btrfs-progs/image/main.c
Qu Wenruo 085445e793 btrfs-progs: Cleanup BTRFS_COMPAT_EXTENT_TREE_V0
BTRFS_COMPAT_EXTENT_TREE_V0 is introduced for a short time in kernel,
and it's over 10 years ago.

Nowadays there should be no user for that feature, and kernel has remove
this support in Jun, 2018. There is no need for btrfs-progs to support
it.

This patch will remove EXTENT_TREE_V0 related code and replace those
BUG_ON() to a more graceful error message.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2019-06-05 18:00:07 +02:00

2794 lines
66 KiB
C

/*
* Copyright (C) 2008 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <dirent.h>
#include <zlib.h>
#include <getopt.h>
#include "kerncompat.h"
#include "crc32c.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "utils.h"
#include "volumes.h"
#include "extent_io.h"
#include "help.h"
#include "image/metadump.h"
#include "image/sanitize.h"
#define MAX_WORKER_THREADS (32)
struct async_work {
struct list_head list;
struct list_head ordered;
u64 start;
u64 size;
u8 *buffer;
size_t bufsize;
int error;
};
struct metadump_struct {
struct btrfs_root *root;
FILE *out;
union {
struct meta_cluster cluster;
char meta_cluster_bytes[BLOCK_SIZE];
};
pthread_t threads[MAX_WORKER_THREADS];
size_t num_threads;
pthread_mutex_t mutex;
pthread_cond_t cond;
struct rb_root name_tree;
struct list_head list;
struct list_head ordered;
size_t num_items;
size_t num_ready;
u64 pending_start;
u64 pending_size;
int compress_level;
int done;
int data;
enum sanitize_mode sanitize_names;
int error;
};
struct mdrestore_struct {
FILE *in;
FILE *out;
pthread_t threads[MAX_WORKER_THREADS];
size_t num_threads;
pthread_mutex_t mutex;
pthread_cond_t cond;
struct rb_root chunk_tree;
struct rb_root physical_tree;
struct list_head list;
struct list_head overlapping_chunks;
size_t num_items;
u32 nodesize;
u64 devid;
u64 alloced_chunks;
u64 last_physical_offset;
u8 uuid[BTRFS_UUID_SIZE];
u8 fsid[BTRFS_FSID_SIZE];
int compress_method;
int done;
int error;
int old_restore;
int fixup_offset;
int multi_devices;
int clear_space_cache;
struct btrfs_fs_info *info;
};
static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
u64 search, u64 cluster_bytenr);
static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size);
static void csum_block(u8 *buf, size_t len)
{
u8 result[btrfs_csum_sizes[BTRFS_CSUM_TYPE_CRC32]];
u32 crc = ~(u32)0;
crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE);
btrfs_csum_final(crc, result);
memcpy(buf, result, btrfs_csum_sizes[BTRFS_CSUM_TYPE_CRC32]);
}
static int has_name(struct btrfs_key *key)
{
switch (key->type) {
case BTRFS_DIR_ITEM_KEY:
case BTRFS_DIR_INDEX_KEY:
case BTRFS_INODE_REF_KEY:
case BTRFS_INODE_EXTREF_KEY:
case BTRFS_XATTR_ITEM_KEY:
return 1;
default:
break;
}
return 0;
}
static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
{
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l);
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l);
if (fuzz && ins->logical >= entry->logical &&
ins->logical < entry->logical + entry->bytes)
return 0;
if (ins->logical < entry->logical)
return -1;
else if (ins->logical > entry->logical)
return 1;
return 0;
}
static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
{
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p);
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p);
if (fuzz && ins->physical >= entry->physical &&
ins->physical < entry->physical + entry->bytes)
return 0;
if (fuzz && entry->physical >= ins->physical &&
entry->physical < ins->physical + ins->bytes)
return 0;
if (ins->physical < entry->physical)
return -1;
else if (ins->physical > entry->physical)
return 1;
return 0;
}
static void tree_insert(struct rb_root *root, struct rb_node *ins,
int (*cmp)(struct rb_node *a, struct rb_node *b,
int fuzz))
{
struct rb_node ** p = &root->rb_node;
struct rb_node * parent = NULL;
int dir;
while(*p) {
parent = *p;
dir = cmp(*p, ins, 1);
if (dir < 0)
p = &(*p)->rb_left;
else if (dir > 0)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(ins, parent, p);
rb_insert_color(ins, root);
}
static struct rb_node *tree_search(struct rb_root *root,
struct rb_node *search,
int (*cmp)(struct rb_node *a,
struct rb_node *b, int fuzz),
int fuzz)
{
struct rb_node *n = root->rb_node;
int dir;
while (n) {
dir = cmp(n, search, fuzz);
if (dir < 0)
n = n->rb_left;
else if (dir > 0)
n = n->rb_right;
else
return n;
}
return NULL;
}
static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical,
u64 *size, u64 *physical_dup)
{
struct fs_chunk *fs_chunk;
struct rb_node *entry;
struct fs_chunk search;
u64 offset;
if (logical == BTRFS_SUPER_INFO_OFFSET)
return logical;
search.logical = logical;
entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1);
if (!entry) {
if (mdres->in != stdin)
warning("cannot find a chunk, using logical");
return logical;
}
fs_chunk = rb_entry(entry, struct fs_chunk, l);
if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical)
BUG();
offset = search.logical - fs_chunk->logical;
if (physical_dup) {
/* Only in dup case, physical_dup is not equal to 0 */
if (fs_chunk->physical_dup)
*physical_dup = fs_chunk->physical_dup + offset;
else
*physical_dup = 0;
}
*size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical);
return fs_chunk->physical + offset;
}
/*
* zero inline extents and csum items
*/
static void zero_items(struct metadump_struct *md, u8 *dst,
struct extent_buffer *src)
{
struct btrfs_file_extent_item *fi;
struct btrfs_item *item;
struct btrfs_key key;
u32 nritems = btrfs_header_nritems(src);
size_t size;
unsigned long ptr;
int i, extent_type;
for (i = 0; i < nritems; i++) {
item = btrfs_item_nr(i);
btrfs_item_key_to_cpu(src, &key, i);
if (key.type == BTRFS_CSUM_ITEM_KEY) {
size = btrfs_item_size_nr(src, i);
memset(dst + btrfs_leaf_data(src) +
btrfs_item_offset_nr(src, i), 0, size);
continue;
}
if (md->sanitize_names && has_name(&key)) {
sanitize_name(md->sanitize_names, &md->name_tree, dst,
src, &key, i);
continue;
}
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(src, fi);
if (extent_type != BTRFS_FILE_EXTENT_INLINE)
continue;
ptr = btrfs_file_extent_inline_start(fi);
size = btrfs_file_extent_inline_item_len(src, item);
memset(dst + ptr, 0, size);
}
}
/*
* copy buffer and zero useless data in the buffer
*/
static void copy_buffer(struct metadump_struct *md, u8 *dst,
struct extent_buffer *src)
{
int level;
size_t size;
u32 nritems;
memcpy(dst, src->data, src->len);
if (src->start == BTRFS_SUPER_INFO_OFFSET)
return;
level = btrfs_header_level(src);
nritems = btrfs_header_nritems(src);
if (nritems == 0) {
size = sizeof(struct btrfs_header);
memset(dst + size, 0, src->len - size);
} else if (level == 0) {
size = btrfs_leaf_data(src) +
btrfs_item_offset_nr(src, nritems - 1) -
btrfs_item_nr_offset(nritems);
memset(dst + btrfs_item_nr_offset(nritems), 0, size);
zero_items(md, dst, src);
} else {
size = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nritems;
memset(dst + size, 0, src->len - size);
}
csum_block(dst, src->len);
}
static void *dump_worker(void *data)
{
struct metadump_struct *md = (struct metadump_struct *)data;
struct async_work *async;
int ret;
while (1) {
pthread_mutex_lock(&md->mutex);
while (list_empty(&md->list)) {
if (md->done) {
pthread_mutex_unlock(&md->mutex);
goto out;
}
pthread_cond_wait(&md->cond, &md->mutex);
}
async = list_entry(md->list.next, struct async_work, list);
list_del_init(&async->list);
pthread_mutex_unlock(&md->mutex);
if (md->compress_level > 0) {
u8 *orig = async->buffer;
async->bufsize = compressBound(async->size);
async->buffer = malloc(async->bufsize);
if (!async->buffer) {
error("not enough memory for async buffer");
pthread_mutex_lock(&md->mutex);
if (!md->error)
md->error = -ENOMEM;
pthread_mutex_unlock(&md->mutex);
pthread_exit(NULL);
}
ret = compress2(async->buffer,
(unsigned long *)&async->bufsize,
orig, async->size, md->compress_level);
if (ret != Z_OK)
async->error = 1;
free(orig);
}
pthread_mutex_lock(&md->mutex);
md->num_ready++;
pthread_mutex_unlock(&md->mutex);
}
out:
pthread_exit(NULL);
}
static void meta_cluster_init(struct metadump_struct *md, u64 start)
{
struct meta_cluster_header *header;
md->num_items = 0;
md->num_ready = 0;
header = &md->cluster.header;
header->magic = cpu_to_le64(HEADER_MAGIC);
header->bytenr = cpu_to_le64(start);
header->nritems = cpu_to_le32(0);
header->compress = md->compress_level > 0 ?
COMPRESS_ZLIB : COMPRESS_NONE;
}
static void metadump_destroy(struct metadump_struct *md, int num_threads)
{
int i;
struct rb_node *n;
pthread_mutex_lock(&md->mutex);
md->done = 1;
pthread_cond_broadcast(&md->cond);
pthread_mutex_unlock(&md->mutex);
for (i = 0; i < num_threads; i++)
pthread_join(md->threads[i], NULL);
pthread_cond_destroy(&md->cond);
pthread_mutex_destroy(&md->mutex);
while ((n = rb_first(&md->name_tree))) {
struct name *name;
name = rb_entry(n, struct name, n);
rb_erase(n, &md->name_tree);
free(name->val);
free(name->sub);
free(name);
}
}
static int metadump_init(struct metadump_struct *md, struct btrfs_root *root,
FILE *out, int num_threads, int compress_level,
enum sanitize_mode sanitize_names)
{
int i, ret = 0;
memset(md, 0, sizeof(*md));
INIT_LIST_HEAD(&md->list);
INIT_LIST_HEAD(&md->ordered);
md->root = root;
md->out = out;
md->pending_start = (u64)-1;
md->compress_level = compress_level;
md->sanitize_names = sanitize_names;
if (sanitize_names == SANITIZE_COLLISIONS)
crc32c_optimization_init();
md->name_tree.rb_node = NULL;
md->num_threads = num_threads;
pthread_cond_init(&md->cond, NULL);
pthread_mutex_init(&md->mutex, NULL);
meta_cluster_init(md, 0);
if (!num_threads)
return 0;
for (i = 0; i < num_threads; i++) {
ret = pthread_create(md->threads + i, NULL, dump_worker, md);
if (ret)
break;
}
if (ret)
metadump_destroy(md, i + 1);
return ret;
}
static int write_zero(FILE *out, size_t size)
{
static char zero[BLOCK_SIZE];
return fwrite(zero, size, 1, out);
}
static int write_buffers(struct metadump_struct *md, u64 *next)
{
struct meta_cluster_header *header = &md->cluster.header;
struct meta_cluster_item *item;
struct async_work *async;
u64 bytenr = 0;
u32 nritems = 0;
int ret;
int err = 0;
if (list_empty(&md->ordered))
goto out;
/* wait until all buffers are compressed */
while (!err && md->num_items > md->num_ready) {
struct timespec ts = {
.tv_sec = 0,
.tv_nsec = 10000000,
};
pthread_mutex_unlock(&md->mutex);
nanosleep(&ts, NULL);
pthread_mutex_lock(&md->mutex);
err = md->error;
}
if (err) {
errno = -err;
error("one of the threads failed: %m");
goto out;
}
/* setup and write index block */
list_for_each_entry(async, &md->ordered, ordered) {
item = &md->cluster.items[nritems];
item->bytenr = cpu_to_le64(async->start);
item->size = cpu_to_le32(async->bufsize);
nritems++;
}
header->nritems = cpu_to_le32(nritems);
ret = fwrite(&md->cluster, BLOCK_SIZE, 1, md->out);
if (ret != 1) {
error("unable to write out cluster: %m");
return -errno;
}
/* write buffers */
bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE;
while (!list_empty(&md->ordered)) {
async = list_entry(md->ordered.next, struct async_work,
ordered);
list_del_init(&async->ordered);
bytenr += async->bufsize;
if (!err)
ret = fwrite(async->buffer, async->bufsize, 1,
md->out);
if (ret != 1) {
error("unable to write out cluster: %m");
err = -errno;
ret = 0;
}
free(async->buffer);
free(async);
}
/* zero unused space in the last block */
if (!err && bytenr & BLOCK_MASK) {
size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
bytenr += size;
ret = write_zero(md->out, size);
if (ret != 1) {
error("unable to zero out buffer: %m");
err = -errno;
}
}
out:
*next = bytenr;
return err;
}
static int read_data_extent(struct metadump_struct *md,
struct async_work *async)
{
struct btrfs_root *root = md->root;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 bytes_left = async->size;
u64 logical = async->start;
u64 offset = 0;
u64 read_len;
int num_copies;
int cur_mirror;
int ret;
num_copies = btrfs_num_copies(root->fs_info, logical, bytes_left);
/* Try our best to read data, just like read_tree_block() */
for (cur_mirror = 1; cur_mirror <= num_copies; cur_mirror++) {
while (bytes_left) {
read_len = bytes_left;
ret = read_extent_data(fs_info,
(char *)(async->buffer + offset),
logical, &read_len, cur_mirror);
if (ret < 0)
break;
offset += read_len;
logical += read_len;
bytes_left -= read_len;
}
}
if (bytes_left)
return -EIO;
return 0;
}
static int get_dev_fd(struct btrfs_root *root)
{
struct btrfs_device *dev;
dev = list_first_entry(&root->fs_info->fs_devices->devices,
struct btrfs_device, dev_list);
return dev->fd;
}
static int flush_pending(struct metadump_struct *md, int done)
{
struct async_work *async = NULL;
struct extent_buffer *eb;
u64 start = 0;
u64 size;
size_t offset;
int ret = 0;
if (md->pending_size) {
async = calloc(1, sizeof(*async));
if (!async)
return -ENOMEM;
async->start = md->pending_start;
async->size = md->pending_size;
async->bufsize = async->size;
async->buffer = malloc(async->bufsize);
if (!async->buffer) {
free(async);
return -ENOMEM;
}
offset = 0;
start = async->start;
size = async->size;
if (md->data) {
ret = read_data_extent(md, async);
if (ret) {
free(async->buffer);
free(async);
return ret;
}
}
/*
* Balance can make the mapping not cover the super block, so
* just copy directly from one of the devices.
*/
if (start == BTRFS_SUPER_INFO_OFFSET) {
int fd = get_dev_fd(md->root);
ret = pread64(fd, async->buffer, size, start);
if (ret < size) {
free(async->buffer);
free(async);
error("unable to read superblock at %llu: %m",
(unsigned long long)start);
return -errno;
}
size = 0;
ret = 0;
}
while (!md->data && size > 0) {
u64 this_read = min((u64)md->root->fs_info->nodesize,
size);
eb = read_tree_block(md->root->fs_info, start, 0);
if (!extent_buffer_uptodate(eb)) {
free(async->buffer);
free(async);
error("unable to read metadata block %llu",
(unsigned long long)start);
return -EIO;
}
copy_buffer(md, async->buffer + offset, eb);
free_extent_buffer(eb);
start += this_read;
offset += this_read;
size -= this_read;
}
md->pending_start = (u64)-1;
md->pending_size = 0;
} else if (!done) {
return 0;
}
pthread_mutex_lock(&md->mutex);
if (async) {
list_add_tail(&async->ordered, &md->ordered);
md->num_items++;
if (md->compress_level > 0) {
list_add_tail(&async->list, &md->list);
pthread_cond_signal(&md->cond);
} else {
md->num_ready++;
}
}
if (md->num_items >= ITEMS_PER_CLUSTER || done) {
ret = write_buffers(md, &start);
if (ret) {
errno = -ret;
error("unable to write buffers: %m");
} else {
meta_cluster_init(md, start);
}
}
pthread_mutex_unlock(&md->mutex);
return ret;
}
static int add_extent(u64 start, u64 size, struct metadump_struct *md,
int data)
{
int ret;
if (md->data != data ||
md->pending_size + size > MAX_PENDING_SIZE ||
md->pending_start + md->pending_size != start) {
ret = flush_pending(md, 0);
if (ret)
return ret;
md->pending_start = start;
}
readahead_tree_block(md->root->fs_info, start, 0);
md->pending_size += size;
md->data = data;
return 0;
}
static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb,
struct metadump_struct *metadump, int root_tree)
{
struct extent_buffer *tmp;
struct btrfs_root_item *ri;
struct btrfs_key key;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 bytenr;
int level;
int nritems = 0;
int i = 0;
int ret;
ret = add_extent(btrfs_header_bytenr(eb), fs_info->nodesize,
metadump, 0);
if (ret) {
error("unable to add metadata block %llu: %d",
btrfs_header_bytenr(eb), ret);
return ret;
}
if (btrfs_header_level(eb) == 0 && !root_tree)
return 0;
level = btrfs_header_level(eb);
nritems = btrfs_header_nritems(eb);
for (i = 0; i < nritems; i++) {
if (level == 0) {
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_ROOT_ITEM_KEY)
continue;
ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
bytenr = btrfs_disk_root_bytenr(eb, ri);
tmp = read_tree_block(fs_info, bytenr, 0);
if (!extent_buffer_uptodate(tmp)) {
error("unable to read log root block");
return -EIO;
}
ret = copy_tree_blocks(root, tmp, metadump, 0);
free_extent_buffer(tmp);
if (ret)
return ret;
} else {
bytenr = btrfs_node_blockptr(eb, i);
tmp = read_tree_block(fs_info, bytenr, 0);
if (!extent_buffer_uptodate(tmp)) {
error("unable to read log root block");
return -EIO;
}
ret = copy_tree_blocks(root, tmp, metadump, root_tree);
free_extent_buffer(tmp);
if (ret)
return ret;
}
}
return 0;
}
static int copy_log_trees(struct btrfs_root *root,
struct metadump_struct *metadump)
{
u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy);
if (blocknr == 0)
return 0;
if (!root->fs_info->log_root_tree ||
!root->fs_info->log_root_tree->node) {
error("unable to copy tree log, it has not been setup");
return -EIO;
}
return copy_tree_blocks(root, root->fs_info->log_root_tree->node,
metadump, 1);
}
static int copy_space_cache(struct btrfs_root *root,
struct metadump_struct *metadump,
struct btrfs_path *path)
{
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 bytenr, num_bytes;
int ret;
root = root->fs_info->tree_root;
key.objectid = 0;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
error("free space inode not found: %d", ret);
return ret;
}
leaf = path->nodes[0];
while (1) {
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
error("cannot go to next leaf %d", ret);
return ret;
}
if (ret > 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.type != BTRFS_EXTENT_DATA_KEY) {
path->slots[0]++;
continue;
}
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) !=
BTRFS_FILE_EXTENT_REG) {
path->slots[0]++;
continue;
}
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
ret = add_extent(bytenr, num_bytes, metadump, 1);
if (ret) {
error("unable to add space cache blocks %d", ret);
btrfs_release_path(path);
return ret;
}
path->slots[0]++;
}
return 0;
}
static int copy_from_extent_tree(struct metadump_struct *metadump,
struct btrfs_path *path)
{
struct btrfs_root *extent_root;
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_key key;
u64 bytenr;
u64 num_bytes;
int ret;
extent_root = metadump->root->fs_info->extent_root;
bytenr = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0) {
error("extent root not found: %d", ret);
return ret;
}
ret = 0;
leaf = path->nodes[0];
while (1) {
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0) {
error("cannot go to next leaf %d", ret);
break;
}
if (ret > 0) {
ret = 0;
break;
}
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid < bytenr ||
(key.type != BTRFS_EXTENT_ITEM_KEY &&
key.type != BTRFS_METADATA_ITEM_KEY)) {
path->slots[0]++;
continue;
}
bytenr = key.objectid;
if (key.type == BTRFS_METADATA_ITEM_KEY) {
num_bytes = extent_root->fs_info->nodesize;
} else {
num_bytes = key.offset;
}
if (num_bytes == 0) {
error("extent length 0 at bytenr %llu key type %d",
(unsigned long long)bytenr, key.type);
ret = -EIO;
break;
}
if (btrfs_item_size_nr(leaf, path->slots[0]) > sizeof(*ei)) {
ei = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
if (btrfs_extent_flags(leaf, ei) &
BTRFS_EXTENT_FLAG_TREE_BLOCK) {
ret = add_extent(bytenr, num_bytes, metadump,
0);
if (ret) {
error("unable to add block %llu: %d",
(unsigned long long)bytenr, ret);
break;
}
}
} else {
error(
"either extent tree is corrupted or deprecated extent ref format");
ret = -EIO;
break;
}
bytenr += num_bytes;
}
btrfs_release_path(path);
return ret;
}
static int create_metadump(const char *input, FILE *out, int num_threads,
int compress_level, enum sanitize_mode sanitize,
int walk_trees)
{
struct btrfs_root *root;
struct btrfs_path path;
struct metadump_struct metadump;
int ret;
int err = 0;
root = open_ctree(input, 0, 0);
if (!root) {
error("open ctree failed");
return -EIO;
}
ret = metadump_init(&metadump, root, out, num_threads,
compress_level, sanitize);
if (ret) {
error("failed to initialize metadump: %d", ret);
close_ctree(root);
return ret;
}
ret = add_extent(BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE,
&metadump, 0);
if (ret) {
error("unable to add metadata: %d", ret);
err = ret;
goto out;
}
btrfs_init_path(&path);
if (walk_trees) {
ret = copy_tree_blocks(root, root->fs_info->chunk_root->node,
&metadump, 1);
if (ret) {
err = ret;
goto out;
}
ret = copy_tree_blocks(root, root->fs_info->tree_root->node,
&metadump, 1);
if (ret) {
err = ret;
goto out;
}
} else {
ret = copy_from_extent_tree(&metadump, &path);
if (ret) {
err = ret;
goto out;
}
}
ret = copy_log_trees(root, &metadump);
if (ret) {
err = ret;
goto out;
}
ret = copy_space_cache(root, &metadump, &path);
out:
ret = flush_pending(&metadump, 1);
if (ret) {
if (!err)
err = ret;
error("failed to flush pending data: %d", ret);
}
metadump_destroy(&metadump, num_threads);
btrfs_release_path(&path);
ret = close_ctree(root);
return err ? err : ret;
}
static void update_super_old(u8 *buffer)
{
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
struct btrfs_chunk *chunk;
struct btrfs_disk_key *key;
u32 sectorsize = btrfs_super_sectorsize(super);
u64 flags = btrfs_super_flags(super);
flags |= BTRFS_SUPER_FLAG_METADUMP;
btrfs_set_super_flags(super, flags);
key = (struct btrfs_disk_key *)(super->sys_chunk_array);
chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
sizeof(struct btrfs_disk_key));
btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
btrfs_set_disk_key_offset(key, 0);
btrfs_set_stack_chunk_length(chunk, (u64)-1);
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
btrfs_set_stack_chunk_io_align(chunk, sectorsize);
btrfs_set_stack_chunk_io_width(chunk, sectorsize);
btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
btrfs_set_stack_chunk_num_stripes(chunk, 1);
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
chunk->stripe.devid = super->dev_item.devid;
btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
}
static int update_super(struct mdrestore_struct *mdres, u8 *buffer)
{
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
struct btrfs_chunk *chunk;
struct btrfs_disk_key *disk_key;
struct btrfs_key key;
u64 flags = btrfs_super_flags(super);
u32 new_array_size = 0;
u32 array_size;
u32 cur = 0;
u8 *ptr, *write_ptr;
int old_num_stripes;
write_ptr = ptr = super->sys_chunk_array;
array_size = btrfs_super_sys_array_size(super);
while (cur < array_size) {
disk_key = (struct btrfs_disk_key *)ptr;
btrfs_disk_key_to_cpu(&key, disk_key);
new_array_size += sizeof(*disk_key);
memmove(write_ptr, ptr, sizeof(*disk_key));
write_ptr += sizeof(*disk_key);
ptr += sizeof(*disk_key);
cur += sizeof(*disk_key);
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
u64 type, physical, physical_dup, size = 0;
chunk = (struct btrfs_chunk *)ptr;
old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
chunk = (struct btrfs_chunk *)write_ptr;
memmove(write_ptr, ptr, sizeof(*chunk));
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
type = btrfs_stack_chunk_type(chunk);
if (type & BTRFS_BLOCK_GROUP_DUP) {
new_array_size += sizeof(struct btrfs_stripe);
write_ptr += sizeof(struct btrfs_stripe);
} else {
btrfs_set_stack_chunk_num_stripes(chunk, 1);
btrfs_set_stack_chunk_type(chunk,
BTRFS_BLOCK_GROUP_SYSTEM);
}
chunk->stripe.devid = super->dev_item.devid;
physical = logical_to_physical(mdres, key.offset,
&size, &physical_dup);
if (size != (u64)-1)
btrfs_set_stack_stripe_offset(&chunk->stripe,
physical);
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
BTRFS_UUID_SIZE);
new_array_size += sizeof(*chunk);
} else {
error("bogus key in the sys array %d", key.type);
return -EIO;
}
write_ptr += sizeof(*chunk);
ptr += btrfs_chunk_item_size(old_num_stripes);
cur += btrfs_chunk_item_size(old_num_stripes);
}
if (mdres->clear_space_cache)
btrfs_set_super_cache_generation(super, 0);
flags |= BTRFS_SUPER_FLAG_METADUMP_V2;
btrfs_set_super_flags(super, flags);
btrfs_set_super_sys_array_size(super, new_array_size);
btrfs_set_super_num_devices(super, 1);
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
return 0;
}
static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
{
struct extent_buffer *eb;
eb = calloc(1, sizeof(struct extent_buffer) + size);
if (!eb)
return NULL;
eb->start = bytenr;
eb->len = size;
return eb;
}
static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
{
struct btrfs_item *item;
u32 nritems;
u32 old_size;
u32 old_data_start;
u32 size_diff;
u32 data_end;
int i;
old_size = btrfs_item_size_nr(eb, slot);
if (old_size == new_size)
return;
nritems = btrfs_header_nritems(eb);
data_end = btrfs_item_offset_nr(eb, nritems - 1);
old_data_start = btrfs_item_offset_nr(eb, slot);
size_diff = old_size - new_size;
for (i = slot; i < nritems; i++) {
u32 ioff;
item = btrfs_item_nr(i);
ioff = btrfs_item_offset(eb, item);
btrfs_set_item_offset(eb, item, ioff + size_diff);
}
memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff,
btrfs_leaf_data(eb) + data_end,
old_data_start + new_size - data_end);
item = btrfs_item_nr(slot);
btrfs_set_item_size(eb, item, new_size);
}
static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
struct async_work *async, u8 *buffer,
size_t size)
{
struct extent_buffer *eb;
size_t size_left = size;
u64 bytenr = async->start;
int i;
if (size_left % mdres->nodesize)
return 0;
eb = alloc_dummy_eb(bytenr, mdres->nodesize);
if (!eb)
return -ENOMEM;
while (size_left) {
eb->start = bytenr;
memcpy(eb->data, buffer, mdres->nodesize);
if (btrfs_header_bytenr(eb) != bytenr)
break;
if (memcmp(mdres->fsid,
eb->data + offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE))
break;
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
goto next;
if (btrfs_header_level(eb) != 0)
goto next;
for (i = 0; i < btrfs_header_nritems(eb); i++) {
struct btrfs_chunk *chunk;
struct btrfs_key key;
u64 type, physical, physical_dup, size = (u64)-1;
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_CHUNK_ITEM_KEY)
continue;
size = 0;
physical = logical_to_physical(mdres, key.offset,
&size, &physical_dup);
if (!physical_dup)
truncate_item(eb, i, sizeof(*chunk));
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
/* Zero out the RAID profile */
type = btrfs_chunk_type(eb, chunk);
type &= (BTRFS_BLOCK_GROUP_DATA |
BTRFS_BLOCK_GROUP_SYSTEM |
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DUP);
btrfs_set_chunk_type(eb, chunk, type);
if (!physical_dup)
btrfs_set_chunk_num_stripes(eb, chunk, 1);
btrfs_set_chunk_sub_stripes(eb, chunk, 0);
btrfs_set_stripe_devid_nr(eb, chunk, 0, mdres->devid);
if (size != (u64)-1)
btrfs_set_stripe_offset_nr(eb, chunk, 0,
physical);
/* update stripe 2 offset */
if (physical_dup)
btrfs_set_stripe_offset_nr(eb, chunk, 1,
physical_dup);
write_extent_buffer(eb, mdres->uuid,
(unsigned long)btrfs_stripe_dev_uuid_nr(
chunk, 0),
BTRFS_UUID_SIZE);
}
memcpy(buffer, eb->data, eb->len);
csum_block(buffer, eb->len);
next:
size_left -= mdres->nodesize;
buffer += mdres->nodesize;
bytenr += mdres->nodesize;
}
free(eb);
return 0;
}
static void write_backup_supers(int fd, u8 *buf)
{
struct btrfs_super_block *super = (struct btrfs_super_block *)buf;
struct stat st;
u64 size;
u64 bytenr;
int i;
int ret;
if (fstat(fd, &st)) {
error(
"cannot stat restore point, won't be able to write backup supers: %m");
return;
}
size = btrfs_device_size(fd, &st);
for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
if (bytenr + BTRFS_SUPER_INFO_SIZE > size)
break;
btrfs_set_super_bytenr(super, bytenr);
csum_block(buf, BTRFS_SUPER_INFO_SIZE);
ret = pwrite64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr);
if (ret < BTRFS_SUPER_INFO_SIZE) {
if (ret < 0)
error(
"problem writing out backup super block %d: %m", i);
else
error("short write writing out backup super block");
break;
}
}
}
static void *restore_worker(void *data)
{
struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
struct async_work *async;
size_t size;
u8 *buffer;
u8 *outbuf;
int outfd;
int ret;
int compress_size = MAX_PENDING_SIZE * 4;
outfd = fileno(mdres->out);
buffer = malloc(compress_size);
if (!buffer) {
error("not enough memory for restore worker buffer");
pthread_mutex_lock(&mdres->mutex);
if (!mdres->error)
mdres->error = -ENOMEM;
pthread_mutex_unlock(&mdres->mutex);
pthread_exit(NULL);
}
while (1) {
u64 bytenr, physical_dup;
off_t offset = 0;
int err = 0;
pthread_mutex_lock(&mdres->mutex);
while (!mdres->nodesize || list_empty(&mdres->list)) {
if (mdres->done) {
pthread_mutex_unlock(&mdres->mutex);
goto out;
}
pthread_cond_wait(&mdres->cond, &mdres->mutex);
}
async = list_entry(mdres->list.next, struct async_work, list);
list_del_init(&async->list);
if (mdres->compress_method == COMPRESS_ZLIB) {
size = compress_size;
pthread_mutex_unlock(&mdres->mutex);
ret = uncompress(buffer, (unsigned long *)&size,
async->buffer, async->bufsize);
pthread_mutex_lock(&mdres->mutex);
if (ret != Z_OK) {
error("decompression failed with %d", ret);
err = -EIO;
}
outbuf = buffer;
} else {
outbuf = async->buffer;
size = async->bufsize;
}
if (!mdres->multi_devices) {
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
if (mdres->old_restore) {
update_super_old(outbuf);
} else {
ret = update_super(mdres, outbuf);
if (ret)
err = ret;
}
} else if (!mdres->old_restore) {
ret = fixup_chunk_tree_block(mdres, async, outbuf, size);
if (ret)
err = ret;
}
}
if (!mdres->fixup_offset) {
while (size) {
u64 chunk_size = size;
physical_dup = 0;
if (!mdres->multi_devices && !mdres->old_restore)
bytenr = logical_to_physical(mdres,
async->start + offset,
&chunk_size,
&physical_dup);
else
bytenr = async->start + offset;
ret = pwrite64(outfd, outbuf+offset, chunk_size,
bytenr);
if (ret != chunk_size)
goto error;
if (physical_dup)
ret = pwrite64(outfd, outbuf+offset,
chunk_size,
physical_dup);
if (ret != chunk_size)
goto error;
size -= chunk_size;
offset += chunk_size;
continue;
error:
if (ret < 0) {
error("unable to write to device: %m");
err = errno;
} else {
error("short write");
err = -EIO;
}
}
} else if (async->start != BTRFS_SUPER_INFO_OFFSET) {
ret = write_data_to_disk(mdres->info, outbuf, async->start, size, 0);
if (ret) {
error("failed to write data");
exit(1);
}
}
/* backup super blocks are already there at fixup_offset stage */
if (!mdres->multi_devices && async->start == BTRFS_SUPER_INFO_OFFSET)
write_backup_supers(outfd, outbuf);
if (err && !mdres->error)
mdres->error = err;
mdres->num_items--;
pthread_mutex_unlock(&mdres->mutex);
free(async->buffer);
free(async);
}
out:
free(buffer);
pthread_exit(NULL);
}
static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads)
{
struct rb_node *n;
int i;
while ((n = rb_first(&mdres->chunk_tree))) {
struct fs_chunk *entry;
entry = rb_entry(n, struct fs_chunk, l);
rb_erase(n, &mdres->chunk_tree);
rb_erase(&entry->p, &mdres->physical_tree);
free(entry);
}
pthread_mutex_lock(&mdres->mutex);
mdres->done = 1;
pthread_cond_broadcast(&mdres->cond);
pthread_mutex_unlock(&mdres->mutex);
for (i = 0; i < num_threads; i++)
pthread_join(mdres->threads[i], NULL);
pthread_cond_destroy(&mdres->cond);
pthread_mutex_destroy(&mdres->mutex);
}
static int mdrestore_init(struct mdrestore_struct *mdres,
FILE *in, FILE *out, int old_restore,
int num_threads, int fixup_offset,
struct btrfs_fs_info *info, int multi_devices)
{
int i, ret = 0;
memset(mdres, 0, sizeof(*mdres));
pthread_cond_init(&mdres->cond, NULL);
pthread_mutex_init(&mdres->mutex, NULL);
INIT_LIST_HEAD(&mdres->list);
INIT_LIST_HEAD(&mdres->overlapping_chunks);
mdres->in = in;
mdres->out = out;
mdres->old_restore = old_restore;
mdres->chunk_tree.rb_node = NULL;
mdres->fixup_offset = fixup_offset;
mdres->info = info;
mdres->multi_devices = multi_devices;
mdres->clear_space_cache = 0;
mdres->last_physical_offset = 0;
mdres->alloced_chunks = 0;
if (!num_threads)
return 0;
mdres->num_threads = num_threads;
for (i = 0; i < num_threads; i++) {
ret = pthread_create(&mdres->threads[i], NULL, restore_worker,
mdres);
if (ret) {
/* pthread_create returns errno directly */
ret = -ret;
break;
}
}
if (ret)
mdrestore_destroy(mdres, i + 1);
return ret;
}
static int fill_mdres_info(struct mdrestore_struct *mdres,
struct async_work *async)
{
struct btrfs_super_block *super;
u8 *buffer = NULL;
u8 *outbuf;
int ret;
/* We've already been initialized */
if (mdres->nodesize)
return 0;
if (mdres->compress_method == COMPRESS_ZLIB) {
size_t size = MAX_PENDING_SIZE * 2;
buffer = malloc(MAX_PENDING_SIZE * 2);
if (!buffer)
return -ENOMEM;
ret = uncompress(buffer, (unsigned long *)&size,
async->buffer, async->bufsize);
if (ret != Z_OK) {
error("decompression failed with %d", ret);
free(buffer);
return -EIO;
}
outbuf = buffer;
} else {
outbuf = async->buffer;
}
super = (struct btrfs_super_block *)outbuf;
mdres->nodesize = btrfs_super_nodesize(super);
if (btrfs_super_incompat_flags(super) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
else
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
mdres->devid = le64_to_cpu(super->dev_item.devid);
free(buffer);
return 0;
}
static int add_cluster(struct meta_cluster *cluster,
struct mdrestore_struct *mdres, u64 *next)
{
struct meta_cluster_item *item;
struct meta_cluster_header *header = &cluster->header;
struct async_work *async;
u64 bytenr;
u32 i, nritems;
int ret;
pthread_mutex_lock(&mdres->mutex);
mdres->compress_method = header->compress;
pthread_mutex_unlock(&mdres->mutex);
bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE;
nritems = le32_to_cpu(header->nritems);
for (i = 0; i < nritems; i++) {
item = &cluster->items[i];
async = calloc(1, sizeof(*async));
if (!async) {
error("not enough memory for async data");
return -ENOMEM;
}
async->start = le64_to_cpu(item->bytenr);
async->bufsize = le32_to_cpu(item->size);
async->buffer = malloc(async->bufsize);
if (!async->buffer) {
error("not enough memory for async buffer");
free(async);
return -ENOMEM;
}
ret = fread(async->buffer, async->bufsize, 1, mdres->in);
if (ret != 1) {
error("unable to read buffer: %m");
free(async->buffer);
free(async);
return -EIO;
}
bytenr += async->bufsize;
pthread_mutex_lock(&mdres->mutex);
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
ret = fill_mdres_info(mdres, async);
if (ret) {
error("unable to set up restore state");
pthread_mutex_unlock(&mdres->mutex);
free(async->buffer);
free(async);
return ret;
}
}
list_add_tail(&async->list, &mdres->list);
mdres->num_items++;
pthread_cond_signal(&mdres->cond);
pthread_mutex_unlock(&mdres->mutex);
}
if (bytenr & BLOCK_MASK) {
char buffer[BLOCK_MASK];
size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
bytenr += size;
ret = fread(buffer, size, 1, mdres->in);
if (ret != 1) {
error("failed to read buffer: %m");
return -EIO;
}
}
*next = bytenr;
return 0;
}
static int wait_for_worker(struct mdrestore_struct *mdres)
{
int ret = 0;
pthread_mutex_lock(&mdres->mutex);
ret = mdres->error;
while (!ret && mdres->num_items > 0) {
struct timespec ts = {
.tv_sec = 0,
.tv_nsec = 10000000,
};
pthread_mutex_unlock(&mdres->mutex);
nanosleep(&ts, NULL);
pthread_mutex_lock(&mdres->mutex);
ret = mdres->error;
}
pthread_mutex_unlock(&mdres->mutex);
return ret;
}
static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer,
u64 bytenr, u64 item_bytenr, u32 bufsize,
u64 cluster_bytenr)
{
struct extent_buffer *eb;
int ret = 0;
int i;
eb = alloc_dummy_eb(bytenr, mdres->nodesize);
if (!eb) {
ret = -ENOMEM;
goto out;
}
while (item_bytenr != bytenr) {
buffer += mdres->nodesize;
item_bytenr += mdres->nodesize;
}
memcpy(eb->data, buffer, mdres->nodesize);
if (btrfs_header_bytenr(eb) != bytenr) {
error("eb bytenr does not match found bytenr: %llu != %llu",
(unsigned long long)btrfs_header_bytenr(eb),
(unsigned long long)bytenr);
ret = -EIO;
goto out;
}
if (memcmp(mdres->fsid, eb->data + offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE)) {
error("filesystem metadata UUID of eb %llu does not match",
(unsigned long long)bytenr);
ret = -EIO;
goto out;
}
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) {
error("wrong eb %llu owner %llu",
(unsigned long long)bytenr,
(unsigned long long)btrfs_header_owner(eb));
ret = -EIO;
goto out;
}
for (i = 0; i < btrfs_header_nritems(eb); i++) {
struct btrfs_chunk *chunk;
struct fs_chunk *fs_chunk;
struct btrfs_key key;
u64 type;
if (btrfs_header_level(eb)) {
u64 blockptr = btrfs_node_blockptr(eb, i);
ret = search_for_chunk_blocks(mdres, blockptr,
cluster_bytenr);
if (ret)
break;
continue;
}
/* Yay a leaf! We loves leafs! */
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_CHUNK_ITEM_KEY)
continue;
fs_chunk = malloc(sizeof(struct fs_chunk));
if (!fs_chunk) {
error("not enough memory to allocate chunk");
ret = -ENOMEM;
break;
}
memset(fs_chunk, 0, sizeof(*fs_chunk));
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
fs_chunk->logical = key.offset;
fs_chunk->physical = btrfs_stripe_offset_nr(eb, chunk, 0);
fs_chunk->bytes = btrfs_chunk_length(eb, chunk);
INIT_LIST_HEAD(&fs_chunk->list);
if (tree_search(&mdres->physical_tree, &fs_chunk->p,
physical_cmp, 1) != NULL)
list_add(&fs_chunk->list, &mdres->overlapping_chunks);
else
tree_insert(&mdres->physical_tree, &fs_chunk->p,
physical_cmp);
type = btrfs_chunk_type(eb, chunk);
if (type & BTRFS_BLOCK_GROUP_DUP) {
fs_chunk->physical_dup =
btrfs_stripe_offset_nr(eb, chunk, 1);
}
if (fs_chunk->physical_dup + fs_chunk->bytes >
mdres->last_physical_offset)
mdres->last_physical_offset = fs_chunk->physical_dup +
fs_chunk->bytes;
else if (fs_chunk->physical + fs_chunk->bytes >
mdres->last_physical_offset)
mdres->last_physical_offset = fs_chunk->physical +
fs_chunk->bytes;
mdres->alloced_chunks += fs_chunk->bytes;
/* in dup case, fs_chunk->bytes should add twice */
if (fs_chunk->physical_dup)
mdres->alloced_chunks += fs_chunk->bytes;
tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp);
}
out:
free(eb);
return ret;
}
/* If you have to ask you aren't worthy */
static int search_for_chunk_blocks(struct mdrestore_struct *mdres,
u64 search, u64 cluster_bytenr)
{
struct meta_cluster *cluster;
struct meta_cluster_header *header;
struct meta_cluster_item *item;
u64 current_cluster = cluster_bytenr, bytenr;
u64 item_bytenr;
u32 bufsize, nritems, i;
u32 max_size = MAX_PENDING_SIZE * 2;
u8 *buffer, *tmp = NULL;
int ret = 0;
cluster = malloc(BLOCK_SIZE);
if (!cluster) {
error("not enough memory for cluster");
return -ENOMEM;
}
buffer = malloc(max_size);
if (!buffer) {
error("not enough memory for buffer");
free(cluster);
return -ENOMEM;
}
if (mdres->compress_method == COMPRESS_ZLIB) {
tmp = malloc(max_size);
if (!tmp) {
error("not enough memory for buffer");
free(cluster);
free(buffer);
return -ENOMEM;
}
}
bytenr = current_cluster;
while (1) {
if (fseek(mdres->in, current_cluster, SEEK_SET)) {
error("seek failed: %m");
ret = -EIO;
break;
}
ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
if (ret == 0) {
if (cluster_bytenr != 0) {
cluster_bytenr = 0;
current_cluster = 0;
bytenr = 0;
continue;
}
error(
"unknown state after reading cluster at %llu, probably corrupted data",
cluster_bytenr);
ret = -EIO;
break;
} else if (ret < 0) {
error("unable to read image at %llu: %m",
(unsigned long long)cluster_bytenr);
break;
}
ret = 0;
header = &cluster->header;
if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
le64_to_cpu(header->bytenr) != current_cluster) {
error("bad header in metadump image");
ret = -EIO;
break;
}
bytenr += BLOCK_SIZE;
nritems = le32_to_cpu(header->nritems);
for (i = 0; i < nritems; i++) {
size_t size;
item = &cluster->items[i];
bufsize = le32_to_cpu(item->size);
item_bytenr = le64_to_cpu(item->bytenr);
if (bufsize > max_size) {
error("item %u too big: %u > %u", i, bufsize,
max_size);
ret = -EIO;
break;
}
if (mdres->compress_method == COMPRESS_ZLIB) {
ret = fread(tmp, bufsize, 1, mdres->in);
if (ret != 1) {
error("read error: %m");
ret = -EIO;
break;
}
size = max_size;
ret = uncompress(buffer,
(unsigned long *)&size, tmp,
bufsize);
if (ret != Z_OK) {
error("decompression failed with %d",
ret);
ret = -EIO;
break;
}
} else {
ret = fread(buffer, bufsize, 1, mdres->in);
if (ret != 1) {
error("read error: %m");
ret = -EIO;
break;
}
size = bufsize;
}
ret = 0;
if (item_bytenr <= search &&
item_bytenr + size > search) {
ret = read_chunk_block(mdres, buffer, search,
item_bytenr, size,
current_cluster);
if (!ret)
ret = 1;
break;
}
bytenr += bufsize;
}
if (ret) {
if (ret > 0)
ret = 0;
break;
}
if (bytenr & BLOCK_MASK)
bytenr += BLOCK_SIZE - (bytenr & BLOCK_MASK);
current_cluster = bytenr;
}
free(tmp);
free(buffer);
free(cluster);
return ret;
}
static int build_chunk_tree(struct mdrestore_struct *mdres,
struct meta_cluster *cluster)
{
struct btrfs_super_block *super;
struct meta_cluster_header *header;
struct meta_cluster_item *item = NULL;
u64 chunk_root_bytenr = 0;
u32 i, nritems;
u64 bytenr = 0;
u8 *buffer;
int ret;
/* We can't seek with stdin so don't bother doing this */
if (mdres->in == stdin)
return 0;
ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
if (ret <= 0) {
error("unable to read cluster: %m");
return -EIO;
}
ret = 0;
header = &cluster->header;
if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
le64_to_cpu(header->bytenr) != 0) {
error("bad header in metadump image");
return -EIO;
}
bytenr += BLOCK_SIZE;
mdres->compress_method = header->compress;
nritems = le32_to_cpu(header->nritems);
for (i = 0; i < nritems; i++) {
item = &cluster->items[i];
if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET)
break;
bytenr += le32_to_cpu(item->size);
if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) {
error("seek failed: %m");
return -EIO;
}
}
if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) {
error("did not find superblock at %llu",
le64_to_cpu(item->bytenr));
return -EINVAL;
}
buffer = malloc(le32_to_cpu(item->size));
if (!buffer) {
error("not enough memory to allocate buffer");
return -ENOMEM;
}
ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in);
if (ret != 1) {
error("unable to read buffer: %m");
free(buffer);
return -EIO;
}
if (mdres->compress_method == COMPRESS_ZLIB) {
size_t size = MAX_PENDING_SIZE * 2;
u8 *tmp;
tmp = malloc(MAX_PENDING_SIZE * 2);
if (!tmp) {
free(buffer);
return -ENOMEM;
}
ret = uncompress(tmp, (unsigned long *)&size,
buffer, le32_to_cpu(item->size));
if (ret != Z_OK) {
error("decompression failed with %d", ret);
free(buffer);
free(tmp);
return -EIO;
}
free(buffer);
buffer = tmp;
}
pthread_mutex_lock(&mdres->mutex);
super = (struct btrfs_super_block *)buffer;
chunk_root_bytenr = btrfs_super_chunk_root(super);
mdres->nodesize = btrfs_super_nodesize(super);
if (btrfs_super_incompat_flags(super) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
else
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
mdres->devid = le64_to_cpu(super->dev_item.devid);
free(buffer);
pthread_mutex_unlock(&mdres->mutex);
return search_for_chunk_blocks(mdres, chunk_root_bytenr, 0);
}
static int range_contains_super(u64 physical, u64 bytes)
{
u64 super_bytenr;
int i;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
super_bytenr = btrfs_sb_offset(i);
if (super_bytenr >= physical &&
super_bytenr < physical + bytes)
return 1;
}
return 0;
}
static void remap_overlapping_chunks(struct mdrestore_struct *mdres)
{
struct fs_chunk *fs_chunk;
while (!list_empty(&mdres->overlapping_chunks)) {
fs_chunk = list_first_entry(&mdres->overlapping_chunks,
struct fs_chunk, list);
list_del_init(&fs_chunk->list);
if (range_contains_super(fs_chunk->physical,
fs_chunk->bytes)) {
warning(
"remapping a chunk that had a super mirror inside of it, clearing space cache so we don't end up with corruption");
mdres->clear_space_cache = 1;
}
fs_chunk->physical = mdres->last_physical_offset;
tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp);
mdres->last_physical_offset += fs_chunk->bytes;
}
}
static int fixup_device_size(struct btrfs_trans_handle *trans,
struct mdrestore_struct *mdres, int out_fd)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_dev_item *dev_item;
struct btrfs_dev_extent *dev_ext;
struct btrfs_path path;
struct extent_buffer *leaf;
struct btrfs_root *root = fs_info->chunk_root;
struct btrfs_key key;
struct stat buf;
u64 devid, cur_devid;
u64 dev_size; /* Get from last dev extents */
int ret;
dev_item = &fs_info->super_copy->dev_item;
btrfs_init_path(&path);
devid = btrfs_stack_device_id(dev_item);
key.objectid = devid;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, fs_info->dev_root, &key, &path, 0, 0);
if (ret < 0) {
errno = -ret;
error("failed to locate last dev extent of devid %llu: %m",
devid);
btrfs_release_path(&path);
return ret;
}
if (ret == 0) {
error("found invalid dev extent devid %llu offset -1", devid);
btrfs_release_path(&path);
return -EUCLEAN;
}
ret = btrfs_previous_item(fs_info->dev_root, &path, devid,
BTRFS_DEV_EXTENT_KEY);
if (ret > 0)
ret = -ENOENT;
if (ret < 0) {
errno = -ret;
error("failed to locate last dev extent of devid %llu: %m",
devid);
btrfs_release_path(&path);
return ret;
}
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
dev_ext = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_dev_extent);
dev_size = key.offset + btrfs_dev_extent_length(path.nodes[0], dev_ext);
btrfs_release_path(&path);
btrfs_set_stack_device_total_bytes(dev_item, dev_size);
btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks);
ret = fstat(out_fd, &buf);
if (ret < 0) {
error("failed to stat result image: %m");
return -errno;
}
if (S_ISREG(buf.st_mode)) {
/* Don't forget to enlarge the real file */
ret = ftruncate64(out_fd, dev_size);
if (ret < 0) {
error("failed to enlarge result image: %m");
return -errno;
}
}
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = 0;
again:
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
if (ret < 0) {
error("search failed: %d", ret);
return ret;
}
while (1) {
leaf = path.nodes[0];
if (path.slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, &path);
if (ret < 0) {
error("cannot go to next leaf %d", ret);
exit(1);
}
if (ret > 0) {
ret = 0;
break;
}
leaf = path.nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
if (key.type > BTRFS_DEV_ITEM_KEY)
break;
if (key.type != BTRFS_DEV_ITEM_KEY) {
path.slots[0]++;
continue;
}
dev_item = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_dev_item);
cur_devid = btrfs_device_id(leaf, dev_item);
if (devid != cur_devid) {
ret = btrfs_del_item(trans, root, &path);
if (ret) {
error("cannot delete item: %d", ret);
exit(1);
}
btrfs_release_path(&path);
goto again;
}
btrfs_set_device_total_bytes(leaf, dev_item, dev_size);
btrfs_set_device_bytes_used(leaf, dev_item,
mdres->alloced_chunks);
btrfs_mark_buffer_dirty(leaf);
path.slots[0]++;
}
btrfs_release_path(&path);
return 0;
}
static void fixup_block_groups(struct btrfs_fs_info *fs_info)
{
struct btrfs_block_group_cache *bg;
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct cache_extent *ce;
struct map_lookup *map;
u64 extra_flags;
for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
ce = next_cache_extent(ce)) {
map = container_of(ce, struct map_lookup, ce);
bg = btrfs_lookup_block_group(fs_info, ce->start);
if (!bg) {
warning(
"cannot find block group %llu, filesystem may not be mountable",
ce->start);
continue;
}
extra_flags = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
if (bg->flags == map->type)
continue;
/* Update the block group item and mark the bg dirty */
bg->flags = map->type;
btrfs_set_block_group_flags(&bg->item, bg->flags);
set_extent_bits(&fs_info->block_group_cache, ce->start,
ce->start + ce->size - 1, BLOCK_GROUP_DIRTY);
/*
* Chunk and bg flags can be different, changing bg flags
* without update avail_data/meta_alloc_bits will lead to
* ENOSPC.
* So here we set avail_*_alloc_bits to match chunk types.
*/
if (map->type & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits = extra_flags;
if (map->type & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits = extra_flags;
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits = extra_flags;
}
}
static int remove_all_dev_extents(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_path path;
struct btrfs_key key;
struct extent_buffer *leaf;
int slot;
int ret;
key.objectid = 1;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = 0;
btrfs_init_path(&path);
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
if (ret < 0) {
errno = -ret;
error("failed to search dev tree: %m");
return ret;
}
while (1) {
slot = path.slots[0];
leaf = path.nodes[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, &path);
if (ret < 0) {
errno = -ret;
error("failed to search dev tree: %m");
goto out;
}
if (ret > 0) {
ret = 0;
goto out;
}
}
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.type != BTRFS_DEV_EXTENT_KEY)
break;
ret = btrfs_del_item(trans, root, &path);
if (ret < 0) {
errno = -ret;
error("failed to delete dev extent %llu, %llu: %m",
key.objectid, key.offset);
goto out;
}
}
out:
btrfs_release_path(&path);
return ret;
}
static int fixup_dev_extents(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct btrfs_device *dev;
struct cache_extent *ce;
struct map_lookup *map;
u64 devid = btrfs_stack_device_id(&fs_info->super_copy->dev_item);
int i;
int ret;
ret = remove_all_dev_extents(trans);
if (ret < 0) {
errno = -ret;
error("failed to remove all existing dev extents: %m");
}
dev = btrfs_find_device(fs_info, devid, NULL, NULL);
if (!dev) {
error("faild to find devid %llu", devid);
return -ENODEV;
}
/* Rebuild all dev extents using chunk maps */
for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
ce = next_cache_extent(ce)) {
u64 stripe_len;
map = container_of(ce, struct map_lookup, ce);
stripe_len = calc_stripe_length(map->type, ce->size,
map->num_stripes);
for (i = 0; i < map->num_stripes; i++) {
ret = btrfs_insert_dev_extent(trans, dev, ce->start,
stripe_len, map->stripes[i].physical);
if (ret < 0) {
errno = -ret;
error(
"failed to insert dev extent %llu %llu: %m",
devid, map->stripes[i].physical);
goto out;
}
}
}
out:
return ret;
}
static int fixup_chunks_and_devices(struct btrfs_fs_info *fs_info,
struct mdrestore_struct *mdres, int out_fd)
{
struct btrfs_trans_handle *trans;
int ret;
if (btrfs_super_log_root(fs_info->super_copy)) {
warning(
"log tree detected, its generation will not match superblock");
}
trans = btrfs_start_transaction(fs_info->tree_root, 1);
if (IS_ERR(trans)) {
error("cannot start transaction %ld", PTR_ERR(trans));
return PTR_ERR(trans);
}
fixup_block_groups(fs_info);
ret = fixup_dev_extents(trans);
if (ret < 0)
goto error;
ret = fixup_device_size(trans, mdres, out_fd);
if (ret < 0)
goto error;
ret = btrfs_commit_transaction(trans, fs_info->tree_root);
if (ret) {
error("unable to commit transaction: %d", ret);
return ret;
}
return 0;
error:
errno = -ret;
error(
"failed to fix chunks and devices mapping, the fs may not be mountable: %m");
btrfs_abort_transaction(trans, ret);
return ret;
}
static int restore_metadump(const char *input, FILE *out, int old_restore,
int num_threads, int fixup_offset,
const char *target, int multi_devices)
{
struct meta_cluster *cluster = NULL;
struct meta_cluster_header *header;
struct mdrestore_struct mdrestore;
struct btrfs_fs_info *info = NULL;
u64 bytenr = 0;
FILE *in = NULL;
int ret = 0;
if (!strcmp(input, "-")) {
in = stdin;
} else {
in = fopen(input, "r");
if (!in) {
error("unable to open metadump image: %m");
return 1;
}
}
/* NOTE: open with write mode */
if (fixup_offset) {
info = open_ctree_fs_info(target, 0, 0, 0,
OPEN_CTREE_WRITES |
OPEN_CTREE_RESTORE |
OPEN_CTREE_PARTIAL);
if (!info) {
error("open ctree failed");
ret = -EIO;
goto failed_open;
}
}
cluster = malloc(BLOCK_SIZE);
if (!cluster) {
error("not enough memory for cluster");
ret = -ENOMEM;
goto failed_info;
}
ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads,
fixup_offset, info, multi_devices);
if (ret) {
error("failed to initialize metadata restore state: %d", ret);
goto failed_cluster;
}
if (!multi_devices && !old_restore) {
ret = build_chunk_tree(&mdrestore, cluster);
if (ret)
goto out;
if (!list_empty(&mdrestore.overlapping_chunks))
remap_overlapping_chunks(&mdrestore);
}
if (in != stdin && fseek(in, 0, SEEK_SET)) {
error("seek failed: %m");
goto out;
}
while (!mdrestore.error) {
ret = fread(cluster, BLOCK_SIZE, 1, in);
if (!ret)
break;
header = &cluster->header;
if (le64_to_cpu(header->magic) != HEADER_MAGIC ||
le64_to_cpu(header->bytenr) != bytenr) {
error("bad header in metadump image");
ret = -EIO;
break;
}
ret = add_cluster(cluster, &mdrestore, &bytenr);
if (ret) {
error("failed to add cluster: %d", ret);
break;
}
}
ret = wait_for_worker(&mdrestore);
if (!ret && !multi_devices && !old_restore) {
struct btrfs_root *root;
struct stat st;
root = open_ctree_fd(fileno(out), target, 0,
OPEN_CTREE_PARTIAL |
OPEN_CTREE_WRITES |
OPEN_CTREE_NO_DEVICES);
if (!root) {
error("open ctree failed in %s", target);
ret = -EIO;
goto out;
}
info = root->fs_info;
if (stat(target, &st)) {
error("stat %s failed: %m", target);
close_ctree(info->chunk_root);
free(cluster);
return 1;
}
ret = fixup_chunks_and_devices(info, &mdrestore, fileno(out));
close_ctree(info->chunk_root);
if (ret)
goto out;
}
out:
mdrestore_destroy(&mdrestore, num_threads);
failed_cluster:
free(cluster);
failed_info:
if (fixup_offset && info)
close_ctree(info->chunk_root);
failed_open:
if (in != stdin)
fclose(in);
return ret;
}
static int update_disk_super_on_device(struct btrfs_fs_info *info,
const char *other_dev, u64 cur_devid)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_path path;
struct btrfs_dev_item *dev_item;
struct btrfs_super_block *disk_super;
char dev_uuid[BTRFS_UUID_SIZE];
char fs_uuid[BTRFS_UUID_SIZE];
u64 devid, type, io_align, io_width;
u64 sector_size, total_bytes, bytes_used;
char buf[BTRFS_SUPER_INFO_SIZE];
int fp = -1;
int ret;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = cur_devid;
btrfs_init_path(&path);
ret = btrfs_search_slot(NULL, info->chunk_root, &key, &path, 0, 0);
if (ret) {
error("search key failed: %d", ret);
ret = -EIO;
goto out;
}
leaf = path.nodes[0];
dev_item = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_dev_item);
devid = btrfs_device_id(leaf, dev_item);
if (devid != cur_devid) {
error("devid mismatch: %llu != %llu",
(unsigned long long)devid,
(unsigned long long)cur_devid);
ret = -EIO;
goto out;
}
type = btrfs_device_type(leaf, dev_item);
io_align = btrfs_device_io_align(leaf, dev_item);
io_width = btrfs_device_io_width(leaf, dev_item);
sector_size = btrfs_device_sector_size(leaf, dev_item);
total_bytes = btrfs_device_total_bytes(leaf, dev_item);
bytes_used = btrfs_device_bytes_used(leaf, dev_item);
read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE);
read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE);
btrfs_release_path(&path);
printf("update disk super on %s devid=%llu\n", other_dev, devid);
/* update other devices' super block */
fp = open(other_dev, O_CREAT | O_RDWR, 0600);
if (fp < 0) {
error("could not open %s: %m", other_dev);
ret = -EIO;
goto out;
}
memcpy(buf, info->super_copy, BTRFS_SUPER_INFO_SIZE);
disk_super = (struct btrfs_super_block *)buf;
dev_item = &disk_super->dev_item;
btrfs_set_stack_device_type(dev_item, type);
btrfs_set_stack_device_id(dev_item, devid);
btrfs_set_stack_device_total_bytes(dev_item, total_bytes);
btrfs_set_stack_device_bytes_used(dev_item, bytes_used);
btrfs_set_stack_device_io_align(dev_item, io_align);
btrfs_set_stack_device_io_width(dev_item, io_width);
btrfs_set_stack_device_sector_size(dev_item, sector_size);
memcpy(dev_item->uuid, dev_uuid, BTRFS_UUID_SIZE);
memcpy(dev_item->fsid, fs_uuid, BTRFS_UUID_SIZE);
csum_block((u8 *)buf, BTRFS_SUPER_INFO_SIZE);
ret = pwrite64(fp, buf, BTRFS_SUPER_INFO_SIZE, BTRFS_SUPER_INFO_OFFSET);
if (ret != BTRFS_SUPER_INFO_SIZE) {
if (ret < 0) {
errno = ret;
error("cannot write superblock: %m");
} else {
error("cannot write superblock");
}
ret = -EIO;
goto out;
}
write_backup_supers(fp, (u8 *)buf);
out:
if (fp != -1)
close(fp);
return ret;
}
static void print_usage(int ret)
{
printf("usage: btrfs-image [options] source target\n");
printf("\t-r \trestore metadump image\n");
printf("\t-c value\tcompression level (0 ~ 9)\n");
printf("\t-t value\tnumber of threads (1 ~ 32)\n");
printf("\t-o \tdon't mess with the chunk tree when restoring\n");
printf("\t-s \tsanitize file names, use once to just use garbage, use twice if you want crc collisions\n");
printf("\t-w \twalk all trees instead of using extent tree, do this if your extent tree is broken\n");
printf("\t-m \trestore for multiple devices\n");
printf("\n");
printf("\tIn the dump mode, source is the btrfs device and target is the output file (use '-' for stdout).\n");
printf("\tIn the restore mode, source is the dumped image and target is the btrfs device/file.\n");
exit(ret);
}
int main(int argc, char *argv[])
{
char *source;
char *target;
u64 num_threads = 0;
u64 compress_level = 0;
int create = 1;
int old_restore = 0;
int walk_trees = 0;
int multi_devices = 0;
int ret;
enum sanitize_mode sanitize = SANITIZE_NONE;
int dev_cnt = 0;
int usage_error = 0;
FILE *out;
while (1) {
static const struct option long_options[] = {
{ "help", no_argument, NULL, GETOPT_VAL_HELP},
{ NULL, 0, NULL, 0 }
};
int c = getopt_long(argc, argv, "rc:t:oswm", long_options, NULL);
if (c < 0)
break;
switch (c) {
case 'r':
create = 0;
break;
case 't':
num_threads = arg_strtou64(optarg);
if (num_threads > MAX_WORKER_THREADS) {
error("number of threads out of range: %llu > %d",
(unsigned long long)num_threads,
MAX_WORKER_THREADS);
return 1;
}
break;
case 'c':
compress_level = arg_strtou64(optarg);
if (compress_level > 9) {
error("compression level out of range: %llu",
(unsigned long long)compress_level);
return 1;
}
break;
case 'o':
old_restore = 1;
break;
case 's':
if (sanitize == SANITIZE_NONE)
sanitize = SANITIZE_NAMES;
else if (sanitize == SANITIZE_NAMES)
sanitize = SANITIZE_COLLISIONS;
break;
case 'w':
walk_trees = 1;
break;
case 'm':
create = 0;
multi_devices = 1;
break;
case GETOPT_VAL_HELP:
default:
print_usage(c != GETOPT_VAL_HELP);
}
}
set_argv0(argv);
if (check_argc_min(argc - optind, 2))
print_usage(1);
dev_cnt = argc - optind - 1;
if (create) {
if (old_restore) {
error(
"create and restore cannot be used at the same time");
usage_error++;
}
} else {
if (walk_trees || sanitize != SANITIZE_NONE || compress_level) {
error(
"using -w, -s, -c options for restore makes no sense");
usage_error++;
}
if (multi_devices && dev_cnt < 2) {
error("not enough devices specified for -m option");
usage_error++;
}
if (!multi_devices && dev_cnt != 1) {
error("accepts only 1 device without -m option");
usage_error++;
}
}
if (usage_error)
print_usage(1);
source = argv[optind];
target = argv[optind + 1];
if (create && !strcmp(target, "-")) {
out = stdout;
} else {
out = fopen(target, "w+");
if (!out) {
error("unable to create target file %s", target);
exit(1);
}
}
if (compress_level > 0 || create == 0) {
if (num_threads == 0) {
long tmp = sysconf(_SC_NPROCESSORS_ONLN);
if (tmp <= 0)
tmp = 1;
num_threads = tmp;
}
} else {
num_threads = 0;
}
if (create) {
ret = check_mounted(source);
if (ret < 0) {
errno = -ret;
warning("unable to check mount status of: %m");
} else if (ret) {
warning("%s already mounted, results may be inaccurate",
source);
}
ret = create_metadump(source, out, num_threads,
compress_level, sanitize, walk_trees);
} else {
ret = restore_metadump(source, out, old_restore, num_threads,
0, target, multi_devices);
}
if (ret) {
error("%s failed: %m", (create) ? "create" : "restore");
goto out;
}
/* extended support for multiple devices */
if (!create && multi_devices) {
struct btrfs_fs_info *info;
u64 total_devs;
int i;
info = open_ctree_fs_info(target, 0, 0, 0,
OPEN_CTREE_PARTIAL |
OPEN_CTREE_RESTORE);
if (!info) {
error("open ctree failed at %s", target);
return 1;
}
total_devs = btrfs_super_num_devices(info->super_copy);
if (total_devs != dev_cnt) {
error("it needs %llu devices but has only %d",
total_devs, dev_cnt);
close_ctree(info->chunk_root);
goto out;
}
/* update super block on other disks */
for (i = 2; i <= dev_cnt; i++) {
ret = update_disk_super_on_device(info,
argv[optind + i], (u64)i);
if (ret) {
error("update disk superblock failed devid %d: %d",
i, ret);
close_ctree(info->chunk_root);
exit(1);
}
}
close_ctree(info->chunk_root);
/* fix metadata block to map correct chunk */
ret = restore_metadump(source, out, 0, num_threads, 1,
target, 1);
if (ret) {
error("unable to fixup metadump: %d", ret);
exit(1);
}
}
out:
if (out == stdout) {
fflush(out);
} else {
fclose(out);
if (ret && create) {
int unlink_ret;
unlink_ret = unlink(target);
if (unlink_ret)
error("unlink output file %s failed: %m",
target);
}
}
btrfs_close_all_devices();
return !!ret;
}