= chunk->stripe_len;
offset *= chunk->stripe_len;
offset += chunk->stripe_len;
return offset + chunk->offset;
}
static int is_extent_record_in_device_extent(struct extent_record *er,
struct device_extent_record *dext,
int *mirror)
{
int i;
for (i = 0; i < er->nmirrors; i++) {
if (er->devices[i]->devid == dext->objectid &&
er->offsets[i] >= dext->offset &&
er->offsets[i] < dext->offset + dext->length) {
*mirror = i;
return 1;
}
}
return 0;
}
static int
btrfs_rebuild_ordered_meta_chunk_stripes(struct recover_control *rc,
struct chunk_record *chunk)
{
u64 start = chunk->offset;
u64 end = chunk->offset + chunk->length;
struct cache_extent *cache;
struct extent_record *er;
struct device_extent_record *devext;
struct device_extent_record *next;
struct btrfs_device *device;
LIST_HEAD(devexts);
int index;
int mirror;
int ret;
cache = lookup_cache_extent(&rc->eb_cache,
start, chunk->length);
if (!cache) {
/* No used space, we can reorder the stripes freely. */
ret = btrfs_rebuild_unordered_chunk_stripes(rc, chunk);
return ret;
}
list_splice_init(&chunk->dextents, &devexts);
again:
er = container_of(cache, struct extent_record, cache);
index = btrfs_calc_stripe_index(chunk, er->cache.start);
BUG_ON(index == -1);
if (chunk->stripes[index].devid)
goto next;
list_for_each_entry_safe(devext, next, &devexts, chunk_list) {
if (is_extent_record_in_device_extent(er, devext, &mirror)) {
chunk->stripes[index].devid = devext->objectid;
chunk->stripes[index].offset = devext->offset;
memcpy(chunk->stripes[index].dev_uuid,
er->devices[mirror]->uuid,
BTRFS_UUID_SIZE);
index++;
list_move(&devext->chunk_list, &chunk->dextents);
}
}
next:
start = btrfs_next_stripe_logical_offset(chunk, er->cache.start);
if (start >= end)
goto no_extent_record;
cache = lookup_cache_extent(&rc->eb_cache, start, end - start);
if (cache)
goto again;
no_extent_record:
if (list_empty(&devexts))
return 0;
if (chunk->type_flags & (BTRFS_BLOCK_GROUP_RAID5 |
BTRFS_BLOCK_GROUP_RAID6)) {
/* Fixme: try to recover the order by the parity block. */
list_splice_tail(&devexts, &chunk->dextents);
return -EINVAL;
}
/* There is no data on the lost stripes, we can reorder them freely. */
for (index = 0; index < chunk->num_stripes; index++) {
if (chunk->stripes[index].devid)
continue;
devext = list_first_entry(&devexts,
struct device_extent_record,
chunk_list);
list_move(&devext->chunk_list, &chunk->dextents);
chunk->stripes[index].devid = devext->objectid;
chunk->stripes[index].offset = devext->offset;
device = btrfs_find_device_by_devid(rc->fs_devices,
devext->objectid,
0);
if (!device) {
list_splice_tail(&devexts, &chunk->dextents);
return -EINVAL;
}
BUG_ON(btrfs_find_device_by_devid(rc->fs_devices,
devext->objectid,
1));
memcpy(chunk->stripes[index].dev_uuid, device->uuid,
BTRFS_UUID_SIZE);
}
return 0;
}
#define BTRFS_ORDERED_RAID (BTRFS_BLOCK_GROUP_RAID0 | \
BTRFS_BLOCK_GROUP_RAID10 | \
BTRFS_BLOCK_GROUP_RAID5 | \
BTRFS_BLOCK_GROUP_RAID6)
static int btrfs_rebuild_chunk_stripes(struct recover_control *rc,
struct chunk_record *chunk)
{
int ret;
/*
* All the data in the system metadata chunk will be dropped,
* so we need not guarantee that the data is right or not, that
* is we can reorder the stripes in the system metadata chunk.
*/
if ((chunk->type_flags & BTRFS_BLOCK_GROUP_METADATA) &&
(chunk->type_flags & BTRFS_ORDERED_RAID))
ret =btrfs_rebuild_ordered_meta_chunk_stripes(rc, chunk);
else if ((chunk->type_flags & BTRFS_BLOCK_GROUP_DATA) &&
(chunk->type_flags & BTRFS_ORDERED_RAID))
ret = 1; /* Be handled after the fs is opened. */
else
ret = btrfs_rebuild_unordered_chunk_stripes(rc, chunk);
return ret;
}
static int next_csum(struct btrfs_root *root,
struct extent_buffer **leaf,
struct btrfs_path *path,
int *slot,
u64 *csum_offset,
u32 *tree_csum,
u64 end,
struct btrfs_key *key)
{
int ret = 0;
struct btrfs_root *csum_root = root->fs_info->csum_root;
struct btrfs_csum_item *csum_item;
u32 blocksize = root->fs_info->sectorsize;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
int csums_in_item = btrfs_item_size_nr(*leaf, *slot) / csum_size;
if (*csum_offset >= csums_in_item) {
++(*slot);
*csum_offset = 0;
if (*slot >= btrfs_header_nritems(*leaf)) {
ret = btrfs_next_leaf(csum_root, path);
if (ret < 0)
return -1;
else if (ret > 0)
return 1;
*leaf = path->nodes[0];
*slot = path->slots[0];
}
btrfs_item_key_to_cpu(*leaf, key, *slot);
}
if (key->offset + (*csum_offset) * blocksize >= end)
return 2;
csum_item = btrfs_item_ptr(*leaf, *slot, struct btrfs_csum_item);
csum_item = (struct btrfs_csum_item *)((unsigned char *)csum_item
+ (*csum_offset) * csum_size);
read_extent_buffer(*leaf, tree_csum,
(unsigned long)csum_item, csum_size);
return ret;
}
static u64 calc_data_offset(struct btrfs_key *key,
struct chunk_record *chunk,
u64 dev_offset,
u64 csum_offset,
u32 blocksize)
{
u64 data_offset;
int logical_stripe_nr;
int dev_stripe_nr;
int nr_data_stripes;
data_offset = key->offset + csum_offset * blocksize - chunk->offset;
nr_data_stripes = chunk->num_stripes;
if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID5)
nr_data_stripes -= 1;
else if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID6)
nr_data_stripes -= 2;
logical_stripe_nr = data_offset / chunk->stripe_len;
dev_stripe_nr = logical_stripe_nr / nr_data_stripes;
data_offset -= logical_stripe_nr * chunk->stripe_len;
data_offset += dev_stripe_nr * chunk->stripe_len;
return dev_offset + data_offset;
}
static int check_one_csum(int fd, u64 start, u32 len, u32 tree_csum)
{
char *data;
int ret = 0;
u32 csum_result = ~(u32)0;
data = malloc(len);
if (!data)
return -1;
ret = pread64(fd, data, len, start);
if (ret < 0 || ret != len) {
ret = -1;
goto out;
}
ret = 0;
csum_result = btrfs_csum_data(data, csum_result, len);
btrfs_csum_final(csum_result, (u8 *)&csum_result);
if (csum_result != tree_csum)
ret = 1;
out:
free(data);
return ret;
}
static u64 item_end_offset(struct btrfs_root *root, struct btrfs_key *key,
struct extent_buffer *leaf, int slot) {
u32 blocksize = root->fs_info->sectorsize;
u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
u64 offset = btrfs_item_size_nr(leaf, slot);
offset /= csum_size;
offset *= blocksize;
offset += key->offset;
return offset;
}
static int insert_stripe(struct list_head *devexts,
struct recover_control *rc,
struct chunk_record *chunk,
int index) {
struct device_extent_record *devext;
struct btrfs_device *dev;
devext = list_entry(devexts->next, struct device_extent_record,
chunk_list);
dev = btrfs_find_device_by_devid(rc->fs_devices, devext->objectid,
0);
if (!dev)
return -ENOENT;
if (btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 1)) {
error("unexpected: found another device with id %llu",
(unsigned long long)devext->objectid);
return -EINVAL;
}
chunk->stripes[index].devid = devext->objectid;
chunk->stripes[index].offset = devext->offset;
memcpy(chunk->stripes[index].dev_uuid, dev->uuid, BTRFS_UUID_SIZE);
list_move(&devext->chunk_list, &chunk->dextents);
return 0;
}
static inline int count_devext_records(struct list_head *record_list)
{
int num_of_records = 0;
struct device_extent_record *devext;
list_for_each_entry(devext, record_list, chunk_list)
num_of_records++;
return num_of_records;
}
static int fill_chunk_up(struct chunk_record *chunk, struct list_head *devexts,
struct recover_control *rc)
{
int ret = 0;
int i;
for (i = 0; i < chunk->num_stripes; i++) {
if (!chunk->stripes[i].devid) {
ret = insert_stripe(devexts, rc, chunk, i);
if (ret)
break;
}
}
return ret;
}
#define EQUAL_STRIPE (1 << 0)
static int rebuild_raid_data_chunk_stripes(struct recover_control *rc,
struct btrfs_root *root,
struct chunk_record *chunk,
u8 *flags)
{
int i;
int ret = 0;
int slot;
struct btrfs_path path;
struct btrfs_key prev_key;
struct btrfs_key key;
struct btrfs_root *csum_root;
struct extent_buffer *leaf;
struct device_extent_record *devext;
struct device_extent_record *next;
struct btrfs_device *dev;
u64 start = chunk->offset;
u64 end = start + chunk->stripe_len;
u64 chunk_end = chunk->offset + chunk->length;
u64 csum_offset = 0;
u64 data_offset;
u32 blocksize = root->fs_info->sectorsize;
u32 tree_csum;
int index = 0;
int num_unordered = 0;
LIST_HEAD(unordered);
LIST_HEAD(candidates);
csum_root = root->fs_info->csum_root;
btrfs_init_path(&path);
list_splice_init(&chunk->dextents, &candidates);
again:
if (list_is_last(candidates.next, &candidates))
goto out;
key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
key.type = BTRFS_EXTENT_CSUM_KEY;
key.offset = start;
ret = btrfs_search_slot(NULL, csum_root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "Search csum failed(%d)\n", ret);
goto fail_out;
}
leaf = path.nodes[0];
slot = path.slots[0];
if (ret > 0) {
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(csum_root, &path);
if (ret < 0) {
fprintf(stderr,
"Walk tree failed(%d)\n", ret);
goto fail_out;
} else if (ret > 0) {
slot = btrfs_header_nritems(leaf) - 1;
btrfs_item_key_to_cpu(leaf, &key, slot);
if (item_end_offset(root, &key, leaf, slot)
> start) {
csum_offset = start - key.offset;
csum_offset /= blocksize;
goto next_csum;
}
goto next_stripe;
}
leaf = path.nodes[0];
slot = path.slots[0];
}
btrfs_item_key_to_cpu(leaf, &key, slot);
ret = btrfs_previous_item(csum_root, &path, 0,
BTRFS_EXTENT_CSUM_KEY);
if (ret < 0)
goto fail_out;
else if (ret > 0) {
if (key.offset >= end)
goto next_stripe;
else
goto next_csum;
}
leaf = path.nodes[0];
slot = path.slots[0];
btrfs_item_key_to_cpu(leaf, &prev_key, slot);
if (item_end_offset(root, &prev_key, leaf, slot) > start) {
csum_offset = start - prev_key.offset;
csum_offset /= blocksize;
btrfs_item_key_to_cpu(leaf, &key, slot);
} else {
if (key.offset >= end)
goto next_stripe;
}
if (key.offset + csum_offset * blocksize > chunk_end)
goto out;
}
next_csum:
ret = next_csum(root, &leaf, &path, &slot, &csum_offset, &tree_csum,
end, &key);
if (ret < 0) {
fprintf(stderr, "Fetch csum failed\n");
goto fail_out;
} else if (ret == 1) {
if (!(*flags & EQUAL_STRIPE))
*flags |= EQUAL_STRIPE;
goto out;
} else if (ret == 2)
goto next_stripe;
list_for_each_entry_safe(devext, next, &candidates, chunk_list) {
data_offset = calc_data_offset(&key, chunk, devext->offset,
csum_offset, blocksize);
dev = btrfs_find_device_by_devid(rc->fs_devices,
devext->objectid, 0);
if (!dev) {
ret = 1;
goto fail_out;
}
BUG_ON(btrfs_find_device_by_devid(rc->fs_devices,
devext->objectid, 1));
ret = check_one_csum(dev->fd, data_offset, blocksize,
tree_csum);
if (ret < 0)
goto fail_out;
else if (ret > 0)
list_move(&devext->chunk_list, &unordered);
}
if (list_empty(&candidates)) {
num_unordered = count_devext_records(&unordered);
if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID6
&& num_unordered == 2) {
btrfs_release_path(&path);
ret = fill_chunk_up(chunk, &unordered, rc);
return ret;
}
goto next_stripe;
}
if (list_is_last(candidates.next, &candidates)) {
index = btrfs_calc_stripe_index(chunk,
key.offset + csum_offset * blocksize);
BUG_ON(index == -1);
if (chunk->stripes[index].devid)
goto next_stripe;
ret = insert_stripe(&candidates, rc, chunk, index);
if (ret)
goto fail_out;
} else {
csum_offset++;
goto next_csum;
}
next_stripe:
start = btrfs_next_stripe_logical_offset(chunk, start);
end = min(start + chunk->stripe_len, chunk_end);
list_splice_init(&unordered, &candidates);
btrfs_release_path(&path);
csum_offset = 0;
if (end < chunk_end)
goto again;
out:
ret = 0;
list_splice_init(&candidates, &unordered);
num_unordered = count_devext_records(&unordered);
if (num_unordered == 1) {
for (i = 0; i < chunk->num_stripes; i++) {
if (!chunk->stripes[i].devid) {
index = i;
break;
}
}
ret = insert_stripe(&unordered, rc, chunk, index);
if (ret)
goto fail_out;
} else {
if ((num_unordered == 2 && chunk->type_flags
& BTRFS_BLOCK_GROUP_RAID5)
|| (num_unordered == 3 && chunk->type_flags
& BTRFS_BLOCK_GROUP_RAID6)) {
ret = fill_chunk_up(chunk, &unordered, rc);
}
}
fail_out:
ret = !!ret || (list_empty(&unordered) ? 0 : 1);
list_splice_init(&candidates, &chunk->dextents);
list_splice_init(&unordered, &chunk->dextents);
btrfs_release_path(&path);
return ret;
}
static int btrfs_rebuild_ordered_data_chunk_stripes(struct recover_control *rc,
struct btrfs_root *root)
{
struct chunk_record *chunk;
struct chunk_record *next;
int ret = 0;
int err;
u8 flags;
list_for_each_entry_safe(chunk, next, &rc->unrepaired_chunks, list) {
if ((chunk->type_flags & BTRFS_BLOCK_GROUP_DATA)
&& (chunk->type_flags & BTRFS_ORDERED_RAID)) {
flags = 0;
err = rebuild_raid_data_chunk_stripes(rc, root, chunk,
&flags);
if (err) {
list_move(&chunk->list, &rc->bad_chunks);
if (flags & EQUAL_STRIPE)
fprintf(stderr,
"Failure: too many equal stripes in chunk[%llu %llu]\n",
chunk->offset, chunk->length);
if (!ret)
ret = err;
} else
list_move(&chunk->list, &rc->good_chunks);
}
}
return ret;
}
static int btrfs_recover_chunks(struct recover_control *rc)
{
struct chunk_record *chunk;
struct block_group_record *bg;
struct block_group_record *next;
LIST_HEAD(new_chunks);
LIST_HEAD(devexts);
int nstripes;
int ret;
/* create the chunk by block group */
list_for_each_entry_safe(bg, next, &rc->bg.block_groups, list) {
nstripes = btrfs_get_device_extents(bg->objectid,
&rc->devext.no_chunk_orphans,
&devexts);
chunk = calloc(1, btrfs_chunk_record_size(nstripes));
if (!chunk)
return -ENOMEM;
INIT_LIST_HEAD(&chunk->dextents);
chunk->bg_rec = bg;
chunk->cache.start = bg->objectid;
chunk->cache.size = bg->offset;
chunk->objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
chunk->type = BTRFS_CHUNK_ITEM_KEY;
chunk->offset = bg->objectid;
chunk->generation = bg->generation;
chunk->length = bg->offset;
chunk->owner = BTRFS_CHUNK_TREE_OBJECTID;
chunk->stripe_len = BTRFS_STRIPE_LEN;
chunk->type_flags = bg->flags;
chunk->io_width = BTRFS_STRIPE_LEN;
chunk->io_align = BTRFS_STRIPE_LEN;
chunk->sector_size = rc->sectorsize;
chunk->sub_stripes = calc_sub_nstripes(bg->flags);
ret = insert_cache_extent(&rc->chunk, &chunk->cache);
if (ret == -EEXIST) {
error("duplicate entry in cache start %llu size %llu",
(unsigned long long)chunk->cache.start,
(unsigned long long)chunk->cache.size);
free(chunk);
return ret;
}
BUG_ON(ret);
list_del_init(&bg->list);
if (!nstripes) {
list_add_tail(&chunk->list, &rc->bad_chunks);
continue;
}
list_splice_init(&devexts, &chunk->dextents);
ret = btrfs_verify_device_extents(bg, &devexts, nstripes);
if (ret) {
list_add_tail(&chunk->list, &rc->bad_chunks);
continue;
}
chunk->num_stripes = nstripes;
ret = btrfs_rebuild_chunk_stripes(rc, chunk);
if (ret > 0)
list_add_tail(&chunk->list, &rc->unrepaired_chunks);
else if (ret < 0)
list_add_tail(&chunk->list, &rc->bad_chunks);
else
list_add_tail(&chunk->list, &rc->good_chunks);
}
/*
* Don't worry about the lost orphan device extents, they don't
* have its chunk and block group, they must be the old ones that
* we have dropped.
*/
return 0;
}
static inline int is_chunk_overlap(struct chunk_record *chunk1,
struct chunk_record *chunk2)
{
if (chunk1->offset >= chunk2->offset + chunk2->length ||
chunk1->offset + chunk1->length <= chunk2->offset)
return 0;
return 1;
}
/* Move invalid(overlap with good chunks) rebuild chunks to bad chunk list */
static void validate_rebuild_chunks(struct recover_control *rc)
{
struct chunk_record *good;
struct chunk_record *rebuild;
struct chunk_record *tmp;
list_for_each_entry_safe(rebuild, tmp, &rc->rebuild_chunks, list) {
list_for_each_entry(good, &rc->good_chunks, list) {
if (is_chunk_overlap(rebuild, good)) {
list_move_tail(&rebuild->list,
&rc->bad_chunks);
break;
}
}
}
}
/*
* Return 0 when successful, < 0 on error and > 0 if aborted by user
*/
int btrfs_recover_chunk_tree(char *path, int verbose, int yes)
{
int ret = 0;
struct btrfs_root *root = NULL;
struct btrfs_trans_handle *trans;
struct recover_control rc;
init_recover_control(&rc, verbose, yes);
ret = recover_prepare(&rc, path);
if (ret) {
fprintf(stderr, "recover prepare error\n");
return ret;
}
ret = scan_devices(&rc);
if (ret) {
fprintf(stderr, "scan chunk headers error\n");
goto fail_rc;
}
if (cache_tree_empty(&rc.chunk) &&
cache_tree_empty(&rc.bg.tree) &&
cache_tree_empty(&rc.devext.tree)) {
fprintf(stderr, "no recoverable chunk\n");
goto fail_rc;
}
print_scan_result(&rc);
ret = check_chunks(&rc.chunk, &rc.bg, &rc.devext, &rc.good_chunks,
&rc.bad_chunks, &rc.rebuild_chunks, 1);
if (ret) {
if (!list_empty(&rc.bg.block_groups) ||
!list_empty(&rc.devext.no_chunk_orphans)) {
ret = btrfs_recover_chunks(&rc);
if (ret)
goto fail_rc;
}
} else {
print_check_result(&rc);
printf("Check chunks successfully with no orphans\n");
goto fail_rc;
}
validate_rebuild_chunks(&rc);
print_check_result(&rc);
root = open_ctree_with_broken_chunk(&rc);
if (IS_ERR(root)) {
fprintf(stderr, "open with broken chunk error\n");
ret = PTR_ERR(root);
goto fail_rc;
}
ret = check_all_chunks_by_metadata(&rc, root);
if (ret) {
fprintf(stderr, "The chunks in memory can not match the metadata of the fs. Repair failed.\n");
goto fail_close_ctree;
}
ret = btrfs_rebuild_ordered_data_chunk_stripes(&rc, root);
if (ret) {
fprintf(stderr, "Failed to rebuild ordered chunk stripes.\n");
goto fail_close_ctree;
}
if (!rc.yes) {
ret = ask_user("We are going to rebuild the chunk tree on disk, it might destroy the old metadata on the disk, Are you sure?");
if (!ret) {
ret = 1;
goto fail_close_ctree;
}
}
trans = btrfs_start_transaction(root, 1);
ret = remove_chunk_extent_item(trans, &rc, root);
BUG_ON(ret);
ret = rebuild_chunk_tree(trans, &rc, root);
BUG_ON(ret);
ret = rebuild_sys_array(&rc, root);
BUG_ON(ret);
ret = rebuild_block_group(trans, &rc, root);
if (ret) {
printf("Fail to rebuild block groups.\n");
printf("Recommend to run 'btrfs check --init-extent-tree <dev>' after recovery\n");
}
btrfs_commit_transaction(trans, root);
fail_close_ctree:
close_ctree(root);
fail_rc:
free_recover_control(&rc);
return ret;
}