btrfs-progs/mkfs/rootdir.c
David Sterba 8b36a293f7 btrfs-progs: mkfs: print only first warning when --rootdir finds a hardlink
There's a report that newly added --rootdir print too many warnings for
hardlinks, which is maybe not that uncommon. We still want to let the
user know about that so print it just once and count how many were
found:

  $ mkfs.btrfs --rootdir ...
  WARNING: '/tmp/btrfs-progs-mkfs-rootdir-hardlinks.7RcdfR/rootdir/inside_link' has extra hardlinks, they will be converted into new inodes
  WARNING: 12 hardlinks were detected in /tmp/btrfs-progs-mkfs-rootdir-hardlinks.7RcdfR/rootdir, all converted to new inodes

Link: https://github.com/kdave/btrfs-progs/pull/872#issuecomment-2289096125
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-15 00:02:39 +02:00

922 lines
23 KiB
C

/*
* Copyright (C) 2017 SUSE. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/stat.h>
#include <sys/xattr.h>
#include <dirent.h>
#include <unistd.h>
#include <fcntl.h>
#include <ftw.h>
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "kernel-lib/sizes.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/uapi/btrfs_tree.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/file-item.h"
#include "common/internal.h"
#include "common/messages.h"
#include "common/utils.h"
#include "common/extent-tree-utils.h"
#include "mkfs/rootdir.h"
static u32 fs_block_size;
/*
* Size estimate will be done using the following data:
* 1) Number of inodes
* Since we will later shrink the fs, over-estimate is completely fine here
* as long as our estimate ensures we can populate the image without ENOSPC.
* So we only record how many inodes there are, and account the maximum
* space for each inode.
*
* 2) Data space for each (regular) inode
* To estimate data chunk size.
* Don't care if it can fit as an inline extent.
* Always round them up to sectorsize.
*/
static u64 ftw_meta_nr_inode;
static u64 ftw_data_size;
/*
* Represent one inode inside the path.
*
* For now, all those inodes are inside fs tree.
*/
struct inode_entry {
/* The inode number inside btrfs. */
u64 ino;
struct list_head list;
};
/*
* The path towards the rootdir.
*
* Only directory inodes are stored inside the path.
*/
struct rootdir_path {
/*
* Level 0 means it's uninitialized
* Level 1 means it's the rootdir itself.
*/
int level;
struct list_head inode_list;
};
static struct rootdir_path current_path = {
.level = 0,
};
/* Track if a hardlink was found and a warning was printed. */
static bool g_hardlink_warning;
static u64 g_hardlink_count;
static struct btrfs_trans_handle *g_trans = NULL;
static inline struct inode_entry *rootdir_path_last(struct rootdir_path *path)
{
UASSERT(!list_empty(&path->inode_list));
return list_entry(path->inode_list.prev, struct inode_entry, list);
}
static void rootdir_path_pop(struct rootdir_path *path)
{
struct inode_entry *last;
UASSERT(path->level > 0);
last = rootdir_path_last(path);
list_del_init(&last->list);
path->level--;
free(last);
}
static int rootdir_path_push(struct rootdir_path *path, u64 ino)
{
struct inode_entry *new;
new = malloc(sizeof(*new));
if (!new)
return -ENOMEM;
new->ino = ino;
list_add_tail(&new->list, &path->inode_list);
path->level++;
return 0;
}
static void stat_to_inode_item(struct btrfs_inode_item *dst, const struct stat *st)
{
/*
* Do not touch size for directory inode, the size would be
* automatically updated during btrfs_link_inode().
*/
if (!S_ISDIR(st->st_mode))
btrfs_set_stack_inode_size(dst, st->st_size);
btrfs_set_stack_inode_nbytes(dst, 0);
btrfs_set_stack_inode_block_group(dst, 0);
btrfs_set_stack_inode_uid(dst, st->st_uid);
btrfs_set_stack_inode_gid(dst, st->st_gid);
btrfs_set_stack_inode_mode(dst, st->st_mode);
btrfs_set_stack_inode_rdev(dst, 0);
btrfs_set_stack_inode_flags(dst, 0);
btrfs_set_stack_timespec_sec(&dst->atime, st->st_atime);
btrfs_set_stack_timespec_nsec(&dst->atime, 0);
btrfs_set_stack_timespec_sec(&dst->ctime, st->st_ctime);
btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
btrfs_set_stack_timespec_sec(&dst->mtime, st->st_mtime);
btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
btrfs_set_stack_timespec_sec(&dst->otime, 0);
btrfs_set_stack_timespec_nsec(&dst->otime, 0);
}
static int add_xattr_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
const char *file_name)
{
int ret;
int cur_name_len;
char xattr_list[XATTR_LIST_MAX];
char *xattr_list_end;
char *cur_name;
char cur_value[XATTR_SIZE_MAX];
ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX);
if (ret < 0) {
if (errno == ENOTSUP)
return 0;
error("getting a list of xattr failed for %s: %m", file_name);
return ret;
}
if (ret == 0)
return ret;
xattr_list_end = xattr_list + ret;
cur_name = xattr_list;
while (cur_name < xattr_list_end) {
cur_name_len = strlen(cur_name);
ret = lgetxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX);
if (ret < 0) {
if (errno == ENOTSUP)
return 0;
error("getting a xattr value failed for %s attr %s: %m",
file_name, cur_name);
return ret;
}
ret = btrfs_insert_xattr_item(trans, root, cur_name,
cur_name_len, cur_value,
ret, objectid);
if (ret) {
errno = -ret;
error("inserting a xattr item failed for %s: %m",
file_name);
}
cur_name += cur_name_len + 1;
}
return ret;
}
static int add_symbolic_link(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *inode_item,
u64 objectid, const char *path_name)
{
u64 nbytes;
int ret;
char buf[PATH_MAX];
ret = readlink(path_name, buf, sizeof(buf));
if (ret <= 0) {
error("readlink failed for %s: %m", path_name);
goto fail;
}
if (ret >= sizeof(buf)) {
error("symlink too long for %s", path_name);
ret = -1;
goto fail;
}
buf[ret] = '\0'; /* readlink does not do it for us */
nbytes = ret + 1;
ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buf, nbytes);
if (ret < 0) {
errno = -ret;
error("failed to insert inline extent for %s: %m", path_name);
goto fail;
}
btrfs_set_stack_inode_nbytes(inode_item, nbytes);
fail:
return ret;
}
static int add_file_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *btrfs_inode, u64 objectid,
const struct stat *st, const char *path_name)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = -1;
ssize_t ret_read;
u64 bytes_read = 0;
struct btrfs_key key;
int blocks;
u32 sectorsize = fs_info->sectorsize;
u64 first_block = 0;
u64 file_pos = 0;
u64 cur_bytes;
u64 total_bytes;
void *buf = NULL;
int fd;
if (st->st_size == 0)
return 0;
fd = open(path_name, O_RDONLY);
if (fd == -1) {
error("cannot open %s: %m", path_name);
return ret;
}
blocks = st->st_size / sectorsize;
if (st->st_size % sectorsize)
blocks += 1;
if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(fs_info) &&
st->st_size < sectorsize) {
char *buffer = malloc(st->st_size);
if (!buffer) {
ret = -ENOMEM;
goto end;
}
ret_read = pread(fd, buffer, st->st_size, bytes_read);
if (ret_read == -1) {
error("cannot read %s at offset %llu length %llu: %m",
path_name, bytes_read, (unsigned long long)st->st_size);
free(buffer);
goto end;
}
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
buffer, st->st_size);
free(buffer);
/* Update the inode nbytes for inline extents. */
btrfs_set_stack_inode_nbytes(btrfs_inode, st->st_size);
goto end;
}
/* round up our st_size to the FS blocksize */
total_bytes = (u64)blocks * sectorsize;
buf = malloc(sectorsize);
if (!buf) {
ret = -ENOMEM;
goto end;
}
again:
/*
* keep our extent size at 1MB max, this makes it easier to work inside
* the tiny block groups created during mkfs
*/
cur_bytes = min(total_bytes, (u64)SZ_1M);
ret = btrfs_reserve_extent(trans, root, cur_bytes, 0, 0, (u64)-1,
&key, 1);
if (ret)
goto end;
first_block = key.objectid;
bytes_read = 0;
while (bytes_read < cur_bytes) {
memset(buf, 0, sectorsize);
ret_read = pread(fd, buf, sectorsize, file_pos + bytes_read);
if (ret_read == -1) {
error("cannot read %s at offset %llu length %u: %m",
path_name, file_pos + bytes_read, sectorsize);
goto end;
}
ret = write_data_to_disk(root->fs_info, buf,
first_block + bytes_read, sectorsize);
if (ret) {
error("failed to write %s", path_name);
goto end;
}
ret = btrfs_csum_file_block(trans, first_block + bytes_read,
BTRFS_EXTENT_CSUM_OBJECTID,
fs_info->csum_type, buf);
if (ret)
goto end;
bytes_read += sectorsize;
}
if (bytes_read) {
ret = btrfs_record_file_extent(trans, root, objectid,
btrfs_inode, file_pos, first_block, cur_bytes);
if (ret)
goto end;
}
file_pos += cur_bytes;
total_bytes -= cur_bytes;
if (total_bytes)
goto again;
end:
free(buf);
close(fd);
return ret;
}
static int update_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const struct btrfs_inode_item *inode_item,
u64 ino)
{
struct btrfs_path path = { 0 };
struct btrfs_key key = {
.objectid = ino,
.type = BTRFS_INODE_ITEM_KEY,
.offset = 0,
};
u32 item_ptr_off;
int ret;
ret = btrfs_lookup_inode(trans, root, &path, &key, 1);
if (ret > 0)
ret = -ENOENT;
if (ret < 0) {
btrfs_release_path(&path);
return ret;
}
item_ptr_off = btrfs_item_ptr_offset(path.nodes[0], path.slots[0]);
write_extent_buffer(path.nodes[0], inode_item, item_ptr_off, sizeof(*inode_item));
btrfs_mark_buffer_dirty(path.nodes[0]);
btrfs_release_path(&path);
return 0;
}
static u8 ftype_to_btrfs_type(mode_t ftype)
{
if (S_ISREG(ftype))
return BTRFS_FT_REG_FILE;
if (S_ISDIR(ftype))
return BTRFS_FT_DIR;
if (S_ISLNK(ftype))
return BTRFS_FT_SYMLINK;
if (S_ISCHR(ftype))
return BTRFS_FT_CHRDEV;
if (S_ISBLK(ftype))
return BTRFS_FT_BLKDEV;
if (S_ISFIFO(ftype))
return BTRFS_FT_FIFO;
if (S_ISSOCK(ftype))
return BTRFS_FT_SOCK;
return BTRFS_FT_UNKNOWN;
}
static int ftw_add_inode(const char *full_path, const struct stat *st,
int typeflag, struct FTW *ftwbuf)
{
struct btrfs_fs_info *fs_info = g_trans->fs_info;
struct btrfs_root *root = fs_info->fs_root;
struct btrfs_inode_item inode_item = { 0 };
struct inode_entry *parent;
u64 ino;
int ret;
/*
* Hard link needs extra detection code, not supported for now, but
* it's not to break anything but splitting the hard links into new
* inodes. And we do not even know if the hard links are inside the
* rootdir.
*
* So here we only need to do extra warning.
*
* On most filesystems st_nlink of a directory is the number of
* subdirs, including "." and "..", so skip directory inodes.
*/
if (unlikely(!S_ISDIR(st->st_mode) && st->st_nlink > 1)) {
if (!g_hardlink_warning) {
warning("'%s' has extra hardlinks, they will be converted into new inodes",
full_path);
g_hardlink_warning = true;
}
g_hardlink_count++;
}
/* The rootdir itself. */
if (unlikely(ftwbuf->level == 0)) {
u64 root_ino = btrfs_root_dirid(&root->root_item);
UASSERT(S_ISDIR(st->st_mode));
UASSERT(current_path.level == 0);
ret = add_xattr_item(g_trans, root, root_ino, full_path);
if (ret < 0) {
errno = -ret;
error("failed to add xattr item for the top level inode: %m");
return ret;
}
stat_to_inode_item(&inode_item, st);
/*
* Rootdir inode exists without any parent, thus needs to set
* its nlink to 1 manually.
*/
btrfs_set_stack_inode_nlink(&inode_item, 1);
ret = update_inode_item(g_trans, root, &inode_item, root_ino);
if (ret < 0) {
errno = -ret;
error("failed to update root dir for root %llu: %m",
root->root_key.objectid);
return ret;
}
/* Push (and initialize) the rootdir directory into the stack. */
ret = rootdir_path_push(&current_path, btrfs_root_dirid(&root->root_item));
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_MEMORY, "push path for rootdir: %m");
return ret;
}
return ret;
}
/*
* The rootdir_path structure works like this, with the layout:
*
* rootdir/
* |- file1
* |- dir1
* | |- file2
* |- file3
*
* nftw() would results the following sequence:
*
* - "rootdir" level=0 empty stack (level 0).
* The initial push. Our rootpath stack has nothing.
* So we push the ino of rootdir (btrfs ino 256) into the stack.
*
* - "rootdir/dir1" level=1 stack=256 (level 1)
* nftw() is pre-order traversal, and it always visit
* directory first.
* We find it's a directory, knowing we will visit the
* child inodes of it.
* So we push the inode (btrfs ino 257) into the stack.
*
* - "rootdir/dir1/file2" level=2 stack=256,257 (level 2)
* This is a regular file, we do not need to change our stack.
*
* - "rootdir/file1" level=1 stack=256,257 (level 2)
* Level changed, we enter the upper level directory.
* Pop the stack to match the parent inode.
*
* - "rootdir/file3" level=1 stack=256 (level 1)
*
* So if our stack level > current ftw level, it means we
* have changed to a (one or more levels) upper directory,
* thus we need to pop the path until we reach the correct
* parent.
*/
while (current_path.level > ftwbuf->level)
rootdir_path_pop(&current_path);
ret = btrfs_find_free_objectid(g_trans, root,
BTRFS_FIRST_FREE_OBJECTID, &ino);
if (ret < 0) {
errno = -ret;
error("failed to find free objectid for file %s: %m", full_path);
return ret;
}
stat_to_inode_item(&inode_item, st);
ret = btrfs_insert_inode(g_trans, root, ino, &inode_item);
if (ret < 0) {
errno = -ret;
error("failed to insert inode item %llu for '%s': %m", ino, full_path);
return ret;
}
parent = rootdir_path_last(&current_path);
ret = btrfs_add_link(g_trans, root, ino, parent->ino,
full_path + ftwbuf->base,
strlen(full_path) - ftwbuf->base,
ftype_to_btrfs_type(st->st_mode),
NULL, 1, 0);
if (ret < 0) {
errno = -ret;
error("failed to add link for inode %llu ('%s'): %m", ino, full_path);
return ret;
}
/*
* btrfs_add_link() has increased the nlink to 1 in the metadata.
* Also update the value in case we need to update the inode item
* later.
*/
btrfs_set_stack_inode_nlink(&inode_item, 1);
ret = add_xattr_item(g_trans, root, ino, full_path);
if (ret < 0) {
errno = -ret;
error("failed to add xattrs for inode %llu ('%s'): %m", ino, full_path);
return ret;
}
if (S_ISDIR(st->st_mode)) {
ret = rootdir_path_push(&current_path, ino);
if (ret < 0) {
errno = -ret;
error("failed to allocate new entry for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
} else if (S_ISREG(st->st_mode)) {
ret = add_file_items(g_trans, root, &inode_item, ino, st, full_path);
if (ret < 0) {
errno = -ret;
error("failed to add file extents for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
ret = update_inode_item(g_trans, root, &inode_item, ino);
if (ret < 0) {
errno = -ret;
error("failed to update inode item for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
} else if (S_ISLNK(st->st_mode)) {
ret = add_symbolic_link(g_trans, root, &inode_item, ino, full_path);
if (ret < 0) {
errno = -ret;
error("failed to insert link for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
ret = update_inode_item(g_trans, root, &inode_item, ino);
if (ret < 0) {
errno = -ret;
error("failed to update inode item for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
}
return 0;
};
int btrfs_mkfs_fill_dir(const char *source_dir, struct btrfs_root *root)
{
int ret;
struct btrfs_trans_handle *trans;
struct stat root_st;
ret = lstat(source_dir, &root_st);
if (ret) {
error("unable to lstat %s: %m", source_dir);
ret = -errno;
goto out;
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
goto fail;
}
g_trans = trans;
g_hardlink_warning = false;
g_hardlink_count = 0;
INIT_LIST_HEAD(&current_path.inode_list);
ret = nftw(source_dir, ftw_add_inode, 32, FTW_PHYS);
if (ret) {
error("unable to traverse directory %s: %d", source_dir, ret);
goto fail;
}
ret = btrfs_commit_transaction(trans, root);
if (ret) {
errno = -ret;
error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
goto out;
}
if (g_hardlink_warning)
warning("%llu hardlinks were detected in %s, all converted to new inodes",
g_hardlink_count, source_dir);
while (current_path.level > 0)
rootdir_path_pop(&current_path);
return 0;
fail:
btrfs_abort_transaction(trans, ret);
out:
return ret;
}
static int ftw_add_entry_size(const char *fpath, const struct stat *st,
int type, struct FTW *ftwbuf)
{
/*
* Failed to read the directory, mostly due to EPERM. Abort ASAP, so
* we don't need to populate the fs.
*/
if (type == FTW_DNR || type == FTW_NS)
return -EPERM;
if (S_ISREG(st->st_mode))
ftw_data_size += round_up(st->st_size, fs_block_size);
ftw_meta_nr_inode++;
return 0;
}
u64 btrfs_mkfs_size_dir(const char *dir_name, u32 sectorsize, u64 min_dev_size,
u64 meta_profile, u64 data_profile)
{
u64 total_size = 0;
int ret;
u64 meta_size = 0; /* Based on @ftw_meta_nr_inode */
u64 meta_chunk_size = 0; /* Based on @meta_size */
u64 data_chunk_size = 0; /* Based on @ftw_data_size */
u64 meta_threshold = SZ_8M;
u64 data_threshold = SZ_8M;
float data_multiplier = 1;
float meta_multiplier = 1;
fs_block_size = sectorsize;
ftw_data_size = 0;
ftw_meta_nr_inode = 0;
/*
* Symbolic link is not followed when creating files, so no need to
* follow them here.
*/
ret = nftw(dir_name, ftw_add_entry_size, 10, FTW_PHYS);
if (ret < 0) {
error("ftw subdir walk of %s failed: %m", dir_name);
exit(1);
}
/*
* Maximum metadata usage for every inode, which will be PATH_MAX
* for the following items:
* 1) DIR_ITEM
* 2) DIR_INDEX
* 3) INODE_REF
*
* Plus possible inline extent size, which is sectorsize.
*
* And finally, allow metadata usage to increase with data size.
* Follow the old kernel 8:1 data:meta ratio.
* This is especially important for --rootdir, as the file extent size
* upper limit is 1M, instead of 128M in kernel.
* This can bump meta usage easily.
*/
meta_size = ftw_meta_nr_inode * (PATH_MAX * 3 + sectorsize) +
ftw_data_size / 8;
/* Minimal chunk size from btrfs_alloc_chunk(). */
if (meta_profile & BTRFS_BLOCK_GROUP_DUP) {
meta_threshold = SZ_32M;
meta_multiplier = 2;
}
if (data_profile & BTRFS_BLOCK_GROUP_DUP) {
data_threshold = SZ_64M;
data_multiplier = 2;
}
/*
* Only when the usage is larger than the minimal chunk size (threshold)
* we need to allocate new chunk, or the initial chunk in the image is
* large enough.
*/
if (meta_size > meta_threshold)
meta_chunk_size = (round_up(meta_size, meta_threshold) -
meta_threshold) * meta_multiplier;
if (ftw_data_size > data_threshold)
data_chunk_size = (round_up(ftw_data_size, data_threshold) -
data_threshold) * data_multiplier;
total_size = data_chunk_size + meta_chunk_size + min_dev_size;
return total_size;
}
/*
* Get the end position of the last device extent for given @devid;
* @size_ret is exclusive (means it should be aligned to sectorsize)
*/
static int get_device_extent_end(struct btrfs_fs_info *fs_info,
u64 devid, u64 *size_ret)
{
struct btrfs_root *dev_root = fs_info->dev_root;
struct btrfs_key key;
struct btrfs_path path = { 0 };
struct btrfs_dev_extent *de;
int ret;
key.objectid = devid;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, dev_root, &key, &path, 0, 0);
if (ret == 0) {
error("DEV_EXTENT for devid %llu not found", devid);
ret = -EUCLEAN;
goto out;
}
ret = btrfs_previous_item(dev_root, &path, devid, BTRFS_DEV_EXTENT_KEY);
if (ret < 0)
goto out;
/* No dev_extent at all, not really possible for rootdir case */
if (ret > 0) {
*size_ret = 0;
ret = -EUCLEAN;
goto out;
}
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
de = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_dev_extent);
*size_ret = key.offset + btrfs_dev_extent_length(path.nodes[0], de);
out:
btrfs_release_path(&path);
return ret;
}
/*
* Set device size to @new_size.
*
* Only used for --rootdir option.
* We will need to reset the following values:
* 1) dev item in chunk tree
* 2) super->dev_item
* 3) super->total_bytes
*/
static int set_device_size(struct btrfs_fs_info *fs_info,
struct btrfs_device *device, u64 new_size)
{
struct btrfs_root *chunk_root = fs_info->chunk_root;
struct btrfs_trans_handle *trans;
struct btrfs_dev_item *di;
struct btrfs_path path = { 0 };
struct btrfs_key key;
int ret;
/*
* Update in-memory device->total_bytes, so that at trans commit time,
* super->dev_item will also get updated
*/
device->total_bytes = new_size;
/* Update device item in chunk tree */
trans = btrfs_start_transaction(chunk_root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
return ret;
}
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
if (ret < 0)
goto err;
if (ret > 0)
ret = -ENOENT;
di = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_dev_item);
btrfs_set_device_total_bytes(path.nodes[0], di, new_size);
btrfs_mark_buffer_dirty(path.nodes[0]);
/*
* Update super->total_bytes, since it's only used for --rootdir,
* there is only one device, just use the @new_size.
*/
btrfs_set_super_total_bytes(fs_info->super_copy, new_size);
/*
* Commit transaction to reflect the updated super->total_bytes and
* super->dev_item
*/
ret = btrfs_commit_transaction(trans, chunk_root);
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
}
btrfs_release_path(&path);
return ret;
err:
btrfs_release_path(&path);
/*
* Committing the transaction here won't cause problems since the fs
* still has an invalid magic number, and something wrong already
* happened, we don't care the return value anyway.
*/
btrfs_commit_transaction(trans, chunk_root);
return ret;
}
int btrfs_mkfs_shrink_fs(struct btrfs_fs_info *fs_info, u64 *new_size_ret,
bool shrink_file_size)
{
u64 new_size;
struct btrfs_device *device;
struct list_head *cur;
struct stat file_stat;
int nr_devs = 0;
int ret;
list_for_each(cur, &fs_info->fs_devices->devices)
nr_devs++;
if (nr_devs > 1) {
error("cannot shrink fs with more than 1 device");
return -ENOTTY;
}
ret = get_device_extent_end(fs_info, 1, &new_size);
if (ret < 0) {
errno = -ret;
error("failed to get minimal device size: %d (%m)", ret);
return ret;
}
if (!IS_ALIGNED(new_size, fs_info->sectorsize)) {
error("shrunk filesystem size %llu not aligned to %u",
new_size, fs_info->sectorsize);
return -EUCLEAN;
}
device = list_entry(fs_info->fs_devices->devices.next,
struct btrfs_device, dev_list);
ret = set_device_size(fs_info, device, new_size);
if (ret < 0)
return ret;
if (new_size_ret)
*new_size_ret = new_size;
if (shrink_file_size) {
ret = fstat(device->fd, &file_stat);
if (ret < 0) {
error("failed to stat devid %llu: %m", device->devid);
return ret;
}
if (!S_ISREG(file_stat.st_mode))
return ret;
ret = ftruncate(device->fd, new_size);
if (ret < 0) {
error("failed to truncate device file of devid %llu: %m",
device->devid);
return ret;
}
}
return ret;
}