btrfs-progs/kernel-shared/tree-checker.c
Johannes Thumshirn 7c549b5f7c btrfs-progs: remove raid stripe encoding
Remove the not needed encoding and reserved fields in struct
raid_stripe_extent.

This saves 8 bytes per stripe extent.

Note: this is a format change and previously created filesystems with
raid-stripe-tree will not be accessible. Similar patch is needed in
kernel.

Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-06-24 19:40:18 +02:00

2167 lines
65 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) Qu Wenruo 2017. All rights reserved.
*/
/*
* The module is used to catch unexpected/corrupted tree block data.
* Such behavior can be caused either by a fuzzed image or bugs.
*
* The objective is to do leaf/node validation checks when tree block is read
* from disk, and check *every* possible member, so other code won't
* need to checking them again.
*
* Due to the potential and unwanted damage, every checker needs to be
* carefully reviewed otherwise so it does not prevent mount of valid images.
*/
#include "kerncompat.h"
#include <sys/stat.h>
#include <linux/limits.h>
#include <errno.h>
#include <limits.h>
#include <stdarg.h>
#include "kernel-lib/overflow.h"
#include "kernel-lib/bitops.h"
#include "kernel-lib/sizes.h"
#include "kernel-shared/messages.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/tree-checker.h"
#include "kernel-shared/compression.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/misc.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/file-item.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/print-tree.h"
#include "kernel-shared/uapi/btrfs.h"
#include "kernel-shared/uapi/btrfs_tree.h"
#include "common/internal.h"
/*
* btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
* separate u32s. These two functions convert between the two representations.
*
* MODIFIED:
* - Declared these here since this is the only place they're used currently.
*/
static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
{
return (flags | ((u64)ro_flags << 32));
}
static inline void btrfs_inode_split_flags(u64 inode_item_flags,
u32 *flags, u32 *ro_flags)
{
*flags = (u32)inode_item_flags;
*ro_flags = (u32)(inode_item_flags >> 32);
}
/*
* Error message should follow the following format:
* corrupt <type>: <identifier>, <reason>[, <bad_value>]
*
* @type: leaf or node
* @identifier: the necessary info to locate the leaf/node.
* It's recommended to decode key.objecitd/offset if it's
* meaningful.
* @reason: describe the error
* @bad_value: optional, it's recommended to output bad value and its
* expected value (range).
*
* Since comma is used to separate the components, only space is allowed
* inside each component.
*/
/*
* Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
* Allows callers to customize the output.
*/
__printf(3, 4)
__cold
static void generic_err(const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
const struct btrfs_fs_info *fs_info = eb->fs_info;
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
va_end(args);
btrfs_print_tree((struct extent_buffer *)eb, 0);
}
/*
* Customized reporter for extent data item, since its key objectid and
* offset has its own meaning.
*/
__printf(3, 4)
__cold
static void file_extent_err(const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
const struct btrfs_fs_info *fs_info = eb->fs_info;
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, key.offset, &vaf);
va_end(args);
btrfs_print_tree((struct extent_buffer *)eb, 0);
}
/*
* Return 0 if the btrfs_file_extent_##name is aligned to @alignment
* Else return 1
*/
#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
({ \
if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
(alignment)))) \
file_extent_err((leaf), (slot), \
"invalid %s for file extent, have %llu, should be aligned to %u", \
(#name), btrfs_file_extent_##name((leaf), (fi)), \
(alignment)); \
(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
})
static u64 file_extent_end(struct extent_buffer *leaf,
struct btrfs_key *key,
struct btrfs_file_extent_item *extent)
{
u64 end;
u64 len;
if (btrfs_file_extent_type(leaf, extent) == BTRFS_FILE_EXTENT_INLINE) {
len = btrfs_file_extent_ram_bytes(leaf, extent);
end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
} else {
len = btrfs_file_extent_num_bytes(leaf, extent);
end = key->offset + len;
}
return end;
}
/*
* Customized report for dir_item, the only new important information is
* key->objectid, which represents inode number
*/
__printf(3, 4)
__cold
static void dir_item_err(const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
const struct btrfs_fs_info *fs_info = eb->fs_info;
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, &vaf);
va_end(args);
btrfs_print_tree((struct extent_buffer *)eb, 0);
}
/*
* This functions checks prev_key->objectid, to ensure current key and prev_key
* share the same objectid as inode number.
*
* This is to detect missing INODE_ITEM in subvolume trees.
*
* Return true if everything is OK or we don't need to check.
* Return false if anything is wrong.
*/
static bool check_prev_ino(struct extent_buffer *leaf,
struct btrfs_key *key, int slot,
struct btrfs_key *prev_key)
{
/* No prev key, skip check */
if (slot == 0)
return true;
/* Only these key->types needs to be checked */
ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
key->type == BTRFS_INODE_REF_KEY ||
key->type == BTRFS_DIR_INDEX_KEY ||
key->type == BTRFS_DIR_ITEM_KEY ||
key->type == BTRFS_EXTENT_DATA_KEY);
/*
* Only subvolume trees along with their reloc trees need this check.
* Things like log tree doesn't follow this ino requirement.
*/
if (!is_fstree(btrfs_header_owner(leaf)))
return true;
if (key->objectid == prev_key->objectid)
return true;
/* Error found */
dir_item_err(leaf, slot,
"invalid previous key objectid, have %llu expect %llu",
prev_key->objectid, key->objectid);
return false;
}
static int check_extent_data_item(struct extent_buffer *leaf,
struct btrfs_key *key, int slot,
struct btrfs_key *prev_key)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_file_extent_item *fi;
u32 sectorsize = fs_info->sectorsize;
u32 item_size = btrfs_item_size(leaf, slot);
u64 extent_end;
if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
file_extent_err(leaf, slot,
"unaligned file_offset for file extent, have %llu should be aligned to %u",
key->offset, sectorsize);
return -EUCLEAN;
}
/*
* Previous key must have the same key->objectid (ino).
* It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
* But if objectids mismatch, it means we have a missing
* INODE_ITEM.
*/
if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
return -EUCLEAN;
fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
/*
* Make sure the item contains at least inline header, so the file
* extent type is not some garbage.
*/
if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
file_extent_err(leaf, slot,
"invalid item size, have %u expect [%zu, %u)",
item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
SZ_4K);
return -EUCLEAN;
}
if (unlikely(btrfs_file_extent_type(leaf, fi) >=
BTRFS_NR_FILE_EXTENT_TYPES)) {
file_extent_err(leaf, slot,
"invalid type for file extent, have %u expect range [0, %u]",
btrfs_file_extent_type(leaf, fi),
BTRFS_NR_FILE_EXTENT_TYPES - 1);
return -EUCLEAN;
}
/*
* Support for new compression/encryption must introduce incompat flag,
* and must be caught in open_ctree().
*/
if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
BTRFS_NR_COMPRESS_TYPES)) {
file_extent_err(leaf, slot,
"invalid compression for file extent, have %u expect range [0, %u]",
btrfs_file_extent_compression(leaf, fi),
BTRFS_NR_COMPRESS_TYPES - 1);
return -EUCLEAN;
}
if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
file_extent_err(leaf, slot,
"invalid encryption for file extent, have %u expect 0",
btrfs_file_extent_encryption(leaf, fi));
return -EUCLEAN;
}
if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
/* Inline extent must have 0 as key offset */
if (unlikely(key->offset)) {
file_extent_err(leaf, slot,
"invalid file_offset for inline file extent, have %llu expect 0",
key->offset);
return -EUCLEAN;
}
/* Compressed inline extent has no on-disk size, skip it */
if (btrfs_file_extent_compression(leaf, fi) !=
BTRFS_COMPRESS_NONE)
return 0;
/* Uncompressed inline extent size must match item size */
if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
btrfs_file_extent_ram_bytes(leaf, fi))) {
file_extent_err(leaf, slot,
"invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
btrfs_file_extent_ram_bytes(leaf, fi));
return -EUCLEAN;
}
return 0;
}
/* Regular or preallocated extent has fixed item size */
if (unlikely(item_size != sizeof(*fi))) {
file_extent_err(leaf, slot,
"invalid item size for reg/prealloc file extent, have %u expect %zu",
item_size, sizeof(*fi));
return -EUCLEAN;
}
if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
return -EUCLEAN;
/* Catch extent end overflow */
if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
key->offset, &extent_end))) {
file_extent_err(leaf, slot,
"extent end overflow, have file offset %llu extent num bytes %llu",
key->offset,
btrfs_file_extent_num_bytes(leaf, fi));
return -EUCLEAN;
}
/*
* Check that no two consecutive file extent items, in the same leaf,
* present ranges that overlap each other.
*/
if (slot > 0 &&
prev_key->objectid == key->objectid &&
prev_key->type == BTRFS_EXTENT_DATA_KEY) {
struct btrfs_file_extent_item *prev_fi;
u64 prev_end;
prev_fi = btrfs_item_ptr(leaf, slot - 1,
struct btrfs_file_extent_item);
prev_end = file_extent_end(leaf, prev_key, prev_fi);
if (unlikely(prev_end > key->offset)) {
file_extent_err(leaf, slot - 1,
"file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
prev_end, key->offset);
return -EUCLEAN;
}
}
return 0;
}
static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
int slot, struct btrfs_key *prev_key)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
u32 sectorsize = fs_info->sectorsize;
const u32 csumsize = fs_info->csum_size;
/* For fs under csum change, we should not check the regular csum items. */
if (unlikely(btrfs_super_flags(fs_info->super_copy) &
(BTRFS_SUPER_FLAG_CHANGING_DATA_CSUM |
BTRFS_SUPER_FLAG_CHANGING_META_CSUM)))
return 0;
if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
generic_err(leaf, slot,
"invalid key objectid for csum item, have %llu expect %llu",
key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
return -EUCLEAN;
}
if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
generic_err(leaf, slot,
"unaligned key offset for csum item, have %llu should be aligned to %u",
key->offset, sectorsize);
return -EUCLEAN;
}
if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
generic_err(leaf, slot,
"unaligned item size for csum item, have %u should be aligned to %u",
btrfs_item_size(leaf, slot), csumsize);
return -EUCLEAN;
}
if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
u64 prev_csum_end;
u32 prev_item_size;
prev_item_size = btrfs_item_size(leaf, slot - 1);
prev_csum_end = (prev_item_size / csumsize) * sectorsize;
prev_csum_end += prev_key->offset;
if (unlikely(prev_csum_end > key->offset)) {
generic_err(leaf, slot - 1,
"csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
prev_csum_end, key->offset);
return -EUCLEAN;
}
}
return 0;
}
/* Inode item error output has the same format as dir_item_err() */
#define inode_item_err(eb, slot, fmt, ...) \
dir_item_err(eb, slot, fmt, __VA_ARGS__)
static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
int slot)
{
struct btrfs_key item_key;
bool is_inode_item;
btrfs_item_key_to_cpu(leaf, &item_key, slot);
is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
/* For XATTR_ITEM, location key should be all 0 */
if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
if (unlikely(key->objectid != 0 || key->type != 0 ||
key->offset != 0))
return -EUCLEAN;
return 0;
}
if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
key->objectid != BTRFS_FREE_INO_OBJECTID)) {
if (is_inode_item) {
generic_err(leaf, slot,
"invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
BTRFS_FIRST_FREE_OBJECTID,
BTRFS_LAST_FREE_OBJECTID,
BTRFS_FREE_INO_OBJECTID);
} else {
dir_item_err(leaf, slot,
"invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
BTRFS_FIRST_FREE_OBJECTID,
BTRFS_LAST_FREE_OBJECTID,
BTRFS_FREE_INO_OBJECTID);
}
return -EUCLEAN;
}
if (unlikely(key->offset != 0)) {
if (is_inode_item)
inode_item_err(leaf, slot,
"invalid key offset: has %llu expect 0",
key->offset);
else
dir_item_err(leaf, slot,
"invalid location key offset:has %llu expect 0",
key->offset);
return -EUCLEAN;
}
return 0;
}
static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
int slot)
{
struct btrfs_key item_key;
bool is_root_item;
btrfs_item_key_to_cpu(leaf, &item_key, slot);
is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
/*
* Bad rootid for reloc trees.
*
* Reloc trees are only for subvolume trees, other trees only need
* to be COWed to be relocated.
*/
if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
!is_fstree(key->offset))) {
generic_err(leaf, slot,
"invalid reloc tree for root %lld, root id is not a subvolume tree",
key->offset);
return -EUCLEAN;
}
/* No such tree id */
if (unlikely(key->objectid == 0)) {
if (is_root_item)
generic_err(leaf, slot, "invalid root id 0");
else
dir_item_err(leaf, slot,
"invalid location key root id 0");
return -EUCLEAN;
}
/* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
dir_item_err(leaf, slot,
"invalid location key objectid, have %llu expect [%llu, %llu]",
key->objectid, BTRFS_FIRST_FREE_OBJECTID,
BTRFS_LAST_FREE_OBJECTID);
return -EUCLEAN;
}
/*
* ROOT_ITEM with non-zero offset means this is a snapshot, created at
* @offset transid.
* Furthermore, for location key in DIR_ITEM, its offset is always -1.
*
* So here we only check offset for reloc tree whose key->offset must
* be a valid tree.
*/
if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
key->offset == 0)) {
generic_err(leaf, slot, "invalid root id 0 for reloc tree");
return -EUCLEAN;
}
return 0;
}
static int check_dir_item(struct extent_buffer *leaf,
struct btrfs_key *key, struct btrfs_key *prev_key,
int slot)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_dir_item *di;
u32 item_size = btrfs_item_size(leaf, slot);
u32 cur = 0;
if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
return -EUCLEAN;
di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
while (cur < item_size) {
struct btrfs_key location_key;
u32 name_len;
u32 data_len;
u32 max_name_len;
u32 total_size;
u32 name_hash;
u8 dir_type;
int ret;
/* header itself should not cross item boundary */
if (unlikely(cur + sizeof(*di) > item_size)) {
dir_item_err(leaf, slot,
"dir item header crosses item boundary, have %zu boundary %u",
cur + sizeof(*di), item_size);
return -EUCLEAN;
}
/* Location key check */
btrfs_dir_item_key_to_cpu(leaf, di, &location_key);
if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
ret = check_root_key(leaf, &location_key, slot);
if (unlikely(ret < 0))
return ret;
} else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
location_key.type == 0) {
ret = check_inode_key(leaf, &location_key, slot);
if (unlikely(ret < 0))
return ret;
} else {
dir_item_err(leaf, slot,
"invalid location key type, have %u, expect %u or %u",
location_key.type, BTRFS_ROOT_ITEM_KEY,
BTRFS_INODE_ITEM_KEY);
return -EUCLEAN;
}
/* dir type check */
dir_type = btrfs_dir_ftype(leaf, di);
if (unlikely(dir_type >= BTRFS_FT_MAX)) {
dir_item_err(leaf, slot,
"invalid dir item type, have %u expect [0, %u)",
dir_type, BTRFS_FT_MAX);
return -EUCLEAN;
}
if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
dir_type != BTRFS_FT_XATTR)) {
dir_item_err(leaf, slot,
"invalid dir item type for XATTR key, have %u expect %u",
dir_type, BTRFS_FT_XATTR);
return -EUCLEAN;
}
if (unlikely(dir_type == BTRFS_FT_XATTR &&
key->type != BTRFS_XATTR_ITEM_KEY)) {
dir_item_err(leaf, slot,
"xattr dir type found for non-XATTR key");
return -EUCLEAN;
}
if (dir_type == BTRFS_FT_XATTR)
max_name_len = XATTR_NAME_MAX;
else
max_name_len = BTRFS_NAME_LEN;
/* Name/data length check */
name_len = btrfs_dir_name_len(leaf, di);
data_len = btrfs_dir_data_len(leaf, di);
if (unlikely(name_len > max_name_len)) {
dir_item_err(leaf, slot,
"dir item name len too long, have %u max %u",
name_len, max_name_len);
return -EUCLEAN;
}
if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
dir_item_err(leaf, slot,
"dir item name and data len too long, have %u max %u",
name_len + data_len,
BTRFS_MAX_XATTR_SIZE(fs_info));
return -EUCLEAN;
}
if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
dir_item_err(leaf, slot,
"dir item with invalid data len, have %u expect 0",
data_len);
return -EUCLEAN;
}
total_size = sizeof(*di) + name_len + data_len;
/* header and name/data should not cross item boundary */
if (unlikely(cur + total_size > item_size)) {
dir_item_err(leaf, slot,
"dir item data crosses item boundary, have %u boundary %u",
cur + total_size, item_size);
return -EUCLEAN;
}
/*
* Special check for XATTR/DIR_ITEM, as key->offset is name
* hash, should match its name
*/
if (key->type == BTRFS_DIR_ITEM_KEY ||
key->type == BTRFS_XATTR_ITEM_KEY) {
char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
read_extent_buffer(leaf, namebuf,
(unsigned long)(di + 1), name_len);
name_hash = btrfs_name_hash(namebuf, name_len);
if (unlikely(key->offset != name_hash)) {
dir_item_err(leaf, slot,
"name hash mismatch with key, have 0x%016x expect 0x%016llx",
name_hash, key->offset);
return -EUCLEAN;
}
}
cur += total_size;
di = (struct btrfs_dir_item *)((void *)di + total_size);
}
return 0;
}
__printf(3, 4)
__cold
static void block_group_err(const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
const struct btrfs_fs_info *fs_info = eb->fs_info;
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(fs_info,
"corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, key.offset, &vaf);
va_end(args);
btrfs_print_tree((struct extent_buffer *)eb, 0);
}
static int check_block_group_item(struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_block_group_item bgi;
u32 item_size = btrfs_item_size(leaf, slot);
u64 chunk_objectid;
u64 flags;
u64 type;
/*
* Here we don't really care about alignment since extent allocator can
* handle it. We care more about the size.
*/
if (unlikely(key->offset == 0)) {
block_group_err(leaf, slot,
"invalid block group size 0");
return -EUCLEAN;
}
if (unlikely(item_size != sizeof(bgi))) {
block_group_err(leaf, slot,
"invalid item size, have %u expect %zu",
item_size, sizeof(bgi));
return -EUCLEAN;
}
read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
sizeof(bgi));
chunk_objectid = btrfs_stack_block_group_chunk_objectid(&bgi);
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
/*
* We don't init the nr_global_roots until we load the global
* roots, so this could be 0 at mount time. If it's 0 we'll
* just assume we're fine, and later we'll check against our
* actual value.
*/
if (unlikely(fs_info->nr_global_roots &&
chunk_objectid >= fs_info->nr_global_roots)) {
block_group_err(leaf, slot,
"invalid block group global root id, have %llu, needs to be <= %llu",
chunk_objectid,
fs_info->nr_global_roots);
return -EUCLEAN;
}
} else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
block_group_err(leaf, slot,
"invalid block group chunk objectid, have %llu expect %llu",
btrfs_stack_block_group_chunk_objectid(&bgi),
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
return -EUCLEAN;
}
if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
block_group_err(leaf, slot,
"invalid block group used, have %llu expect [0, %llu)",
btrfs_stack_block_group_used(&bgi), key->offset);
return -EUCLEAN;
}
flags = btrfs_stack_block_group_flags(&bgi);
if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
block_group_err(leaf, slot,
"invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
return -EUCLEAN;
}
type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
type != BTRFS_BLOCK_GROUP_METADATA &&
type != BTRFS_BLOCK_GROUP_SYSTEM &&
type != (BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA))) {
block_group_err(leaf, slot,
"invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
type, hweight64(type),
BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
return -EUCLEAN;
}
return 0;
}
__printf(4, 5)
__cold
static void chunk_err(const struct extent_buffer *leaf,
const struct btrfs_chunk *chunk, u64 logical,
const char *fmt, ...)
{
const struct btrfs_fs_info *fs_info = leaf->fs_info;
bool is_sb;
struct va_format vaf;
va_list args;
int i;
int slot = -1;
/* Only superblock eb is able to have such small offset */
is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
if (!is_sb) {
/*
* Get the slot number by iterating through all slots, this
* would provide better readability.
*/
for (i = 0; i < btrfs_header_nritems(leaf); i++) {
if (btrfs_item_ptr_offset(leaf, i) ==
(unsigned long)chunk) {
slot = i;
break;
}
}
}
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
if (is_sb)
btrfs_crit(fs_info,
"corrupt superblock syschunk array: chunk_start=%llu, %pV",
logical, &vaf);
else
btrfs_crit(fs_info,
"corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
logical, &vaf);
va_end(args);
btrfs_print_tree((struct extent_buffer *)leaf, 0);
}
/*
* The common chunk check which could also work on super block sys chunk array.
*
* Return -EUCLEAN if anything is corrupted.
* Return 0 if everything is OK.
*/
int btrfs_check_chunk_valid(struct extent_buffer *leaf,
struct btrfs_chunk *chunk, u64 logical)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
u64 length;
u64 chunk_end;
u64 stripe_len;
u16 num_stripes;
u16 sub_stripes;
u64 type;
u64 features;
bool mixed = false;
int raid_index;
int nparity;
int ncopies;
length = btrfs_chunk_length(leaf, chunk);
stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
type = btrfs_chunk_type(leaf, chunk);
raid_index = btrfs_bg_flags_to_raid_index(type);
ncopies = btrfs_raid_array[raid_index].ncopies;
nparity = btrfs_raid_array[raid_index].nparity;
if (unlikely(!num_stripes)) {
chunk_err(leaf, chunk, logical,
"invalid chunk num_stripes, have %u", num_stripes);
return -EUCLEAN;
}
if (unlikely(num_stripes < ncopies)) {
chunk_err(leaf, chunk, logical,
"invalid chunk num_stripes < ncopies, have %u < %d",
num_stripes, ncopies);
return -EUCLEAN;
}
if (unlikely(nparity && num_stripes == nparity)) {
chunk_err(leaf, chunk, logical,
"invalid chunk num_stripes == nparity, have %u == %d",
num_stripes, nparity);
return -EUCLEAN;
}
if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
chunk_err(leaf, chunk, logical,
"invalid chunk logical, have %llu should aligned to %u",
logical, fs_info->sectorsize);
return -EUCLEAN;
}
if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
chunk_err(leaf, chunk, logical,
"invalid chunk sectorsize, have %u expect %u",
btrfs_chunk_sector_size(leaf, chunk),
fs_info->sectorsize);
return -EUCLEAN;
}
if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
chunk_err(leaf, chunk, logical,
"invalid chunk length, have %llu", length);
return -EUCLEAN;
}
if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
chunk_err(leaf, chunk, logical,
"invalid chunk logical start and length, have logical start %llu length %llu",
logical, length);
return -EUCLEAN;
}
if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
chunk_err(leaf, chunk, logical,
"invalid chunk stripe length: %llu",
stripe_len);
return -EUCLEAN;
}
/*
* We artificially limit the chunk size, so that the number of stripes
* inside a chunk can be fit into a U32. The current limit (256G) is
* way too large for real world usage anyway, and it's also much larger
* than our existing limit (10G).
*
* Thus it should be a good way to catch obvious bitflips.
*/
if (unlikely(length >= ((u64)U32_MAX << BTRFS_STRIPE_LEN_SHIFT))) {
chunk_err(leaf, chunk, logical,
"chunk length too large: have %llu limit %llu",
length, (u64)U32_MAX << BTRFS_STRIPE_LEN_SHIFT);
return -EUCLEAN;
}
if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
chunk_err(leaf, chunk, logical,
"unrecognized chunk type: 0x%llx",
~(BTRFS_BLOCK_GROUP_TYPE_MASK |
BTRFS_BLOCK_GROUP_PROFILE_MASK) &
btrfs_chunk_type(leaf, chunk));
return -EUCLEAN;
}
if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
chunk_err(leaf, chunk, logical,
"invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
return -EUCLEAN;
}
if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
chunk_err(leaf, chunk, logical,
"missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
type, BTRFS_BLOCK_GROUP_TYPE_MASK);
return -EUCLEAN;
}
if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
(type & (BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DATA)))) {
chunk_err(leaf, chunk, logical,
"system chunk with data or metadata type: 0x%llx",
type);
return -EUCLEAN;
}
features = btrfs_super_incompat_flags(fs_info->super_copy);
if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
mixed = true;
if (!mixed) {
if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
(type & BTRFS_BLOCK_GROUP_DATA))) {
chunk_err(leaf, chunk, logical,
"mixed chunk type in non-mixed mode: 0x%llx", type);
return -EUCLEAN;
}
}
if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
(type & BTRFS_BLOCK_GROUP_RAID1 &&
num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
(type & BTRFS_BLOCK_GROUP_RAID1C3 &&
num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
(type & BTRFS_BLOCK_GROUP_RAID1C4 &&
num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
(type & BTRFS_BLOCK_GROUP_RAID5 &&
num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
(type & BTRFS_BLOCK_GROUP_RAID6 &&
num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
(type & BTRFS_BLOCK_GROUP_DUP &&
num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
chunk_err(leaf, chunk, logical,
"invalid num_stripes:sub_stripes %u:%u for profile %llu",
num_stripes, sub_stripes,
type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
return -EUCLEAN;
}
return 0;
}
/*
* Enhanced version of chunk item checker.
*
* The common btrfs_check_chunk_valid() doesn't check item size since it needs
* to work on super block sys_chunk_array which doesn't have full item ptr.
*/
static int check_leaf_chunk_item(struct extent_buffer *leaf,
struct btrfs_chunk *chunk,
struct btrfs_key *key, int slot)
{
int num_stripes;
if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
chunk_err(leaf, chunk, key->offset,
"invalid chunk item size: have %u expect [%zu, %u)",
btrfs_item_size(leaf, slot),
sizeof(struct btrfs_chunk),
BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
return -EUCLEAN;
}
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
/* Let btrfs_check_chunk_valid() handle this error type */
if (num_stripes == 0)
goto out;
if (unlikely(btrfs_chunk_item_size(num_stripes) !=
btrfs_item_size(leaf, slot))) {
chunk_err(leaf, chunk, key->offset,
"invalid chunk item size: have %u expect %lu",
btrfs_item_size(leaf, slot),
btrfs_chunk_item_size(num_stripes));
return -EUCLEAN;
}
out:
return btrfs_check_chunk_valid(leaf, chunk, key->offset);
}
__printf(3, 4)
__cold
static void dev_item_err(const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
btrfs_item_key_to_cpu(eb, &key, slot);
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(eb->fs_info,
"corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
key.objectid, &vaf);
va_end(args);
btrfs_print_tree((struct extent_buffer *)eb, 0);
}
static int check_dev_item(struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_dev_item *ditem;
const u32 item_size = btrfs_item_size(leaf, slot);
if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
dev_item_err(leaf, slot,
"invalid objectid: has=%llu expect=%llu",
key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
return -EUCLEAN;
}
if (unlikely(item_size != sizeof(*ditem))) {
dev_item_err(leaf, slot, "invalid item size: has %u expect %zu",
item_size, sizeof(*ditem));
return -EUCLEAN;
}
ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
dev_item_err(leaf, slot,
"devid mismatch: key has=%llu item has=%llu",
key->offset, btrfs_device_id(leaf, ditem));
return -EUCLEAN;
}
/*
* For device total_bytes, we don't have reliable way to check it, as
* it can be 0 for device removal. Device size check can only be done
* by dev extents check.
*/
if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
btrfs_device_total_bytes(leaf, ditem))) {
dev_item_err(leaf, slot,
"invalid bytes used: have %llu expect [0, %llu]",
btrfs_device_bytes_used(leaf, ditem),
btrfs_device_total_bytes(leaf, ditem));
return -EUCLEAN;
}
/*
* Remaining members like io_align/type/gen/dev_group aren't really
* utilized. Skip them to make later usage of them easier.
*/
return 0;
}
static int check_inode_item(struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_inode_item *iitem;
u64 super_gen = btrfs_super_generation(fs_info->super_copy);
u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
const u32 item_size = btrfs_item_size(leaf, slot);
u32 mode;
int ret;
u32 flags;
u32 ro_flags;
ret = check_inode_key(leaf, key, slot);
if (unlikely(ret < 0))
return ret;
if (unlikely(item_size != sizeof(*iitem))) {
generic_err(leaf, slot, "invalid item size: has %u expect %zu",
item_size, sizeof(*iitem));
return -EUCLEAN;
}
iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
/* Here we use super block generation + 1 to handle log tree */
if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
inode_item_err(leaf, slot,
"invalid inode generation: has %llu expect (0, %llu]",
btrfs_inode_generation(leaf, iitem),
super_gen + 1);
return -EUCLEAN;
}
/* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
inode_item_err(leaf, slot,
"invalid inode transid: has %llu expect [0, %llu]",
btrfs_inode_transid(leaf, iitem), super_gen + 1);
return -EUCLEAN;
}
/*
* For size and nbytes it's better not to be too strict, as for dir
* item its size/nbytes can easily get wrong, but doesn't affect
* anything in the fs. So here we skip the check.
*/
mode = btrfs_inode_mode(leaf, iitem);
if (unlikely(mode & ~valid_mask)) {
inode_item_err(leaf, slot,
"unknown mode bit detected: 0x%x",
mode & ~valid_mask);
return -EUCLEAN;
}
/*
* S_IFMT is not bit mapped so we can't completely rely on
* is_power_of_2/has_single_bit_set, but it can save us from checking
* FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
*/
if (!has_single_bit_set(mode & S_IFMT)) {
if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
inode_item_err(leaf, slot,
"invalid mode: has 0%o expect valid S_IF* bit(s)",
mode & S_IFMT);
return -EUCLEAN;
}
}
if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
inode_item_err(leaf, slot,
"invalid nlink: has %u expect no more than 1 for dir",
btrfs_inode_nlink(leaf, iitem));
return -EUCLEAN;
}
btrfs_inode_split_flags(btrfs_inode_flags(leaf, iitem), &flags, &ro_flags);
if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
inode_item_err(leaf, slot,
"unknown incompat flags detected: 0x%x", flags);
return -EUCLEAN;
}
if (unlikely(!sb_rdonly(fs_info->sb) &&
(ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
inode_item_err(leaf, slot,
"unknown ro-compat flags detected on writeable mount: 0x%x",
ro_flags);
return -EUCLEAN;
}
return 0;
}
static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
int slot)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_root_item ri = { 0 };
const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
BTRFS_ROOT_SUBVOL_DEAD;
int ret;
ret = check_root_key(leaf, key, slot);
if (unlikely(ret < 0))
return ret;
if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
btrfs_item_size(leaf, slot) !=
btrfs_legacy_root_item_size())) {
generic_err(leaf, slot,
"invalid root item size, have %u expect %zu or %u",
btrfs_item_size(leaf, slot), sizeof(ri),
btrfs_legacy_root_item_size());
return -EUCLEAN;
}
/*
* For legacy root item, the members starting at generation_v2 will be
* all filled with 0.
* And since we allow geneartion_v2 as 0, it will still pass the check.
*/
read_extent_buffer(leaf, &ri, btrfs_item_ptr_offset(leaf, slot),
btrfs_item_size(leaf, slot));
/* Generation related */
if (unlikely(btrfs_root_generation(&ri) >
btrfs_super_generation(fs_info->super_copy) + 1)) {
generic_err(leaf, slot,
"invalid root generation, have %llu expect (0, %llu]",
btrfs_root_generation(&ri),
btrfs_super_generation(fs_info->super_copy) + 1);
return -EUCLEAN;
}
if (unlikely(btrfs_root_generation_v2(&ri) >
btrfs_super_generation(fs_info->super_copy) + 1)) {
generic_err(leaf, slot,
"invalid root v2 generation, have %llu expect (0, %llu]",
btrfs_root_generation_v2(&ri),
btrfs_super_generation(fs_info->super_copy) + 1);
return -EUCLEAN;
}
if (unlikely(btrfs_root_last_snapshot(&ri) >
btrfs_super_generation(fs_info->super_copy) + 1)) {
generic_err(leaf, slot,
"invalid root last_snapshot, have %llu expect (0, %llu]",
btrfs_root_last_snapshot(&ri),
btrfs_super_generation(fs_info->super_copy) + 1);
return -EUCLEAN;
}
/* Alignment and level check */
if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
generic_err(leaf, slot,
"invalid root bytenr, have %llu expect to be aligned to %u",
btrfs_root_bytenr(&ri), fs_info->sectorsize);
return -EUCLEAN;
}
if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
generic_err(leaf, slot,
"invalid root level, have %u expect [0, %u]",
btrfs_root_level(&ri), BTRFS_MAX_LEVEL - 1);
return -EUCLEAN;
}
if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
generic_err(leaf, slot,
"invalid root level, have %u expect [0, %u]",
btrfs_root_drop_level(&ri), BTRFS_MAX_LEVEL - 1);
return -EUCLEAN;
}
/* Flags check */
if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
generic_err(leaf, slot,
"invalid root flags, have 0x%llx expect mask 0x%llx",
btrfs_root_flags(&ri), valid_root_flags);
return -EUCLEAN;
}
return 0;
}
__printf(3,4)
__cold
static void extent_err(const struct extent_buffer *eb, int slot,
const char *fmt, ...)
{
struct btrfs_key key;
struct va_format vaf;
va_list args;
u64 bytenr;
u64 len;
btrfs_item_key_to_cpu(eb, &key, slot);
bytenr = key.objectid;
if (key.type == BTRFS_METADATA_ITEM_KEY ||
key.type == BTRFS_TREE_BLOCK_REF_KEY ||
key.type == BTRFS_SHARED_BLOCK_REF_KEY)
len = eb->fs_info->nodesize;
else
len = key.offset;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
btrfs_crit(eb->fs_info,
"corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
eb->start, slot, bytenr, len, &vaf);
va_end(args);
btrfs_print_tree((struct extent_buffer *)eb, 0);
}
static int check_extent_item(struct extent_buffer *leaf,
struct btrfs_key *key, int slot,
struct btrfs_key *prev_key)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
struct btrfs_extent_item *ei;
bool is_tree_block = false;
unsigned long ptr; /* Current pointer inside inline refs */
unsigned long end; /* Extent item end */
const u32 item_size = btrfs_item_size(leaf, slot);
u8 last_type = 0;
u64 last_seq = U64_MAX;
u64 flags;
u64 generation;
u64 total_refs; /* Total refs in btrfs_extent_item */
u64 inline_refs = 0; /* found total inline refs */
if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
!btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
generic_err(leaf, slot,
"invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
return -EUCLEAN;
}
/* key->objectid is the bytenr for both key types */
if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
generic_err(leaf, slot,
"invalid key objectid, have %llu expect to be aligned to %u",
key->objectid, fs_info->sectorsize);
return -EUCLEAN;
}
/* key->offset is tree level for METADATA_ITEM_KEY */
if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
key->offset >= BTRFS_MAX_LEVEL)) {
extent_err(leaf, slot,
"invalid tree level, have %llu expect [0, %u]",
key->offset, BTRFS_MAX_LEVEL - 1);
return -EUCLEAN;
}
/*
* EXTENT/METADATA_ITEM consists of:
* 1) One btrfs_extent_item
* Records the total refs, type and generation of the extent.
*
* 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
* Records the first key and level of the tree block.
*
* 2) Zero or more btrfs_extent_inline_ref(s)
* Each inline ref has one btrfs_extent_inline_ref shows:
* 2.1) The ref type, one of the 4
* TREE_BLOCK_REF Tree block only
* SHARED_BLOCK_REF Tree block only
* EXTENT_DATA_REF Data only
* SHARED_DATA_REF Data only
* 2.2) Ref type specific data
* Either using btrfs_extent_inline_ref::offset, or specific
* data structure.
*
* All above inline items should follow the order:
*
* - All btrfs_extent_inline_ref::type should be in an ascending
* order
*
* - Within the same type, the items should follow a descending
* order by their sequence number. The sequence number is
* determined by:
* * btrfs_extent_inline_ref::offset for all types other than
* EXTENT_DATA_REF
* * hash_extent_data_ref() for EXTENT_DATA_REF
*/
if (unlikely(item_size < sizeof(*ei))) {
extent_err(leaf, slot,
"invalid item size, have %u expect [%zu, %u)",
item_size, sizeof(*ei),
BTRFS_LEAF_DATA_SIZE(fs_info));
return -EUCLEAN;
}
end = item_size + btrfs_item_ptr_offset(leaf, slot);
/* Checks against extent_item */
ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(leaf, ei);
total_refs = btrfs_extent_refs(leaf, ei);
generation = btrfs_extent_generation(leaf, ei);
if (unlikely(generation >
btrfs_super_generation(fs_info->super_copy) + 1)) {
extent_err(leaf, slot,
"invalid generation, have %llu expect (0, %llu]",
generation,
btrfs_super_generation(fs_info->super_copy) + 1);
return -EUCLEAN;
}
if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
extent_err(leaf, slot,
"invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
flags, BTRFS_EXTENT_FLAG_DATA |
BTRFS_EXTENT_FLAG_TREE_BLOCK);
return -EUCLEAN;
}
is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
if (is_tree_block) {
if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
key->offset != fs_info->nodesize)) {
extent_err(leaf, slot,
"invalid extent length, have %llu expect %u",
key->offset, fs_info->nodesize);
return -EUCLEAN;
}
} else {
if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
extent_err(leaf, slot,
"invalid key type, have %u expect %u for data backref",
key->type, BTRFS_EXTENT_ITEM_KEY);
return -EUCLEAN;
}
if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
extent_err(leaf, slot,
"invalid extent length, have %llu expect aligned to %u",
key->offset, fs_info->sectorsize);
return -EUCLEAN;
}
if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
extent_err(leaf, slot,
"invalid extent flag, data has full backref set");
return -EUCLEAN;
}
}
ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
/* Check the special case of btrfs_tree_block_info */
if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
struct btrfs_tree_block_info *info;
info = (struct btrfs_tree_block_info *)ptr;
if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
extent_err(leaf, slot,
"invalid tree block info level, have %u expect [0, %u]",
btrfs_tree_block_level(leaf, info),
BTRFS_MAX_LEVEL - 1);
return -EUCLEAN;
}
ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
}
/* Check inline refs */
while (ptr < end) {
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_data_ref *dref;
struct btrfs_shared_data_ref *sref;
u64 seq;
u64 dref_offset;
u64 inline_offset;
u8 inline_type;
if (unlikely(ptr + sizeof(*iref) > end)) {
extent_err(leaf, slot,
"inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
ptr, sizeof(*iref), end);
return -EUCLEAN;
}
iref = (struct btrfs_extent_inline_ref *)ptr;
inline_type = btrfs_extent_inline_ref_type(leaf, iref);
inline_offset = btrfs_extent_inline_ref_offset(leaf, iref);
seq = inline_offset;
if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
extent_err(leaf, slot,
"inline ref item overflows extent item, ptr %lu iref size %u end %lu",
ptr, btrfs_extent_inline_ref_size(inline_type), end);
return -EUCLEAN;
}
switch (inline_type) {
/* inline_offset is subvolid of the owner, no need to check */
case BTRFS_TREE_BLOCK_REF_KEY:
inline_refs++;
break;
/* Contains parent bytenr */
case BTRFS_SHARED_BLOCK_REF_KEY:
if (unlikely(!IS_ALIGNED(inline_offset,
fs_info->sectorsize))) {
extent_err(leaf, slot,
"invalid tree parent bytenr, have %llu expect aligned to %u",
inline_offset, fs_info->sectorsize);
return -EUCLEAN;
}
inline_refs++;
break;
/*
* Contains owner subvolid, owner key objectid, adjusted offset.
* The only obvious corruption can happen in that offset.
*/
case BTRFS_EXTENT_DATA_REF_KEY:
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
dref_offset = btrfs_extent_data_ref_offset(leaf, dref);
seq = hash_extent_data_ref(
btrfs_extent_data_ref_root(leaf, dref),
btrfs_extent_data_ref_objectid(leaf, dref),
btrfs_extent_data_ref_offset(leaf, dref));
if (unlikely(!IS_ALIGNED(dref_offset,
fs_info->sectorsize))) {
extent_err(leaf, slot,
"invalid data ref offset, have %llu expect aligned to %u",
dref_offset, fs_info->sectorsize);
return -EUCLEAN;
}
inline_refs += btrfs_extent_data_ref_count(leaf, dref);
break;
/* Contains parent bytenr and ref count */
case BTRFS_SHARED_DATA_REF_KEY:
sref = (struct btrfs_shared_data_ref *)(iref + 1);
if (unlikely(!IS_ALIGNED(inline_offset,
fs_info->sectorsize))) {
extent_err(leaf, slot,
"invalid data parent bytenr, have %llu expect aligned to %u",
inline_offset, fs_info->sectorsize);
return -EUCLEAN;
}
inline_refs += btrfs_shared_data_ref_count(leaf, sref);
break;
case BTRFS_EXTENT_OWNER_REF_KEY:
/* Root id could be verified as well. */
break;
default:
extent_err(leaf, slot, "unknown inline ref type: %u",
inline_type);
return -EUCLEAN;
}
if (inline_type < last_type) {
extent_err(leaf, slot,
"inline ref out-of-order: has type %u, prev type %u",
inline_type, last_type);
return -EUCLEAN;
}
/* Type changed, allow the sequence starts from U64_MAX again. */
if (inline_type > last_type)
last_seq = U64_MAX;
if (seq > last_seq) {
extent_err(leaf, slot,
"inline ref out-of-order: has type %u offset %llu seq 0x%llx, prev type %u seq 0x%llx",
inline_type, inline_offset, seq,
last_type, last_seq);
return -EUCLEAN;
}
last_type = inline_type;
last_seq = seq;
ptr += btrfs_extent_inline_ref_size(inline_type);
}
/* No padding is allowed */
if (unlikely(ptr != end)) {
extent_err(leaf, slot,
"invalid extent item size, padding bytes found");
return -EUCLEAN;
}
/* Finally, check the inline refs against total refs */
if (unlikely(inline_refs > total_refs)) {
extent_err(leaf, slot,
"invalid extent refs, have %llu expect >= inline %llu",
total_refs, inline_refs);
return -EUCLEAN;
}
if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
(prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
u64 prev_end = prev_key->objectid;
if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
prev_end += fs_info->nodesize;
else
prev_end += prev_key->offset;
if (unlikely(prev_end > key->objectid)) {
extent_err(leaf, slot,
"previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
prev_key->objectid, prev_key->type,
prev_key->offset, key->objectid, key->type,
key->offset);
return -EUCLEAN;
}
}
return 0;
}
static int check_simple_keyed_refs(struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
u32 expect_item_size = 0;
if (key->type == BTRFS_SHARED_DATA_REF_KEY)
expect_item_size = sizeof(struct btrfs_shared_data_ref);
if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
generic_err(leaf, slot,
"invalid item size, have %u expect %u for key type %u",
btrfs_item_size(leaf, slot),
expect_item_size, key->type);
return -EUCLEAN;
}
if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
generic_err(leaf, slot,
"invalid key objectid for shared block ref, have %llu expect aligned to %u",
key->objectid, leaf->fs_info->sectorsize);
return -EUCLEAN;
}
if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
!IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
extent_err(leaf, slot,
"invalid tree parent bytenr, have %llu expect aligned to %u",
key->offset, leaf->fs_info->sectorsize);
return -EUCLEAN;
}
return 0;
}
static int check_extent_data_ref(struct extent_buffer *leaf,
struct btrfs_key *key, int slot)
{
struct btrfs_extent_data_ref *dref;
unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
const unsigned long end = ptr + btrfs_item_size(leaf, slot);
if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
generic_err(leaf, slot,
"invalid item size, have %u expect aligned to %zu for key type %u",
btrfs_item_size(leaf, slot),
sizeof(*dref), key->type);
return -EUCLEAN;
}
if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
generic_err(leaf, slot,
"invalid key objectid for shared block ref, have %llu expect aligned to %u",
key->objectid, leaf->fs_info->sectorsize);
return -EUCLEAN;
}
for (; ptr < end; ptr += sizeof(*dref)) {
u64 offset;
/*
* We cannot check the extent_data_ref hash due to possible
* overflow from the leaf due to hash collisions.
*/
dref = (struct btrfs_extent_data_ref *)ptr;
offset = btrfs_extent_data_ref_offset(leaf, dref);
if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
extent_err(leaf, slot,
"invalid extent data backref offset, have %llu expect aligned to %u",
offset, leaf->fs_info->sectorsize);
return -EUCLEAN;
}
}
return 0;
}
#define inode_ref_err(eb, slot, fmt, args...) \
inode_item_err(eb, slot, fmt, ##args)
static int check_inode_ref(struct extent_buffer *leaf,
struct btrfs_key *key, struct btrfs_key *prev_key,
int slot)
{
struct btrfs_inode_ref *iref;
unsigned long ptr;
unsigned long end;
if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
return -EUCLEAN;
/* namelen can't be 0, so item_size == sizeof() is also invalid */
if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
inode_ref_err(leaf, slot,
"invalid item size, have %u expect (%zu, %u)",
btrfs_item_size(leaf, slot),
sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
return -EUCLEAN;
}
ptr = btrfs_item_ptr_offset(leaf, slot);
end = ptr + btrfs_item_size(leaf, slot);
while (ptr < end) {
u16 namelen;
if (unlikely(ptr + sizeof(iref) > end)) {
inode_ref_err(leaf, slot,
"inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
ptr, end, sizeof(iref));
return -EUCLEAN;
}
iref = (struct btrfs_inode_ref *)ptr;
namelen = btrfs_inode_ref_name_len(leaf, iref);
if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
inode_ref_err(leaf, slot,
"inode ref overflow, ptr %lu end %lu namelen %u",
ptr, end, namelen);
return -EUCLEAN;
}
/*
* NOTE: In theory we should record all found index numbers
* to find any duplicated indexes, but that will be too time
* consuming for inodes with too many hard links.
*/
ptr += sizeof(*iref) + namelen;
}
return 0;
}
static int check_raid_stripe_extent(const struct extent_buffer *leaf,
const struct btrfs_key *key, int slot)
{
if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
generic_err(leaf, slot,
"invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
key->objectid, leaf->fs_info->sectorsize);
return -EUCLEAN;
}
if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
generic_err(leaf, slot,
"RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
return -EUCLEAN;
}
return 0;
}
/*
* Common point to switch the item-specific validation.
*/
static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
struct btrfs_key *key,
int slot,
struct btrfs_key *prev_key)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
int ret = 0;
struct btrfs_chunk *chunk;
if (fs_info->skip_leaf_item_checks)
return 0;
switch (key->type) {
case BTRFS_EXTENT_DATA_KEY:
ret = check_extent_data_item(leaf, key, slot, prev_key);
break;
case BTRFS_EXTENT_CSUM_KEY:
ret = check_csum_item(leaf, key, slot, prev_key);
break;
case BTRFS_DIR_ITEM_KEY:
case BTRFS_DIR_INDEX_KEY:
case BTRFS_XATTR_ITEM_KEY:
ret = check_dir_item(leaf, key, prev_key, slot);
break;
case BTRFS_INODE_REF_KEY:
ret = check_inode_ref(leaf, key, prev_key, slot);
break;
case BTRFS_BLOCK_GROUP_ITEM_KEY:
ret = check_block_group_item(leaf, key, slot);
break;
case BTRFS_CHUNK_ITEM_KEY:
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
ret = check_leaf_chunk_item(leaf, chunk, key, slot);
break;
case BTRFS_DEV_ITEM_KEY:
ret = check_dev_item(leaf, key, slot);
break;
case BTRFS_INODE_ITEM_KEY:
ret = check_inode_item(leaf, key, slot);
break;
case BTRFS_ROOT_ITEM_KEY:
ret = check_root_item(leaf, key, slot);
break;
case BTRFS_EXTENT_ITEM_KEY:
case BTRFS_METADATA_ITEM_KEY:
ret = check_extent_item(leaf, key, slot, prev_key);
break;
case BTRFS_TREE_BLOCK_REF_KEY:
case BTRFS_SHARED_DATA_REF_KEY:
case BTRFS_SHARED_BLOCK_REF_KEY:
ret = check_simple_keyed_refs(leaf, key, slot);
break;
case BTRFS_EXTENT_DATA_REF_KEY:
ret = check_extent_data_ref(leaf, key, slot);
break;
case BTRFS_RAID_STRIPE_KEY:
ret = check_raid_stripe_extent(leaf, key, slot);
break;
}
if (ret)
return BTRFS_TREE_BLOCK_INVALID_ITEM;
return BTRFS_TREE_BLOCK_CLEAN;
}
enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
{
struct btrfs_fs_info *fs_info = leaf->fs_info;
/* No valid key type is 0, so all key should be larger than this key */
struct btrfs_key prev_key = {0, 0, 0};
struct btrfs_key key;
u32 nritems = btrfs_header_nritems(leaf);
int slot;
bool check_item_data = btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_WRITTEN);
if (unlikely(btrfs_header_level(leaf) != 0)) {
generic_err(leaf, 0,
"invalid level for leaf, have %d expect 0",
btrfs_header_level(leaf));
return BTRFS_TREE_BLOCK_INVALID_LEVEL;
}
/*
* MODIFIED:
* - We need to skip the below checks for the temporary fs state during
* mkfs or --init-extent-tree.
*/
if (nritems == 0 &&
(btrfs_super_magic(fs_info->super_copy) == BTRFS_MAGIC_TEMPORARY ||
fs_info->skip_leaf_item_checks))
return BTRFS_TREE_BLOCK_CLEAN;
/*
* Extent buffers from a relocation tree have a owner field that
* corresponds to the subvolume tree they are based on. So just from an
* extent buffer alone we can not find out what is the id of the
* corresponding subvolume tree, so we can not figure out if the extent
* buffer corresponds to the root of the relocation tree or not. So
* skip this check for relocation trees.
*/
if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
u64 owner = btrfs_header_owner(leaf);
/* These trees must never be empty */
if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
owner == BTRFS_CHUNK_TREE_OBJECTID ||
owner == BTRFS_DEV_TREE_OBJECTID ||
owner == BTRFS_FS_TREE_OBJECTID ||
owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
generic_err(leaf, 0,
"invalid root, root %llu must never be empty",
owner);
return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
}
/* Unknown tree */
if (unlikely(owner == 0)) {
generic_err(leaf, 0,
"invalid owner, root 0 is not defined");
return BTRFS_TREE_BLOCK_INVALID_OWNER;
}
/* EXTENT_TREE_V2 can have empty extent trees. */
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
return BTRFS_TREE_BLOCK_CLEAN;
if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
generic_err(leaf, 0,
"invalid root, root %llu must never be empty",
owner);
return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
}
return BTRFS_TREE_BLOCK_CLEAN;
}
if (unlikely(nritems == 0))
return BTRFS_TREE_BLOCK_CLEAN;
/*
* Check the following things to make sure this is a good leaf, and
* leaf users won't need to bother with similar sanity checks:
*
* 1) key ordering
* 2) item offset and size
* No overlap, no hole, all inside the leaf.
* 3) item content
* If possible, do comprehensive sanity check.
* NOTE: All checks must only rely on the item data itself.
*/
for (slot = 0; slot < nritems; slot++) {
u32 item_end_expected;
u64 item_data_end;
btrfs_item_key_to_cpu(leaf, &key, slot);
/* Make sure the keys are in the right order */
if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
generic_err(leaf, slot,
"bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
prev_key.objectid, prev_key.type,
prev_key.offset, key.objectid, key.type,
key.offset);
return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
}
item_data_end = (u64)btrfs_item_offset(leaf, slot) +
btrfs_item_size(leaf, slot);
/*
* Make sure the offset and ends are right, remember that the
* item data starts at the end of the leaf and grows towards the
* front.
*/
if (slot == 0)
item_end_expected = BTRFS_LEAF_DATA_SIZE(fs_info);
else
item_end_expected = btrfs_item_offset(leaf,
slot - 1);
if (unlikely(item_data_end != item_end_expected)) {
generic_err(leaf, slot,
"unexpected item end, have %llu expect %u",
item_data_end, item_end_expected);
return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
}
/*
* Check to make sure that we don't point outside of the leaf,
* just in case all the items are consistent to each other, but
* all point outside of the leaf.
*/
if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
generic_err(leaf, slot,
"slot end outside of leaf, have %llu expect range [0, %u]",
item_data_end, BTRFS_LEAF_DATA_SIZE(fs_info));
return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
}
/* Also check if the item pointer overlaps with btrfs item. */
if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
generic_err(leaf, slot,
"slot overlaps with its data, item end %lu data start %lu",
btrfs_item_nr_offset(leaf, slot) +
sizeof(struct btrfs_item),
btrfs_item_ptr_offset(leaf, slot));
return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
}
/*
* We only want to do this if WRITTEN is set, otherwise the leaf
* may be in some intermediate state and won't appear valid.
*/
if (check_item_data) {
enum btrfs_tree_block_status ret;
/*
* Check if the item size and content meet other
* criteria
*/
ret = check_leaf_item(leaf, &key, slot, &prev_key);
if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
return ret;
}
prev_key.objectid = key.objectid;
prev_key.type = key.type;
prev_key.offset = key.offset;
}
return BTRFS_TREE_BLOCK_CLEAN;
}
int btrfs_check_leaf(struct extent_buffer *leaf)
{
enum btrfs_tree_block_status ret;
ret = __btrfs_check_leaf(leaf);
if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
return -EUCLEAN;
return 0;
}
ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
{
struct btrfs_fs_info *fs_info = node->fs_info;
unsigned long nr = btrfs_header_nritems(node);
struct btrfs_key key, next_key;
int slot;
int level = btrfs_header_level(node);
u64 bytenr;
if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
generic_err(node, 0,
"invalid level for node, have %d expect [1, %d]",
level, BTRFS_MAX_LEVEL - 1);
return BTRFS_TREE_BLOCK_INVALID_LEVEL;
}
if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
btrfs_crit(fs_info,
"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
btrfs_header_owner(node), node->start,
nr == 0 ? "small" : "large", nr,
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
}
for (slot = 0; slot < nr - 1; slot++) {
bytenr = btrfs_node_blockptr(node, slot);
btrfs_node_key_to_cpu(node, &key, slot);
btrfs_node_key_to_cpu(node, &next_key, slot + 1);
if (unlikely(!bytenr)) {
generic_err(node, slot,
"invalid NULL node pointer");
return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
}
if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
generic_err(node, slot,
"unaligned pointer, have %llu should be aligned to %u",
bytenr, fs_info->sectorsize);
return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
}
if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
generic_err(node, slot,
"bad key order, current (%llu %u %llu) next (%llu %u %llu)",
key.objectid, key.type, key.offset,
next_key.objectid, next_key.type,
next_key.offset);
return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
}
}
return BTRFS_TREE_BLOCK_CLEAN;
}
int btrfs_check_node(struct extent_buffer *node)
{
enum btrfs_tree_block_status ret;
ret = __btrfs_check_node(node);
if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
return -EUCLEAN;
return 0;
}
ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
{
const bool is_subvol = is_fstree(root_owner);
const u64 eb_owner = btrfs_header_owner(eb);
/*
* Skip dummy fs, as selftests don't create unique ebs for each dummy
* root.
*
* MODIFIED:
* - The ->fs_state member doesn't exist in btrfs-progs yet.
*
if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
return 0;
*/
/*
* There are several call sites (backref walking, qgroup, and data
* reloc) passing 0 as @root_owner, as they are not holding the
* tree root. In that case, we can not do a reliable ownership check,
* so just exit.
*/
if (root_owner == 0)
return 0;
/*
* These trees use key.offset as their owner, our callers don't have
* the extra capacity to pass key.offset here. So we just skip them.
*/
if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
root_owner == BTRFS_TREE_RELOC_OBJECTID)
return 0;
if (!is_subvol) {
/* For non-subvolume trees, the eb owner should match root owner */
if (unlikely(root_owner != eb_owner)) {
btrfs_crit(eb->fs_info,
"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
root_owner, btrfs_header_bytenr(eb), eb_owner,
root_owner);
return -EUCLEAN;
}
return 0;
}
/*
* For subvolume trees, owners can mismatch, but they should all belong
* to subvolume trees.
*/
if (unlikely(is_subvol != is_fstree(eb_owner))) {
btrfs_crit(eb->fs_info,
"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
btrfs_header_level(eb) == 0 ? "leaf" : "node",
root_owner, btrfs_header_bytenr(eb), eb_owner,
BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
return -EUCLEAN;
}
return 0;
}
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
struct btrfs_key *first_key, u64 parent_transid)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
int found_level;
struct btrfs_key found_key;
int ret;
found_level = btrfs_header_level(eb);
if (found_level != level) {
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
KERN_ERR "BTRFS: tree level check failed\n");
btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
eb->start, level, found_level);
return -EIO;
}
if (!first_key)
return 0;
/*
* For live tree block (new tree blocks in current transaction),
* we need proper lock context to avoid race, which is impossible here.
* So we only checks tree blocks which is read from disk, whose
* generation <= fs_info->last_trans_committed.
*/
if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
return 0;
/* We have @first_key, so this @eb must have at least one item */
if (btrfs_header_nritems(eb) == 0) {
btrfs_err(fs_info,
"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
eb->start);
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
return -EUCLEAN;
}
if (found_level)
btrfs_node_key_to_cpu(eb, &found_key, 0);
else
btrfs_item_key_to_cpu(eb, &found_key, 0);
ret = btrfs_comp_cpu_keys(first_key, &found_key);
if (ret) {
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
KERN_ERR "BTRFS: tree first key check failed\n");
btrfs_err(fs_info,
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
eb->start, parent_transid, first_key->objectid,
first_key->type, first_key->offset,
found_key.objectid, found_key.type,
found_key.offset);
}
return ret;
}