btrfs-progs/mkfs.c

421 lines
10 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#define _XOPEN_SOURCE 500
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <getopt.h>
#include <uuid/uuid.h>
#include <linux/fs.h>
#include <ctype.h>
#include "kerncompat.h"
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "transaction.h"
#include "utils.h"
static u64 parse_size(char *s)
{
int len = strlen(s);
char c;
u64 mult = 1;
if (!isdigit(s[len - 1])) {
c = tolower(s[len - 1]);
switch (c) {
case 'g':
mult *= 1024;
case 'm':
mult *= 1024;
case 'k':
mult *= 1024;
case 'b':
break;
default:
fprintf(stderr, "Unknown size descriptor %c\n", c);
exit(1);
}
s[len - 1] = '\0';
}
return atol(s) * mult;
}
static int make_root_dir(int fd, const char *device_name) {
struct btrfs_root *root;
struct btrfs_trans_handle *trans;
struct btrfs_key location;
u64 bytes_used;
u64 chunk_start = 0;
u64 chunk_size = 0;
int ret;
root = open_ctree_fd(fd, device_name, 0);
if (!root) {
fprintf(stderr, "ctree init failed\n");
return -1;
}
trans = btrfs_start_transaction(root, 1);
bytes_used = btrfs_super_bytes_used(&root->fs_info->super_copy);
root->fs_info->force_system_allocs = 1;
ret = btrfs_make_block_group(trans, root, bytes_used,
BTRFS_BLOCK_GROUP_SYSTEM,
BTRFS_CHUNK_TREE_OBJECTID,
0, BTRFS_MKFS_SYSTEM_GROUP_SIZE);
BUG_ON(ret);
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_METADATA);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_METADATA,
BTRFS_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
root->fs_info->force_system_allocs = 0;
btrfs_commit_transaction(trans, root);
trans = btrfs_start_transaction(root, 1);
BUG_ON(!trans);
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size,
BTRFS_BLOCK_GROUP_DATA);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root, 0,
BTRFS_BLOCK_GROUP_DATA,
BTRFS_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
// ret = btrfs_make_block_group(trans, root, 0, 1);
ret = btrfs_make_root_dir(trans, root->fs_info->tree_root,
BTRFS_ROOT_TREE_DIR_OBJECTID);
if (ret)
goto err;
ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID);
if (ret)
goto err;
memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location));
location.offset = (u64)-1;
ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
"default", 7,
btrfs_super_root_dir(&root->fs_info->super_copy),
&location, BTRFS_FT_DIR);
if (ret)
goto err;
ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
"default", 7, location.objectid,
BTRFS_ROOT_TREE_DIR_OBJECTID);
if (ret)
goto err;
btrfs_commit_transaction(trans, root);
ret = close_ctree(root);
err:
return ret;
}
static int recow_roots(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
int ret;
struct extent_buffer *tmp;
struct btrfs_fs_info *info = root->fs_info;
ret = __btrfs_cow_block(trans, info->fs_root, info->fs_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->tree_root, info->tree_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->extent_root,
info->extent_root->node, NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->chunk_root, info->chunk_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
ret = __btrfs_cow_block(trans, info->dev_root, info->dev_root->node,
NULL, 0, &tmp, 0, 0);
BUG_ON(ret);
free_extent_buffer(tmp);
return 0;
}
static int create_one_raid_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 type)
{
u64 chunk_start;
u64 chunk_size;
int ret;
ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
&chunk_start, &chunk_size, type);
BUG_ON(ret);
ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
type, BTRFS_CHUNK_TREE_OBJECTID,
chunk_start, chunk_size);
BUG_ON(ret);
return ret;
}
static int create_raid_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 data_profile,
u64 metadata_profile)
{
u64 num_devices = btrfs_super_num_devices(&root->fs_info->super_copy);
u64 allowed;
int ret;
if (num_devices == 1)
allowed = BTRFS_BLOCK_GROUP_DUP;
else
allowed = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1;
if (allowed & metadata_profile) {
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_SYSTEM |
(allowed & metadata_profile));
BUG_ON(ret);
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_METADATA |
(allowed & metadata_profile));
BUG_ON(ret);
ret = recow_roots(trans, root);
BUG_ON(ret);
}
if (num_devices > 1 && (allowed & data_profile)) {
ret = create_one_raid_group(trans, root,
BTRFS_BLOCK_GROUP_DATA |
(allowed & data_profile));
BUG_ON(ret);
}
return 0;
}
static void print_usage(void)
{
fprintf(stderr, "usage: mkfs.btrfs [options] dev [ dev ... ]\n");
fprintf(stderr, "options:\n");
fprintf(stderr, "\t -b --byte-count total number of bytes in the FS\n");
fprintf(stderr, "\t -l --leafsize size of btree leaves\n");
fprintf(stderr, "\t -n --nodesize size of btree leaves\n");
fprintf(stderr, "\t -s --sectorsize min block allocation\n");
exit(1);
}
static u64 parse_profile(char *s)
{
if (strcmp(s, "raid0") == 0) {
return BTRFS_BLOCK_GROUP_RAID0;
} else if (strcmp(s, "raid1") == 0) {
return BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP;
} else if (strcmp(s, "single") == 0) {
return 0;
} else {
fprintf(stderr, "Unknown option %s\n", s);
print_usage();
}
return 0;
}
static struct option long_options[] = {
{ "byte-count", 1, NULL, 'b' },
{ "leafsize", 1, NULL, 'l' },
{ "nodesize", 1, NULL, 'n' },
{ "sectorsize", 1, NULL, 's' },
{ "metadata", 1, NULL, 'm' },
{ "data", 1, NULL, 'd' },
{ 0, 0, 0, 0}
};
int main(int ac, char **av)
{
char *file;
u64 block_count = 0;
u64 dev_block_count = 0;
int fd;
int first_fd;
int ret;
int i;
u32 leafsize = getpagesize();
u32 sectorsize = 4096;
u32 nodesize = leafsize;
u32 stripesize = 4096;
u64 blocks[6];
int zero_end = 1;
int option_index = 0;
struct btrfs_root *root;
struct btrfs_trans_handle *trans;
u64 metadata_profile = BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP;
u64 data_profile = BTRFS_BLOCK_GROUP_RAID0;
while(1) {
int c;
c = getopt_long(ac, av, "b:l:n:s:m:d:", long_options,
&option_index);
if (c < 0)
break;
switch(c) {
case 'd':
data_profile = parse_profile(optarg);
break;
case 'm':
metadata_profile = parse_profile(optarg);
break;
case 'l':
leafsize = parse_size(optarg);
break;
case 'n':
nodesize = parse_size(optarg);
break;
case 's':
sectorsize = parse_size(optarg);
break;
case 'b':
block_count = parse_size(optarg);
zero_end = 0;
break;
default:
print_usage();
}
}
sectorsize = max(sectorsize, (u32)getpagesize());
if (leafsize < sectorsize || (leafsize & (sectorsize - 1))) {
fprintf(stderr, "Illegal leafsize %u\n", leafsize);
exit(1);
}
if (nodesize < sectorsize || (nodesize & (sectorsize - 1))) {
fprintf(stderr, "Illegal nodesize %u\n", nodesize);
exit(1);
}
ac = ac - optind;
if (ac == 0)
print_usage();
file = av[optind++];
ret = check_mounted(file);
if (ret < 0) {
fprintf(stderr, "error checking %s mount status\n", file);
exit(1);
}
if (ret == 1) {
fprintf(stderr, "%s is mounted\n", file);
exit(1);
}
ac--;
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s\n", file);
exit(1);
}
first_fd = fd;
ret = btrfs_prepare_device(fd, file, zero_end, &dev_block_count);
if (block_count == 0)
block_count = dev_block_count;
for (i = 0; i < 6; i++)
blocks[i] = BTRFS_SUPER_INFO_OFFSET + leafsize * i;
ret = make_btrfs(fd, file, blocks, block_count, nodesize, leafsize,
sectorsize, stripesize);
if (ret) {
fprintf(stderr, "error during mkfs %d\n", ret);
exit(1);
}
ret = make_root_dir(fd, file);
if (ret) {
fprintf(stderr, "failed to setup the root directory\n");
exit(1);
}
printf("fs created on %s nodesize %u leafsize %u sectorsize %u bytes %llu\n",
file, nodesize, leafsize, sectorsize,
(unsigned long long)block_count);
root = open_ctree(file, 0);
trans = btrfs_start_transaction(root, 1);
if (ac == 0)
goto raid_groups;
btrfs_register_one_device(file);
if (!root) {
fprintf(stderr, "ctree init failed\n");
return -1;
}
zero_end = 1;
while(ac-- > 0) {
file = av[optind++];
ret = check_mounted(file);
if (ret < 0) {
fprintf(stderr, "error checking %s mount status\n",
file);
exit(1);
}
if (ret == 1) {
fprintf(stderr, "%s is mounted\n", file);
exit(1);
}
fd = open(file, O_RDWR);
if (fd < 0) {
fprintf(stderr, "unable to open %s\n", file);
exit(1);
}
fprintf(stderr, "adding device %s\n", file);
ret = btrfs_prepare_device(fd, file, zero_end,
&dev_block_count);
BUG_ON(ret);
ret = btrfs_add_to_fsid(trans, root, fd, dev_block_count,
sectorsize, sectorsize, sectorsize);
BUG_ON(ret);
btrfs_register_one_device(file);
}
raid_groups:
ret = create_raid_groups(trans, root, data_profile,
metadata_profile);
btrfs_commit_transaction(trans, root);
ret = close_ctree(root);
BUG_ON(ret);
return 0;
}