mirror of
https://github.com/kdave/btrfs-progs
synced 2024-12-25 07:32:22 +00:00
602536773d
resolve_one_root() returns the objectid of a tree rather than the logical address of the root node. Hence using root_bytenr is misleading. Fix this. Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.cz>
1174 lines
27 KiB
C
1174 lines
27 KiB
C
/*
|
|
* Copyright (C) 2014 SUSE. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*
|
|
* Authors: Mark Fasheh <mfasheh@suse.de>
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <uuid/uuid.h>
|
|
#include "kerncompat.h"
|
|
#include "radix-tree.h"
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "utils.h"
|
|
#include "ulist.h"
|
|
#include "rbtree-utils.h"
|
|
|
|
#include "qgroup-verify.h"
|
|
|
|
/*#define QGROUP_VERIFY_DEBUG*/
|
|
static unsigned long tot_extents_scanned = 0;
|
|
|
|
static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive);
|
|
|
|
struct qgroup_count {
|
|
u64 qgroupid;
|
|
int subvol_exists;
|
|
|
|
struct btrfs_disk_key key;
|
|
struct btrfs_qgroup_info_item diskinfo;
|
|
|
|
struct btrfs_qgroup_info_item info;
|
|
|
|
struct rb_node rb_node;
|
|
};
|
|
|
|
struct counts_tree {
|
|
struct rb_root root;
|
|
unsigned int num_groups;
|
|
} counts = { .root = RB_ROOT };
|
|
|
|
struct rb_root by_bytenr = RB_ROOT;
|
|
|
|
/*
|
|
* List of interior tree blocks. We walk this list after loading the
|
|
* extent tree to resolve implied refs. For each interior node we'll
|
|
* place a shared ref in the ref tree against each child object. This
|
|
* allows the shared ref resolving code to do the actual work later of
|
|
* finding roots to account against.
|
|
*
|
|
* An implied ref is when a tree block has refs on it that may not
|
|
* exist in any of its child nodes. Even though the refs might not
|
|
* exist further down the tree, the fact that our interior node has a
|
|
* ref means we need to account anything below it to all its roots.
|
|
*/
|
|
struct ulist *tree_blocks = NULL; /* unode->val = bytenr, ->aux
|
|
* = tree_block pointer */
|
|
struct tree_block {
|
|
int level;
|
|
u64 num_bytes;
|
|
};
|
|
|
|
struct ref {
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 parent;
|
|
u64 root;
|
|
|
|
struct rb_node bytenr_node;
|
|
};
|
|
|
|
#ifdef QGROUP_VERIFY_DEBUG
|
|
static void print_ref(struct ref *ref)
|
|
{
|
|
printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
|
|
"root: %llu\n", ref->bytenr, ref->num_bytes,
|
|
ref->parent, ref->root);
|
|
}
|
|
|
|
static void print_all_refs(void)
|
|
{
|
|
unsigned long count = 0;
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
|
|
node = rb_first(&by_bytenr);
|
|
while (node) {
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
|
|
print_ref(ref);
|
|
|
|
count++;
|
|
node = rb_next(node);
|
|
}
|
|
|
|
printf("%lu extents scanned with %lu refs in total.\n",
|
|
tot_extents_scanned, count);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Store by bytenr in rbtree
|
|
*
|
|
* The tree is sorted in ascending order by bytenr, then parent, then
|
|
* root. Since full refs have a parent == 0, those will come before
|
|
* shared refs.
|
|
*/
|
|
static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
|
|
{
|
|
if (bytenr < orig->bytenr)
|
|
return -1;
|
|
if (bytenr > orig->bytenr)
|
|
return 1;
|
|
|
|
if (parent < orig->parent)
|
|
return -1;
|
|
if (parent > orig->parent)
|
|
return 1;
|
|
|
|
if (root < orig->root)
|
|
return -1;
|
|
if (root > orig->root)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* insert a new ref into the tree. returns the existing ref entry
|
|
* if one is already there.
|
|
*/
|
|
static struct ref *insert_ref(struct ref *ref)
|
|
{
|
|
int ret;
|
|
struct rb_node **p = &by_bytenr.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct ref *curr;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
curr = rb_entry(parent, struct ref, bytenr_node);
|
|
|
|
ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
|
|
if (ret < 0)
|
|
p = &(*p)->rb_left;
|
|
else if (ret > 0)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return curr;
|
|
}
|
|
|
|
rb_link_node(&ref->bytenr_node, parent, p);
|
|
rb_insert_color(&ref->bytenr_node, &by_bytenr);
|
|
return ref;
|
|
}
|
|
|
|
/*
|
|
* Partial search, returns the first ref with matching bytenr. Caller
|
|
* can walk forward from there.
|
|
*
|
|
* Leftmost refs will be full refs - this is used to our advantage
|
|
* when resolving roots.
|
|
*/
|
|
static struct ref *find_ref_bytenr(u64 bytenr)
|
|
{
|
|
struct rb_node *n = by_bytenr.rb_node;
|
|
struct ref *ref;
|
|
|
|
while (n) {
|
|
ref = rb_entry(n, struct ref, bytenr_node);
|
|
|
|
if (bytenr < ref->bytenr)
|
|
n = n->rb_left;
|
|
else if (bytenr > ref->bytenr)
|
|
n = n->rb_right;
|
|
else {
|
|
/* Walk to the left to find the first item */
|
|
struct rb_node *node_left = rb_prev(&ref->bytenr_node);
|
|
struct ref *ref_left;
|
|
|
|
while (node_left) {
|
|
ref_left = rb_entry(node_left, struct ref,
|
|
bytenr_node);
|
|
if (ref_left->bytenr != ref->bytenr)
|
|
break;
|
|
ref = ref_left;
|
|
node_left = rb_prev(node_left);
|
|
}
|
|
return ref;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
|
|
{
|
|
struct rb_node *n = by_bytenr.rb_node;
|
|
struct ref *ref;
|
|
int ret;
|
|
|
|
while (n) {
|
|
ref = rb_entry(n, struct ref, bytenr_node);
|
|
|
|
ret = compare_ref(ref, bytenr, root, parent);
|
|
if (ret < 0)
|
|
n = n->rb_left;
|
|
else if (ret > 0)
|
|
n = n->rb_right;
|
|
else
|
|
return ref;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
|
|
{
|
|
struct ref *ref = find_ref(bytenr, root, parent);
|
|
|
|
BUG_ON(parent && root);
|
|
|
|
if (ref == NULL) {
|
|
ref = calloc(1, sizeof(*ref));
|
|
if (ref) {
|
|
ref->bytenr = bytenr;
|
|
ref->root = root;
|
|
ref->parent = parent;
|
|
ref->num_bytes = num_bytes;
|
|
|
|
insert_ref(ref);
|
|
}
|
|
}
|
|
return ref;
|
|
}
|
|
|
|
static void free_ref_node(struct rb_node *node)
|
|
{
|
|
struct ref *ref = rb_entry(node, struct ref, bytenr_node);
|
|
free(ref);
|
|
}
|
|
|
|
FREE_RB_BASED_TREE(ref, free_ref_node);
|
|
|
|
/*
|
|
* Resolves all the possible roots for the ref at parent.
|
|
*/
|
|
static void find_parent_roots(struct ulist *roots, u64 parent)
|
|
{
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
|
|
/*
|
|
* Search the rbtree for the first ref with bytenr == parent.
|
|
* Walk forward so long as bytenr == parent, adding resolved root ids.
|
|
* For each unresolved root, we recurse
|
|
*/
|
|
ref = find_ref_bytenr(parent);
|
|
node = &ref->bytenr_node;
|
|
BUG_ON(ref == NULL);
|
|
BUG_ON(ref->bytenr != parent);
|
|
|
|
{
|
|
/*
|
|
* Random sanity check, are we actually getting the
|
|
* leftmost node?
|
|
*/
|
|
struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
|
|
struct ref *prev;
|
|
if (prev_node) {
|
|
prev = rb_entry(prev_node, struct ref, bytenr_node);
|
|
BUG_ON(prev->bytenr == parent);
|
|
}
|
|
}
|
|
|
|
do {
|
|
if (ref->root)
|
|
ulist_add(roots, ref->root, 0, 0);
|
|
else
|
|
find_parent_roots(roots, ref->parent);
|
|
|
|
node = rb_next(node);
|
|
if (node)
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
} while (node && ref->bytenr == parent);
|
|
}
|
|
|
|
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
|
|
struct ulist *roots);
|
|
/*
|
|
* Account each ref. Walk the refs, for each set of refs in a
|
|
* given bytenr:
|
|
*
|
|
* - add the roots for direct refs to the ref roots ulist
|
|
*
|
|
* - resolve all possible roots for shared refs, insert each
|
|
* of those into ref_roots ulist (this is a recursive process)
|
|
*
|
|
* - Walk ref_roots ulist, adding extent bytes to each qgroup count that
|
|
* cooresponds to a found root.
|
|
*/
|
|
static void account_all_refs(int do_qgroups, u64 search_subvol)
|
|
{
|
|
int exclusive;
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
u64 bytenr, num_bytes;
|
|
struct ulist *roots = ulist_alloc(0);
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
node = rb_first(&by_bytenr);
|
|
while (node) {
|
|
ulist_reinit(roots);
|
|
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
/*
|
|
* Walk forward through the list of refs for this
|
|
* bytenr, adding roots to our ulist. If it's a full
|
|
* ref, then we have the easy case. Otherwise we need
|
|
* to search for roots.
|
|
*/
|
|
bytenr = ref->bytenr;
|
|
num_bytes = ref->num_bytes;
|
|
do {
|
|
BUG_ON(ref->bytenr != bytenr);
|
|
BUG_ON(ref->num_bytes != num_bytes);
|
|
if (ref->root)
|
|
ulist_add(roots, ref->root, 0, 0);
|
|
else
|
|
find_parent_roots(roots, ref->parent);
|
|
|
|
/*
|
|
* When we leave this inner loop, node is set
|
|
* to next in our tree and will be turned into
|
|
* a ref object up top
|
|
*/
|
|
node = rb_next(node);
|
|
if (node)
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
} while (node && ref->bytenr == bytenr);
|
|
|
|
/*
|
|
* Now that we have all roots, we can properly account
|
|
* this extent against the corresponding qgroups.
|
|
*/
|
|
if (roots->nnodes == 1)
|
|
exclusive = 1;
|
|
else
|
|
exclusive = 0;
|
|
|
|
if (search_subvol)
|
|
print_subvol_info(search_subvol, bytenr, num_bytes,
|
|
roots);
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(roots, &uiter))) {
|
|
BUG_ON(unode->val == 0ULL);
|
|
/* We only want to account fs trees */
|
|
if (is_fstree(unode->val) && do_qgroups)
|
|
add_bytes(unode->val, num_bytes, exclusive);
|
|
}
|
|
}
|
|
|
|
ulist_free(roots);
|
|
}
|
|
|
|
static u64 resolve_one_root(u64 bytenr)
|
|
{
|
|
struct ref *ref = find_ref_bytenr(bytenr);
|
|
|
|
BUG_ON(ref == NULL);
|
|
|
|
if (ref->root)
|
|
return ref->root;
|
|
return resolve_one_root(ref->parent);
|
|
}
|
|
|
|
static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
|
|
{
|
|
return u64_to_ptr(unode->aux);
|
|
}
|
|
static inline u64 unode_bytenr(struct ulist_node *unode)
|
|
{
|
|
return unode->val;
|
|
}
|
|
|
|
static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
|
|
{
|
|
struct tree_block *block = calloc(1, sizeof(*block));
|
|
|
|
if (block) {
|
|
block->num_bytes = num_bytes;
|
|
block->level = level;
|
|
if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
|
|
return 0;
|
|
free(block);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void free_tree_blocks(void)
|
|
{
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
if (!tree_blocks)
|
|
return;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(tree_blocks, &uiter)))
|
|
free(unode_tree_block(unode));
|
|
ulist_free(tree_blocks);
|
|
tree_blocks = NULL;
|
|
}
|
|
|
|
#ifdef QGROUP_VERIFY_DEBUG
|
|
static void print_tree_block(u64 bytenr, struct tree_block *block)
|
|
{
|
|
struct ref *ref;
|
|
struct rb_node *node;
|
|
|
|
printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
|
|
block->level);
|
|
|
|
ref = find_ref_bytenr(bytenr);
|
|
node = &ref->bytenr_node;
|
|
do {
|
|
print_ref(ref);
|
|
node = rb_next(node);
|
|
if (node)
|
|
ref = rb_entry(node, struct ref, bytenr_node);
|
|
} while (node && ref->bytenr == bytenr);
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
static void print_all_tree_blocks(void)
|
|
{
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
if (!tree_blocks)
|
|
return;
|
|
|
|
printf("Listing all found interior tree nodes:\n");
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(tree_blocks, &uiter)))
|
|
print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
|
|
}
|
|
#endif
|
|
|
|
static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
|
|
{
|
|
int nr, i;
|
|
int extent_type;
|
|
u64 bytenr, num_bytes;
|
|
struct btrfs_key key;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_file_extent_item *fi;
|
|
|
|
nr = btrfs_header_nritems(eb);
|
|
for (i = 0; i < nr; i++) {
|
|
btrfs_item_key(eb, &disk_key, i);
|
|
btrfs_disk_key_to_cpu(&key, &disk_key);
|
|
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
|
|
fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
|
|
/* filter out: inline, disk_bytenr == 0, compressed?
|
|
* not if we can avoid it */
|
|
extent_type = btrfs_file_extent_type(eb, fi);
|
|
|
|
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
|
|
bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
|
|
if (!bytenr)
|
|
continue;
|
|
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
|
|
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
|
|
u64 bytenr, u64 num_bytes, u64 ref_parent)
|
|
{
|
|
int ret, nr, i;
|
|
struct extent_buffer *eb;
|
|
u64 new_bytenr;
|
|
u64 new_num_bytes;
|
|
|
|
// printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
|
|
// bytenr, num_bytes, ref_parent);
|
|
|
|
eb = read_tree_block(root, bytenr, num_bytes, 0);
|
|
if (!eb)
|
|
return -EIO;
|
|
|
|
ret = 0;
|
|
/* Don't add a ref for our starting tree block to itself */
|
|
if (bytenr != ref_parent) {
|
|
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
}
|
|
|
|
if (btrfs_is_leaf(eb)) {
|
|
ret = add_refs_for_leaf_items(eb, ref_parent);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Interior nodes are tuples of (key, bytenr) where key is the
|
|
* leftmost key in the tree block pointed to by bytenr. We
|
|
* don't have to care about key here, just follow the bytenr
|
|
* pointer.
|
|
*/
|
|
nr = btrfs_header_nritems(eb);
|
|
for (i = 0; i < nr; i++) {
|
|
new_bytenr = btrfs_node_blockptr(eb, i);
|
|
new_num_bytes = btrfs_level_size(root,
|
|
btrfs_header_level(eb) - 1);
|
|
|
|
ret = travel_tree(info, root, new_bytenr, new_num_bytes,
|
|
ref_parent);
|
|
}
|
|
|
|
out:
|
|
free_extent_buffer(eb);
|
|
return ret;
|
|
}
|
|
|
|
static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
|
|
struct tree_block *block)
|
|
{
|
|
int ret;
|
|
u64 root_id = resolve_one_root(bytenr);
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
|
|
key.objectid = root_id;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
/*
|
|
* XXX: Don't free the root object as we don't know whether it
|
|
* came off our fs_info struct or not.
|
|
*/
|
|
root = btrfs_read_fs_root(info, &key);
|
|
if (!root || IS_ERR(root))
|
|
return ENOENT;
|
|
|
|
ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Place shared refs in the ref tree for each child of an interior tree node.
|
|
*/
|
|
static int map_implied_refs(struct btrfs_fs_info *info)
|
|
{
|
|
int ret = 0;
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(tree_blocks, &uiter))) {
|
|
ret = add_refs_for_implied(info, unode_bytenr(unode),
|
|
unode_tree_block(unode));
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* insert a new root into the tree. returns the existing root entry
|
|
* if one is already there. qgroupid is used
|
|
* as the key
|
|
*/
|
|
static int insert_count(struct qgroup_count *qc)
|
|
{
|
|
struct rb_node **p = &counts.root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct qgroup_count *curr;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
curr = rb_entry(parent, struct qgroup_count, rb_node);
|
|
|
|
if (qc->qgroupid < curr->qgroupid)
|
|
p = &(*p)->rb_left;
|
|
else if (qc->qgroupid > curr->qgroupid)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return EEXIST;
|
|
}
|
|
counts.num_groups++;
|
|
rb_link_node(&qc->rb_node, parent, p);
|
|
rb_insert_color(&qc->rb_node, &counts.root);
|
|
return 0;
|
|
}
|
|
|
|
static struct qgroup_count *find_count(u64 qgroupid)
|
|
{
|
|
struct rb_node *n = counts.root.rb_node;
|
|
struct qgroup_count *count;
|
|
|
|
while (n) {
|
|
count = rb_entry(n, struct qgroup_count, rb_node);
|
|
|
|
if (qgroupid < count->qgroupid)
|
|
n = n->rb_left;
|
|
else if (qgroupid > count->qgroupid)
|
|
n = n->rb_right;
|
|
else
|
|
return count;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_qgroup_info_item *disk)
|
|
{
|
|
struct qgroup_count *c = calloc(1, sizeof(*c));
|
|
struct btrfs_qgroup_info_item *item;
|
|
|
|
if (c) {
|
|
c->qgroupid = btrfs_disk_key_offset(key);
|
|
c->key = *key;
|
|
|
|
item = &c->diskinfo;
|
|
item->generation = btrfs_qgroup_info_generation(leaf, disk);
|
|
item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
|
|
item->referenced_compressed =
|
|
btrfs_qgroup_info_referenced_compressed(leaf, disk);
|
|
item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
|
|
item->exclusive_compressed =
|
|
btrfs_qgroup_info_exclusive_compressed(leaf, disk);
|
|
|
|
if (insert_count(c)) {
|
|
free(c);
|
|
c = NULL;
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive)
|
|
{
|
|
struct qgroup_count *count = find_count(root_objectid);
|
|
struct btrfs_qgroup_info_item *qg;
|
|
|
|
BUG_ON(num_bytes < 4096); /* Random sanity check. */
|
|
|
|
if (!count)
|
|
return;
|
|
|
|
qg = &count->info;
|
|
|
|
qg->referenced += num_bytes;
|
|
/*
|
|
* count of compressed bytes is unimplemented, so we do the
|
|
* same as kernel.
|
|
*/
|
|
qg->referenced_compressed += num_bytes;
|
|
|
|
if (exclusive) {
|
|
qg->exclusive += num_bytes;
|
|
qg->exclusive_compressed += num_bytes;
|
|
}
|
|
}
|
|
|
|
static int load_quota_info(struct btrfs_fs_info *info)
|
|
{
|
|
int ret;
|
|
struct btrfs_root *root = info->quota_root;
|
|
struct btrfs_root *tmproot;
|
|
struct btrfs_path path;
|
|
struct btrfs_key key;
|
|
struct btrfs_key root_key;
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_qgroup_info_item *item;
|
|
struct qgroup_count *count;
|
|
int i, nr;
|
|
|
|
btrfs_init_path(&path);
|
|
|
|
key.offset = 0;
|
|
key.objectid = 0;
|
|
key.type = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
leaf = path.nodes[0];
|
|
|
|
nr = btrfs_header_nritems(leaf);
|
|
for(i = 0; i < nr; i++) {
|
|
btrfs_item_key(leaf, &disk_key, i);
|
|
btrfs_disk_key_to_cpu(&key, &disk_key);
|
|
|
|
if (key.type == BTRFS_QGROUP_RELATION_KEY)
|
|
printf("Ignoring qgroup relation key %llu\n",
|
|
key.objectid);
|
|
|
|
/*
|
|
* Ignore: BTRFS_QGROUP_STATUS_KEY,
|
|
* BTRFS_QGROUP_LIMIT_KEY, BTRFS_QGROUP_RELATION_KEY
|
|
*/
|
|
if (key.type != BTRFS_QGROUP_INFO_KEY)
|
|
continue;
|
|
|
|
item = btrfs_item_ptr(leaf, i,
|
|
struct btrfs_qgroup_info_item);
|
|
|
|
count = alloc_count(&disk_key, leaf, item);
|
|
if (!count) {
|
|
ret = ENOMEM;
|
|
fprintf(stderr, "ERROR: out of memory\n");
|
|
goto out;
|
|
}
|
|
|
|
root_key.objectid = key.offset;
|
|
root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root_key.offset = (u64)-1;
|
|
tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
|
|
if (tmproot && !IS_ERR(tmproot)) {
|
|
count->subvol_exists = 1;
|
|
free(tmproot);
|
|
}
|
|
}
|
|
|
|
ret = btrfs_next_leaf(root, &path);
|
|
if (ret != 0)
|
|
break;
|
|
}
|
|
|
|
ret = 0;
|
|
btrfs_release_path(&path);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int add_inline_refs(struct btrfs_fs_info *info,
|
|
struct extent_buffer *ei_leaf, int slot,
|
|
u64 bytenr, u64 num_bytes, int meta_item)
|
|
{
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_extent_data_ref *dref;
|
|
u64 flags, root_obj, offset, parent;
|
|
u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
|
|
int type;
|
|
unsigned long end;
|
|
unsigned long ptr;
|
|
|
|
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(ei_leaf, ei);
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
|
|
struct btrfs_tree_block_info *tbinfo;
|
|
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
|
|
iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
|
|
} else {
|
|
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
}
|
|
|
|
ptr = (unsigned long)iref;
|
|
end = (unsigned long)ei + item_size;
|
|
while (ptr < end) {
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
|
|
parent = root_obj = 0;
|
|
offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
|
|
type = btrfs_extent_inline_ref_type(ei_leaf, iref);
|
|
switch (type) {
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
root_obj = offset;
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY:
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
parent = offset;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int add_keyed_ref(struct btrfs_fs_info *info,
|
|
struct btrfs_key *key,
|
|
struct extent_buffer *leaf, int slot,
|
|
u64 bytenr, u64 num_bytes)
|
|
{
|
|
u64 root_obj = 0, parent = 0;
|
|
struct btrfs_extent_data_ref *dref;
|
|
|
|
switch(key->type) {
|
|
case BTRFS_TREE_BLOCK_REF_KEY:
|
|
root_obj = key->offset;
|
|
break;
|
|
case BTRFS_EXTENT_DATA_REF_KEY:
|
|
dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
|
|
root_obj = btrfs_extent_data_ref_root(leaf, dref);
|
|
break;
|
|
case BTRFS_SHARED_DATA_REF_KEY:
|
|
case BTRFS_SHARED_BLOCK_REF_KEY:
|
|
parent = key->offset;
|
|
break;
|
|
default:
|
|
return 1;
|
|
}
|
|
|
|
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
|
|
return ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* return value of 0 indicates leaf or not meta data. The code that
|
|
* calls this does not need to make a distinction between the two as
|
|
* it is only concerned with intermediate blocks which will always
|
|
* have level > 0.
|
|
*/
|
|
static int get_tree_block_level(struct btrfs_key *key,
|
|
struct extent_buffer *ei_leaf,
|
|
int slot)
|
|
{
|
|
int level = 0;
|
|
int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
|
|
u64 flags;
|
|
struct btrfs_extent_item *ei;
|
|
|
|
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(ei_leaf, ei);
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
|
|
struct btrfs_tree_block_info *tbinfo;
|
|
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
|
|
level = btrfs_tree_block_level(ei_leaf, tbinfo);
|
|
} else if (meta_key) {
|
|
/* skinny metadata */
|
|
level = (int)key->offset;
|
|
}
|
|
return level;
|
|
}
|
|
|
|
/*
|
|
* Walk the extent tree, allocating a ref item for every ref and
|
|
* storing it in the bytenr tree.
|
|
*/
|
|
static int scan_extents(struct btrfs_fs_info *info,
|
|
u64 start, u64 end)
|
|
{
|
|
int ret, i, nr, level;
|
|
struct btrfs_root *root = info->extent_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path path;
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *leaf;
|
|
u64 bytenr = 0, num_bytes = 0;
|
|
|
|
btrfs_init_path(&path);
|
|
|
|
key.objectid = start;
|
|
key.type = 0;
|
|
key.offset = 0;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
|
|
goto out;
|
|
}
|
|
path.reada = 1;
|
|
|
|
while (1) {
|
|
leaf = path.nodes[0];
|
|
|
|
nr = btrfs_header_nritems(leaf);
|
|
for(i = 0; i < nr; i++) {
|
|
btrfs_item_key(leaf, &disk_key, i);
|
|
btrfs_disk_key_to_cpu(&key, &disk_key);
|
|
|
|
if (key.objectid < start)
|
|
continue;
|
|
|
|
if (key.objectid > end)
|
|
goto done;
|
|
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
|
|
key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
int meta = 0;
|
|
|
|
tot_extents_scanned++;
|
|
|
|
bytenr = key.objectid;
|
|
num_bytes = key.offset;
|
|
if (key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
num_bytes = info->extent_root->leafsize;
|
|
meta = 1;
|
|
}
|
|
|
|
ret = add_inline_refs(info, leaf, i, bytenr,
|
|
num_bytes, meta);
|
|
if (ret)
|
|
goto out;
|
|
|
|
level = get_tree_block_level(&key, leaf, i);
|
|
if (level) {
|
|
if (alloc_tree_block(bytenr, num_bytes,
|
|
level))
|
|
return ENOMEM;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
|
|
continue;
|
|
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
|
|
continue;
|
|
|
|
/*
|
|
* Keyed refs should come after their extent
|
|
* item in the tree. As a result, the value of
|
|
* bytenr and num_bytes should be unchanged
|
|
* from the above block that catches the
|
|
* original extent item.
|
|
*/
|
|
BUG_ON(key.objectid != bytenr);
|
|
|
|
ret = add_keyed_ref(info, &key, leaf, i, bytenr,
|
|
num_bytes);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_next_leaf(root, &path);
|
|
if (ret != 0) {
|
|
if (ret < 0) {
|
|
fprintf(stderr,
|
|
"ERROR: Next leaf failed: %d\n", ret);
|
|
goto out;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
done:
|
|
ret = 0;
|
|
out:
|
|
btrfs_release_path(&path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
|
|
char *type)
|
|
{
|
|
printf("%s\t\t%s %llu %s compressed %llu\n",
|
|
prefix, type, (unsigned long long)bytes, type,
|
|
(unsigned long long)bytes_compressed);
|
|
}
|
|
|
|
static void print_fields_signed(long long bytes,
|
|
long long bytes_compressed,
|
|
char *prefix, char *type)
|
|
{
|
|
printf("%s\t\t%s %lld %s compressed %lld\n",
|
|
prefix, type, bytes, type, bytes_compressed);
|
|
}
|
|
|
|
static void print_qgroup_difference(struct qgroup_count *count, int verbose)
|
|
{
|
|
int is_different;
|
|
struct btrfs_qgroup_info_item *info = &count->info;
|
|
struct btrfs_qgroup_info_item *disk = &count->diskinfo;
|
|
long long excl_diff = info->exclusive - disk->exclusive;
|
|
long long ref_diff = info->referenced - disk->referenced;
|
|
|
|
is_different = excl_diff || ref_diff;
|
|
|
|
if (verbose || (is_different && count->subvol_exists)) {
|
|
printf("Counts for qgroup id: %llu %s\n",
|
|
(unsigned long long)count->qgroupid,
|
|
is_different ? "are different" : "");
|
|
|
|
print_fields(info->referenced, info->referenced_compressed,
|
|
"our:", "referenced");
|
|
print_fields(disk->referenced, disk->referenced_compressed,
|
|
"disk:", "referenced");
|
|
if (ref_diff)
|
|
print_fields_signed(ref_diff, ref_diff,
|
|
"diff:", "referenced");
|
|
print_fields(info->exclusive, info->exclusive_compressed,
|
|
"our:", "exclusive");
|
|
print_fields(disk->exclusive, disk->exclusive_compressed,
|
|
"disk:", "exclusive");
|
|
if (excl_diff)
|
|
print_fields_signed(excl_diff, excl_diff,
|
|
"diff:", "exclusive");
|
|
}
|
|
}
|
|
|
|
void print_qgroup_report(int all)
|
|
{
|
|
struct rb_node *node;
|
|
struct qgroup_count *c;
|
|
|
|
node = rb_first(&counts.root);
|
|
while (node) {
|
|
c = rb_entry(node, struct qgroup_count, rb_node);
|
|
print_qgroup_difference(c, all);
|
|
node = rb_next(node);
|
|
}
|
|
}
|
|
|
|
int qgroup_verify_all(struct btrfs_fs_info *info)
|
|
{
|
|
int ret;
|
|
|
|
if (!info->quota_enabled)
|
|
return 0;
|
|
|
|
tree_blocks = ulist_alloc(0);
|
|
if (!tree_blocks) {
|
|
fprintf(stderr,
|
|
"ERROR: Out of memory while allocating ulist.\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
ret = load_quota_info(info);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: Loading qgroups from disk: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Put all extent refs into our rbtree
|
|
*/
|
|
ret = scan_extents(info, 0, ~0ULL);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = map_implied_refs(info);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
account_all_refs(1, 0);
|
|
|
|
out:
|
|
/*
|
|
* Don't free the qgroup count records as they will be walked
|
|
* later via the print function.
|
|
*/
|
|
free_tree_blocks();
|
|
free_ref_tree(&by_bytenr);
|
|
return ret;
|
|
}
|
|
|
|
static void __print_subvol_info(u64 bytenr, u64 num_bytes, struct ulist *roots)
|
|
{
|
|
int n = roots->nnodes;
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
printf("%llu\t%llu\t%d\t", bytenr, num_bytes, n);
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(roots, &uiter))) {
|
|
printf("%llu ", unode->val);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
|
|
struct ulist *roots)
|
|
{
|
|
struct ulist_iterator uiter;
|
|
struct ulist_node *unode;
|
|
|
|
ULIST_ITER_INIT(&uiter);
|
|
while ((unode = ulist_next(roots, &uiter))) {
|
|
BUG_ON(unode->val == 0ULL);
|
|
if (unode->val == subvolid) {
|
|
__print_subvol_info(bytenr, num_bytes, roots);
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
}
|
|
|
|
int print_extent_state(struct btrfs_fs_info *info, u64 subvol)
|
|
{
|
|
int ret;
|
|
|
|
tree_blocks = ulist_alloc(0);
|
|
if (!tree_blocks) {
|
|
fprintf(stderr,
|
|
"ERROR: Out of memory while allocating ulist.\n");
|
|
return ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Put all extent refs into our rbtree
|
|
*/
|
|
ret = scan_extents(info, 0, ~0ULL);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = map_implied_refs(info);
|
|
if (ret) {
|
|
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
|
|
goto out;
|
|
}
|
|
|
|
printf("Offset\t\tLen\tRoot Refs\tRoots\n");
|
|
account_all_refs(0, subvol);
|
|
|
|
out:
|
|
free_tree_blocks();
|
|
free_ref_tree(&by_bytenr);
|
|
return ret;
|
|
}
|
|
|