btrfs-progs/btrfsck.c

505 lines
13 KiB
C

#define _XOPEN_SOURCE 500
#include <stdio.h>
#include <stdlib.h>
#define __USE_GNU
#include <fcntl.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
#include "bit-radix.h"
static u64 blocks_used = 0;
static u64 total_csum_bytes = 0;
static u64 total_btree_blocks = 0;
static u64 btree_space_waste = 0;
struct extent_record {
struct btrfs_disk_key parent_key;
u64 start;
u64 nr;
u64 owner;
u32 refs;
u32 extent_item_refs;
int checked;
};
static int check_node(struct btrfs_root *root,
struct btrfs_disk_key *parent_key,
struct btrfs_node *node)
{
int i;
u32 nritems = btrfs_header_nritems(&node->header);
if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(root))
return 1;
if (parent_key->flags) {
if (memcmp(parent_key, &node->ptrs[0].key,
sizeof(struct btrfs_disk_key)))
return 1;
}
for (i = 0; nritems > 1 && i < nritems - 2; i++) {
struct btrfs_key cpukey;
btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key);
if (btrfs_comp_keys(&node->ptrs[i].key, &cpukey) >= 0)
return 1;
}
return 0;
}
static int check_leaf(struct btrfs_root *root,
struct btrfs_disk_key *parent_key,
struct btrfs_leaf *leaf)
{
int i;
u32 nritems = btrfs_header_nritems(&leaf->header);
if (btrfs_header_level(&leaf->header) != 0) {
fprintf(stderr, "leaf is not a leaf %Lu\n",
btrfs_header_blocknr(&leaf->header));
return 1;
}
if (btrfs_leaf_free_space(root, leaf) < 0) {
fprintf(stderr, "leaf free space incorrect %Lu %d\n",
btrfs_header_blocknr(&leaf->header),
btrfs_leaf_free_space(root, leaf));
return 1;
}
if (nritems == 0)
return 0;
if (parent_key->flags) {
if (memcmp(parent_key, &leaf->items[0].key,
sizeof(struct btrfs_disk_key))) {
fprintf(stderr, "leaf parent key incorrect %Lu\n",
btrfs_header_blocknr(&leaf->header));
return 1;
}
}
for (i = 0; nritems > 1 && i < nritems - 2; i++) {
struct btrfs_key cpukey;
btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
if (btrfs_comp_keys(&leaf->items[i].key,
&cpukey) >= 0)
return 1;
if (btrfs_item_offset(leaf->items + i) !=
btrfs_item_end(leaf->items + i + 1))
return 1;
if (i == 0) {
if (btrfs_item_offset(leaf->items + i) +
btrfs_item_size(leaf->items + i) !=
BTRFS_LEAF_DATA_SIZE(root))
return 1;
}
}
return 0;
}
static int maybe_free_extent_rec(struct radix_tree_root *extent_radix,
struct extent_record *rec)
{
if (rec->checked && rec->extent_item_refs == rec->refs &&
rec->refs > 0) {
radix_tree_delete(extent_radix, rec->start);
free(rec);
}
return 0;
}
static int check_block(struct btrfs_root *root,
struct radix_tree_root *extent_radix,
struct btrfs_buffer *buf)
{
struct extent_record *rec;
int ret = 1;
rec = radix_tree_lookup(extent_radix, buf->blocknr);
if (!rec)
return 1;
if (btrfs_is_leaf(&buf->node)) {
ret = check_leaf(root, &rec->parent_key, &buf->leaf);
} else {
ret = check_node(root, &rec->parent_key, &buf->node);
}
rec->checked = 1;
if (!ret)
maybe_free_extent_rec(extent_radix, rec);
return ret;
}
static int add_extent_rec(struct radix_tree_root *extent_radix,
struct btrfs_disk_key *parent_key,
u64 ref, u64 start, u64 nr, u64 owner,
u32 extent_item_refs, int inc_ref, int set_checked)
{
struct extent_record *rec;
int ret = 0;
rec = radix_tree_lookup(extent_radix, start);
if (rec) {
if (inc_ref)
rec->refs++;
if (start != rec->start) {
fprintf(stderr, "warning, start mismatch %Lu %Lu\n",
rec->start, start);
ret = 1;
}
if (extent_item_refs) {
if (rec->extent_item_refs) {
fprintf(stderr, "block %Lu rec extent_item_refs %u, passed %u\n", start, rec->extent_item_refs, extent_item_refs);
}
rec->extent_item_refs = extent_item_refs;
}
if (set_checked)
rec->checked = 1;
maybe_free_extent_rec(extent_radix, rec);
return ret;
}
rec = malloc(sizeof(*rec));
if (start == 0)
extent_item_refs = 0;
rec->start = start;
rec->nr = nr;
rec->owner = owner;
rec->checked = 0;
if (inc_ref)
rec->refs = 1;
else
rec->refs = 0;
if (extent_item_refs)
rec->extent_item_refs = extent_item_refs;
else
rec->extent_item_refs = 0;
if (parent_key)
memcpy(&rec->parent_key, parent_key, sizeof(*parent_key));
else
memset(&rec->parent_key, 0, sizeof(*parent_key));
ret = radix_tree_insert(extent_radix, start, rec);
BUG_ON(ret);
blocks_used += nr;
if (set_checked)
rec->checked = 1;
return ret;
}
static int add_pending(struct radix_tree_root *pending,
struct radix_tree_root *seen, u64 blocknr)
{
if (test_radix_bit(seen, blocknr))
return -EEXIST;
set_radix_bit(pending, blocknr);
set_radix_bit(seen, blocknr);
return 0;
}
static int pick_next_pending(struct radix_tree_root *pending,
struct radix_tree_root *reada,
struct radix_tree_root *nodes,
u64 last, unsigned long *bits, int bits_nr,
int *reada_bits)
{
unsigned long node_start = last;
int ret;
ret = find_first_radix_bit(reada, bits, 0, 1);
if (ret) {
*reada_bits = 1;
return ret;
}
*reada_bits = 0;
if (node_start > 8)
node_start -= 8;
ret = find_first_radix_bit(nodes, bits, node_start, bits_nr);
if (!ret)
ret = find_first_radix_bit(nodes, bits, 0, bits_nr);
if (ret) {
if (bits_nr - ret > 8) {
int ret2;
u64 sequential;
ret2 = find_first_radix_bit(pending, bits + ret,
bits[0], bits_nr - ret);
sequential = bits[0];
while(ret2 > 0) {
if (bits[ret] - sequential > 8)
break;
sequential = bits[ret];
ret++;
ret2--;
}
}
return ret;
}
return find_first_radix_bit(pending, bits, 0, bits_nr);
}
static struct btrfs_buffer reada_buf;
static int run_next_block(struct btrfs_root *root,
unsigned long *bits,
int bits_nr,
u64 *last,
struct radix_tree_root *pending,
struct radix_tree_root *seen,
struct radix_tree_root *reada,
struct radix_tree_root *nodes,
struct radix_tree_root *extent_radix)
{
struct btrfs_buffer *buf;
u64 blocknr;
int ret;
int i;
int nritems;
struct btrfs_leaf *leaf;
struct btrfs_node *node;
struct btrfs_disk_key *disk_key;
int reada_bits;
u64 last_block = 0;
ret = pick_next_pending(pending, reada, nodes, *last, bits,
bits_nr, &reada_bits);
if (ret == 0) {
return 1;
}
if (!reada_bits) {
for(i = 0; i < ret; i++) {
u64 offset;
set_radix_bit(reada, bits[i]);
btrfs_map_bh_to_logical(root, &reada_buf, bits[i]);
offset = reada_buf.dev_blocknr * root->blocksize;
last_block = bits[i];
readahead(reada_buf.fd, offset, root->blocksize);
}
}
*last = bits[0];
blocknr = bits[0];
clear_radix_bit(pending, blocknr);
clear_radix_bit(reada, blocknr);
clear_radix_bit(nodes, blocknr);
buf = read_tree_block(root, blocknr);
nritems = btrfs_header_nritems(&buf->node.header);
ret = check_block(root, extent_radix, buf);
if (ret) {
fprintf(stderr, "bad block %Lu\n", blocknr);
}
if (btrfs_is_leaf(&buf->node)) {
leaf = &buf->leaf;
btree_space_waste += btrfs_leaf_free_space(root, leaf);
for (i = 0; i < nritems; i++) {
struct btrfs_file_extent_item *fi;
disk_key = &leaf->items[i].key;
if (btrfs_disk_key_type(disk_key) ==
BTRFS_EXTENT_ITEM_KEY) {
struct btrfs_key found;
struct btrfs_extent_item *ei;
btrfs_disk_key_to_cpu(&found,
&leaf->items[i].key);
ei = btrfs_item_ptr(leaf, i,
struct btrfs_extent_item);
add_extent_rec(extent_radix, NULL, 0,
found.objectid,
found.offset,
btrfs_extent_owner(ei),
btrfs_extent_refs(ei), 0, 0);
continue;
}
if (btrfs_disk_key_type(disk_key) ==
BTRFS_CSUM_ITEM_KEY) {
total_csum_bytes +=
btrfs_item_size(leaf->items + i);
continue;
}
if (btrfs_disk_key_type(disk_key) ==
BTRFS_BLOCK_GROUP_ITEM_KEY) {
struct btrfs_block_group_item *bi;
bi = btrfs_item_ptr(leaf, i,
struct btrfs_block_group_item);
#if 0
fprintf(stderr,"block group %Lu %Lu used %Lu ",
btrfs_disk_key_objectid(disk_key),
btrfs_disk_key_offset(disk_key),
btrfs_block_group_used(bi));
fprintf(stderr, "flags %x\n", bi->flags);
#endif
continue;
}
if (btrfs_disk_key_type(&leaf->items[i].key) !=
BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(fi) !=
BTRFS_FILE_EXTENT_REG)
continue;
if (btrfs_file_extent_disk_blocknr(fi) == 0)
continue;
ret = add_extent_rec(extent_radix, NULL, blocknr,
btrfs_file_extent_disk_blocknr(fi),
btrfs_file_extent_disk_num_blocks(fi),
btrfs_disk_key_objectid(&leaf->items[i].key),
0, 1, 1);
BUG_ON(ret);
}
} else {
int level;
node = &buf->node;
level = btrfs_header_level(&node->header);
for (i = 0; i < nritems; i++) {
u64 ptr = btrfs_node_blockptr(node, i);
ret = add_extent_rec(extent_radix,
&node->ptrs[i].key,
blocknr, ptr, 1,
btrfs_header_owner(&node->header),
0, 1, 0);
BUG_ON(ret);
if (level > 1) {
add_pending(nodes, seen, ptr);
} else {
add_pending(pending, seen, ptr);
}
}
btree_space_waste += (BTRFS_NODEPTRS_PER_BLOCK(root) -
nritems) * sizeof(struct btrfs_key_ptr);
}
btrfs_block_release(root, buf);
total_btree_blocks++;
return 0;
}
static int add_root_to_pending(struct btrfs_buffer *buf,
unsigned long *bits,
int bits_nr,
struct radix_tree_root *extent_radix,
struct radix_tree_root *pending,
struct radix_tree_root *seen,
struct radix_tree_root *reada,
struct radix_tree_root *nodes)
{
if (btrfs_header_level(&buf->node.header) > 0)
add_pending(nodes, seen, buf->blocknr);
else
add_pending(pending, seen, buf->blocknr);
add_extent_rec(extent_radix, NULL, 0, buf->blocknr, 1,
btrfs_header_owner(&buf->node.header), 0, 1, 0);
return 0;
}
int check_extent_refs(struct btrfs_root *root,
struct radix_tree_root *extent_radix)
{
struct extent_record *rec[64];
int i;
int ret;
int err = 0;
while(1) {
ret = radix_tree_gang_lookup(extent_radix, (void **)rec, 0,
ARRAY_SIZE(rec));
if (!ret)
break;
for (i = 0; i < ret; i++) {
if (rec[i]->refs != rec[i]->extent_item_refs) {
fprintf(stderr, "ref mismatch on [%Lu %Lu] ",
rec[i]->start, rec[i]->nr);
fprintf(stderr, "extent item %u, found %u\n",
rec[i]->extent_item_refs,
rec[i]->refs);
err = 1;
}
radix_tree_delete(extent_radix, rec[i]->start);
free(rec[i]);
}
}
return err;
}
int main(int ac, char **av) {
struct btrfs_super_block super;
struct btrfs_root *root;
struct radix_tree_root extent_radix;
struct radix_tree_root seen;
struct radix_tree_root pending;
struct radix_tree_root reada;
struct radix_tree_root nodes;
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_key found_key;
int ret;
u64 last = 0;
unsigned long *bits;
int bits_nr;
struct btrfs_leaf *leaf;
int slot;
struct btrfs_root_item *ri;
radix_tree_init();
INIT_RADIX_TREE(&extent_radix, GFP_NOFS);
init_bit_radix(&seen);
init_bit_radix(&pending);
init_bit_radix(&reada);
init_bit_radix(&nodes);
root = open_ctree(av[1], &super);
bits_nr = 1024 * 1024 / root->blocksize;
bits = malloc(bits_nr * sizeof(unsigned long));
if (!bits) {
perror("malloc");
exit(1);
}
add_root_to_pending(root->fs_info->tree_root->node, bits, bits_nr,
&extent_radix, &pending, &seen, &reada, &nodes);
btrfs_init_path(&path);
key.offset = 0;
key.objectid = 0;
key.flags = 0;
btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
&key, &path, 0, 0);
BUG_ON(ret < 0);
while(1) {
leaf = &path.nodes[0]->leaf;
slot = path.slots[0];
if (slot >= btrfs_header_nritems(&leaf->header)) {
ret = btrfs_next_leaf(root, &path);
if (ret != 0)
break;
leaf = &path.nodes[0]->leaf;
slot = path.slots[0];
}
btrfs_disk_key_to_cpu(&found_key,
&leaf->items[path.slots[0]].key);
if (btrfs_key_type(&found_key) == BTRFS_ROOT_ITEM_KEY) {
struct btrfs_buffer *buf;
ri = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_root_item);
buf = read_tree_block(root->fs_info->tree_root,
btrfs_root_blocknr(ri));
add_root_to_pending(buf, bits, bits_nr, &extent_radix,
&pending, &seen, &reada, &nodes);
btrfs_block_release(root->fs_info->tree_root, buf);
}
path.slots[0]++;
}
btrfs_release_path(root, &path);
while(1) {
ret = run_next_block(root, bits, bits_nr, &last, &pending,
&seen, &reada, &nodes, &extent_radix);
if (ret != 0)
break;
}
ret = check_extent_refs(root, &extent_radix);
close_ctree(root, &super);
printf("found %Lu blocks used err is %d\n", blocks_used, ret);
printf("total csum bytes: %Lu\n", total_csum_bytes);
printf("total tree blocks: %Lu\n", total_btree_blocks);
printf("btree space waste bytes: %Lu\n", btree_space_waste);
return ret;
}