1997 lines
50 KiB
C
1997 lines
50 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include "kerncompat.h"
|
|
#include "androidcompat.h"
|
|
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mount.h>
|
|
#include "ioctl.h"
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
/* #include <sys/dir.h> included via androidcompat.h */
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <getopt.h>
|
|
#include <uuid/uuid.h>
|
|
#include <ctype.h>
|
|
#include <sys/xattr.h>
|
|
#include <limits.h>
|
|
#include <linux/limits.h>
|
|
#include <blkid/blkid.h>
|
|
#include <ftw.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "volumes.h"
|
|
#include "transaction.h"
|
|
#include "utils.h"
|
|
#include "list_sort.h"
|
|
#include "help.h"
|
|
#include "mkfs/common.h"
|
|
#include "fsfeatures.h"
|
|
|
|
int path_cat_out(char *out, const char *p1, const char *p2);
|
|
|
|
static u64 index_cnt = 2;
|
|
static int verbose = 1;
|
|
|
|
struct directory_name_entry {
|
|
const char *dir_name;
|
|
const char *path;
|
|
ino_t inum;
|
|
struct list_head list;
|
|
};
|
|
|
|
struct mkfs_allocation {
|
|
u64 data;
|
|
u64 metadata;
|
|
u64 mixed;
|
|
u64 system;
|
|
};
|
|
|
|
static int create_metadata_block_groups(struct btrfs_root *root, int mixed,
|
|
struct mkfs_allocation *allocation)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 bytes_used;
|
|
u64 chunk_start = 0;
|
|
u64 chunk_size = 0;
|
|
int ret;
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(IS_ERR(trans));
|
|
bytes_used = btrfs_super_bytes_used(fs_info->super_copy);
|
|
|
|
root->fs_info->system_allocs = 1;
|
|
ret = btrfs_make_block_group(trans, fs_info, bytes_used,
|
|
BTRFS_BLOCK_GROUP_SYSTEM,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
0, BTRFS_MKFS_SYSTEM_GROUP_SIZE);
|
|
allocation->system += BTRFS_MKFS_SYSTEM_GROUP_SIZE;
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mixed) {
|
|
ret = btrfs_alloc_chunk(trans, fs_info,
|
|
&chunk_start, &chunk_size,
|
|
BTRFS_BLOCK_GROUP_METADATA |
|
|
BTRFS_BLOCK_GROUP_DATA);
|
|
if (ret == -ENOSPC) {
|
|
error("no space to allocate data/metadata chunk");
|
|
goto err;
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_make_block_group(trans, fs_info, 0,
|
|
BTRFS_BLOCK_GROUP_METADATA |
|
|
BTRFS_BLOCK_GROUP_DATA,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
chunk_start, chunk_size);
|
|
if (ret)
|
|
return ret;
|
|
allocation->mixed += chunk_size;
|
|
} else {
|
|
ret = btrfs_alloc_chunk(trans, fs_info,
|
|
&chunk_start, &chunk_size,
|
|
BTRFS_BLOCK_GROUP_METADATA);
|
|
if (ret == -ENOSPC) {
|
|
error("no space to allocate metadata chunk");
|
|
goto err;
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_make_block_group(trans, fs_info, 0,
|
|
BTRFS_BLOCK_GROUP_METADATA,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
chunk_start, chunk_size);
|
|
allocation->metadata += chunk_size;
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
root->fs_info->system_allocs = 0;
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int create_data_block_groups(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, int mixed,
|
|
struct mkfs_allocation *allocation)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 chunk_start = 0;
|
|
u64 chunk_size = 0;
|
|
int ret = 0;
|
|
|
|
if (!mixed) {
|
|
ret = btrfs_alloc_chunk(trans, fs_info,
|
|
&chunk_start, &chunk_size,
|
|
BTRFS_BLOCK_GROUP_DATA);
|
|
if (ret == -ENOSPC) {
|
|
error("no space to allocate data chunk");
|
|
goto err;
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_make_block_group(trans, fs_info, 0,
|
|
BTRFS_BLOCK_GROUP_DATA,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
chunk_start, chunk_size);
|
|
allocation->data += chunk_size;
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int make_root_dir(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_key location;
|
|
int ret;
|
|
|
|
ret = btrfs_make_root_dir(trans, root->fs_info->tree_root,
|
|
BTRFS_ROOT_TREE_DIR_OBJECTID);
|
|
if (ret)
|
|
goto err;
|
|
ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID);
|
|
if (ret)
|
|
goto err;
|
|
memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location));
|
|
location.offset = (u64)-1;
|
|
ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
|
|
"default", 7,
|
|
btrfs_super_root_dir(root->fs_info->super_copy),
|
|
&location, BTRFS_FT_DIR, 0);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
|
|
"default", 7, location.objectid,
|
|
BTRFS_ROOT_TREE_DIR_OBJECTID, 0);
|
|
if (ret)
|
|
goto err;
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int __recow_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct extent_buffer *tmp;
|
|
int ret;
|
|
|
|
if (trans->transid != btrfs_root_generation(&root->root_item)) {
|
|
extent_buffer_get(root->node);
|
|
ret = __btrfs_cow_block(trans, root, root->node,
|
|
NULL, 0, &tmp, 0, 0);
|
|
if (ret)
|
|
return ret;
|
|
free_extent_buffer(tmp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int recow_roots(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *info = root->fs_info;
|
|
int ret;
|
|
|
|
ret = __recow_root(trans, info->fs_root);
|
|
if (ret)
|
|
return ret;
|
|
ret = __recow_root(trans, info->tree_root);
|
|
if (ret)
|
|
return ret;
|
|
ret = __recow_root(trans, info->extent_root);
|
|
if (ret)
|
|
return ret;
|
|
ret = __recow_root(trans, info->chunk_root);
|
|
if (ret)
|
|
return ret;
|
|
ret = __recow_root(trans, info->dev_root);
|
|
if (ret)
|
|
return ret;
|
|
ret = __recow_root(trans, info->csum_root);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int create_one_raid_group(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 type,
|
|
struct mkfs_allocation *allocation)
|
|
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 chunk_start;
|
|
u64 chunk_size;
|
|
int ret;
|
|
|
|
ret = btrfs_alloc_chunk(trans, fs_info,
|
|
&chunk_start, &chunk_size, type);
|
|
if (ret == -ENOSPC) {
|
|
error("not enough free space to allocate chunk");
|
|
exit(1);
|
|
}
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_make_block_group(trans, fs_info, 0,
|
|
type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
chunk_start, chunk_size);
|
|
|
|
type &= BTRFS_BLOCK_GROUP_TYPE_MASK;
|
|
if (type == BTRFS_BLOCK_GROUP_DATA) {
|
|
allocation->data += chunk_size;
|
|
} else if (type == BTRFS_BLOCK_GROUP_METADATA) {
|
|
allocation->metadata += chunk_size;
|
|
} else if (type == BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
allocation->system += chunk_size;
|
|
} else if (type ==
|
|
(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA)) {
|
|
allocation->mixed += chunk_size;
|
|
} else {
|
|
error("unrecognized profile type: 0x%llx",
|
|
(unsigned long long)type);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_raid_groups(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 data_profile,
|
|
u64 metadata_profile, int mixed,
|
|
struct mkfs_allocation *allocation)
|
|
{
|
|
int ret;
|
|
|
|
if (metadata_profile) {
|
|
u64 meta_flags = BTRFS_BLOCK_GROUP_METADATA;
|
|
|
|
ret = create_one_raid_group(trans, root,
|
|
BTRFS_BLOCK_GROUP_SYSTEM |
|
|
metadata_profile, allocation);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mixed)
|
|
meta_flags |= BTRFS_BLOCK_GROUP_DATA;
|
|
|
|
ret = create_one_raid_group(trans, root, meta_flags |
|
|
metadata_profile, allocation);
|
|
if (ret)
|
|
return ret;
|
|
|
|
}
|
|
if (!mixed && data_profile) {
|
|
ret = create_one_raid_group(trans, root,
|
|
BTRFS_BLOCK_GROUP_DATA |
|
|
data_profile, allocation);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
ret = recow_roots(trans, root);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 objectid)
|
|
{
|
|
struct btrfs_key location;
|
|
struct btrfs_root_item root_item;
|
|
struct extent_buffer *tmp;
|
|
int ret;
|
|
|
|
ret = btrfs_copy_root(trans, root, root->node, &tmp, objectid);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memcpy(&root_item, &root->root_item, sizeof(root_item));
|
|
btrfs_set_root_bytenr(&root_item, tmp->start);
|
|
btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
|
|
btrfs_set_root_generation(&root_item, trans->transid);
|
|
free_extent_buffer(tmp);
|
|
|
|
location.objectid = objectid;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
|
|
&location, &root_item);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void print_usage(int ret)
|
|
{
|
|
printf("Usage: mkfs.btrfs [options] dev [ dev ... ]\n");
|
|
printf("Options:\n");
|
|
printf(" allocation profiles:\n");
|
|
printf("\t-d|--data PROFILE data profile, raid0, raid1, raid5, raid6, raid10, dup or single\n");
|
|
printf("\t-m|--metadata PROFILE metadata profile, values like for data profile\n");
|
|
printf("\t-M|--mixed mix metadata and data together\n");
|
|
printf(" features:\n");
|
|
printf("\t-n|--nodesize SIZE size of btree nodes\n");
|
|
printf("\t-s|--sectorsize SIZE data block size (may not be mountable by current kernel)\n");
|
|
printf("\t-O|--features LIST comma separated list of filesystem features (use '-O list-all' to list features)\n");
|
|
printf("\t-L|--label LABEL set the filesystem label\n");
|
|
printf("\t-U|--uuid UUID specify the filesystem UUID (must be unique)\n");
|
|
printf(" creation:\n");
|
|
printf("\t-b|--byte-count SIZE set filesystem size to SIZE (on the first device)\n");
|
|
printf("\t-r|--rootdir DIR copy files from DIR to the image root directory\n");
|
|
printf("\t-K|--nodiscard do not perform whole device TRIM\n");
|
|
printf("\t-f|--force force overwrite of existing filesystem\n");
|
|
printf(" general:\n");
|
|
printf("\t-q|--quiet no messages except errors\n");
|
|
printf("\t-V|--version print the mkfs.btrfs version and exit\n");
|
|
printf("\t--help print this help and exit\n");
|
|
printf(" deprecated:\n");
|
|
printf("\t-A|--alloc-start START the offset to start the filesystem\n");
|
|
printf("\t-l|--leafsize SIZE deprecated, alias for nodesize\n");
|
|
exit(ret);
|
|
}
|
|
|
|
static u64 parse_profile(const char *s)
|
|
{
|
|
if (strcasecmp(s, "raid0") == 0) {
|
|
return BTRFS_BLOCK_GROUP_RAID0;
|
|
} else if (strcasecmp(s, "raid1") == 0) {
|
|
return BTRFS_BLOCK_GROUP_RAID1;
|
|
} else if (strcasecmp(s, "raid5") == 0) {
|
|
return BTRFS_BLOCK_GROUP_RAID5;
|
|
} else if (strcasecmp(s, "raid6") == 0) {
|
|
return BTRFS_BLOCK_GROUP_RAID6;
|
|
} else if (strcasecmp(s, "raid10") == 0) {
|
|
return BTRFS_BLOCK_GROUP_RAID10;
|
|
} else if (strcasecmp(s, "dup") == 0) {
|
|
return BTRFS_BLOCK_GROUP_DUP;
|
|
} else if (strcasecmp(s, "single") == 0) {
|
|
return 0;
|
|
} else {
|
|
error("unknown profile %s", s);
|
|
exit(1);
|
|
}
|
|
/* not reached */
|
|
return 0;
|
|
}
|
|
|
|
static char *parse_label(const char *input)
|
|
{
|
|
int len = strlen(input);
|
|
|
|
if (len >= BTRFS_LABEL_SIZE) {
|
|
error("label %s is too long (max %d)", input,
|
|
BTRFS_LABEL_SIZE - 1);
|
|
exit(1);
|
|
}
|
|
return strdup(input);
|
|
}
|
|
|
|
static int add_directory_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 objectid,
|
|
ino_t parent_inum, const char *name,
|
|
struct stat *st, int *dir_index_cnt)
|
|
{
|
|
int ret;
|
|
int name_len;
|
|
struct btrfs_key location;
|
|
u8 filetype = 0;
|
|
|
|
name_len = strlen(name);
|
|
|
|
location.objectid = objectid;
|
|
location.offset = 0;
|
|
location.type = BTRFS_INODE_ITEM_KEY;
|
|
|
|
if (S_ISDIR(st->st_mode))
|
|
filetype = BTRFS_FT_DIR;
|
|
if (S_ISREG(st->st_mode))
|
|
filetype = BTRFS_FT_REG_FILE;
|
|
if (S_ISLNK(st->st_mode))
|
|
filetype = BTRFS_FT_SYMLINK;
|
|
if (S_ISSOCK(st->st_mode))
|
|
filetype = BTRFS_FT_SOCK;
|
|
if (S_ISCHR(st->st_mode))
|
|
filetype = BTRFS_FT_CHRDEV;
|
|
if (S_ISBLK(st->st_mode))
|
|
filetype = BTRFS_FT_BLKDEV;
|
|
if (S_ISFIFO(st->st_mode))
|
|
filetype = BTRFS_FT_FIFO;
|
|
|
|
ret = btrfs_insert_dir_item(trans, root, name, name_len,
|
|
parent_inum, &location,
|
|
filetype, index_cnt);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_insert_inode_ref(trans, root, name, name_len,
|
|
objectid, parent_inum, index_cnt);
|
|
*dir_index_cnt = index_cnt;
|
|
index_cnt++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fill_inode_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_inode_item *dst, struct stat *src)
|
|
{
|
|
u64 blocks = 0;
|
|
u64 sectorsize = root->fs_info->sectorsize;
|
|
|
|
/*
|
|
* btrfs_inode_item has some reserved fields
|
|
* and represents on-disk inode entry, so
|
|
* zero everything to prevent information leak
|
|
*/
|
|
memset(dst, 0, sizeof (*dst));
|
|
|
|
btrfs_set_stack_inode_generation(dst, trans->transid);
|
|
btrfs_set_stack_inode_size(dst, src->st_size);
|
|
btrfs_set_stack_inode_nbytes(dst, 0);
|
|
btrfs_set_stack_inode_block_group(dst, 0);
|
|
btrfs_set_stack_inode_nlink(dst, src->st_nlink);
|
|
btrfs_set_stack_inode_uid(dst, src->st_uid);
|
|
btrfs_set_stack_inode_gid(dst, src->st_gid);
|
|
btrfs_set_stack_inode_mode(dst, src->st_mode);
|
|
btrfs_set_stack_inode_rdev(dst, 0);
|
|
btrfs_set_stack_inode_flags(dst, 0);
|
|
btrfs_set_stack_timespec_sec(&dst->atime, src->st_atime);
|
|
btrfs_set_stack_timespec_nsec(&dst->atime, 0);
|
|
btrfs_set_stack_timespec_sec(&dst->ctime, src->st_ctime);
|
|
btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
|
|
btrfs_set_stack_timespec_sec(&dst->mtime, src->st_mtime);
|
|
btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
|
|
btrfs_set_stack_timespec_sec(&dst->otime, 0);
|
|
btrfs_set_stack_timespec_nsec(&dst->otime, 0);
|
|
|
|
if (S_ISDIR(src->st_mode)) {
|
|
btrfs_set_stack_inode_size(dst, 0);
|
|
btrfs_set_stack_inode_nlink(dst, 1);
|
|
}
|
|
if (S_ISREG(src->st_mode)) {
|
|
btrfs_set_stack_inode_size(dst, (u64)src->st_size);
|
|
if (src->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root))
|
|
btrfs_set_stack_inode_nbytes(dst, src->st_size);
|
|
else {
|
|
blocks = src->st_size / sectorsize;
|
|
if (src->st_size % sectorsize)
|
|
blocks += 1;
|
|
blocks *= sectorsize;
|
|
btrfs_set_stack_inode_nbytes(dst, blocks);
|
|
}
|
|
}
|
|
if (S_ISLNK(src->st_mode))
|
|
btrfs_set_stack_inode_nbytes(dst, src->st_size + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int directory_select(const struct direct *entry)
|
|
{
|
|
if (entry->d_name[0] == '.' &&
|
|
(entry->d_name[1] == 0 ||
|
|
(entry->d_name[1] == '.' && entry->d_name[2] == 0)))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void free_namelist(struct direct **files, int count)
|
|
{
|
|
int i;
|
|
|
|
if (count < 0)
|
|
return;
|
|
|
|
for (i = 0; i < count; ++i)
|
|
free(files[i]);
|
|
free(files);
|
|
}
|
|
|
|
static u64 calculate_dir_inode_size(const char *dirname)
|
|
{
|
|
int count, i;
|
|
struct direct **files, *cur_file;
|
|
u64 dir_inode_size = 0;
|
|
|
|
count = scandir(dirname, &files, directory_select, NULL);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
cur_file = files[i];
|
|
dir_inode_size += strlen(cur_file->d_name);
|
|
}
|
|
|
|
free_namelist(files, count);
|
|
|
|
dir_inode_size *= 2;
|
|
return dir_inode_size;
|
|
}
|
|
|
|
static int add_inode_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct stat *st, const char *name,
|
|
u64 self_objectid,
|
|
struct btrfs_inode_item *inode_ret)
|
|
{
|
|
int ret;
|
|
struct btrfs_inode_item btrfs_inode;
|
|
u64 objectid;
|
|
u64 inode_size = 0;
|
|
|
|
fill_inode_item(trans, root, &btrfs_inode, st);
|
|
objectid = self_objectid;
|
|
|
|
if (S_ISDIR(st->st_mode)) {
|
|
inode_size = calculate_dir_inode_size(name);
|
|
btrfs_set_stack_inode_size(&btrfs_inode, inode_size);
|
|
}
|
|
|
|
ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
|
|
|
|
*inode_ret = btrfs_inode;
|
|
return ret;
|
|
}
|
|
|
|
static int add_xattr_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 objectid,
|
|
const char *file_name)
|
|
{
|
|
int ret;
|
|
int cur_name_len;
|
|
char xattr_list[XATTR_LIST_MAX];
|
|
char *cur_name;
|
|
char cur_value[XATTR_SIZE_MAX];
|
|
char delimiter = '\0';
|
|
char *next_location = xattr_list;
|
|
|
|
ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX);
|
|
if (ret < 0) {
|
|
if(errno == ENOTSUP)
|
|
return 0;
|
|
error("getting a list of xattr failed for %s: %s", file_name,
|
|
strerror(errno));
|
|
return ret;
|
|
}
|
|
if (ret == 0)
|
|
return ret;
|
|
|
|
cur_name = strtok(xattr_list, &delimiter);
|
|
while (cur_name != NULL) {
|
|
cur_name_len = strlen(cur_name);
|
|
next_location += cur_name_len + 1;
|
|
|
|
ret = getxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX);
|
|
if (ret < 0) {
|
|
if(errno == ENOTSUP)
|
|
return 0;
|
|
error("gettig a xattr value failed for %s attr %s: %s",
|
|
file_name, cur_name, strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_insert_xattr_item(trans, root, cur_name,
|
|
cur_name_len, cur_value,
|
|
ret, objectid);
|
|
if (ret) {
|
|
error("inserting a xattr item failed for %s: %s",
|
|
file_name, strerror(-ret));
|
|
}
|
|
|
|
cur_name = strtok(next_location, &delimiter);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int add_symbolic_link(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 objectid, const char *path_name)
|
|
{
|
|
int ret;
|
|
char buf[PATH_MAX];
|
|
|
|
ret = readlink(path_name, buf, sizeof(buf));
|
|
if (ret <= 0) {
|
|
error("readlink failed for %s: %s", path_name, strerror(errno));
|
|
goto fail;
|
|
}
|
|
if (ret >= sizeof(buf)) {
|
|
error("symlink too long for %s", path_name);
|
|
ret = -1;
|
|
goto fail;
|
|
}
|
|
|
|
buf[ret] = '\0'; /* readlink does not do it for us */
|
|
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
|
|
buf, ret + 1);
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
static int add_file_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_inode_item *btrfs_inode, u64 objectid,
|
|
struct stat *st, const char *path_name)
|
|
{
|
|
int ret = -1;
|
|
ssize_t ret_read;
|
|
u64 bytes_read = 0;
|
|
struct btrfs_key key;
|
|
int blocks;
|
|
u32 sectorsize = root->fs_info->sectorsize;
|
|
u64 first_block = 0;
|
|
u64 file_pos = 0;
|
|
u64 cur_bytes;
|
|
u64 total_bytes;
|
|
struct extent_buffer *eb = NULL;
|
|
int fd;
|
|
|
|
if (st->st_size == 0)
|
|
return 0;
|
|
|
|
fd = open(path_name, O_RDONLY);
|
|
if (fd == -1) {
|
|
error("cannot open %s: %s", path_name, strerror(errno));
|
|
return ret;
|
|
}
|
|
|
|
blocks = st->st_size / sectorsize;
|
|
if (st->st_size % sectorsize)
|
|
blocks += 1;
|
|
|
|
if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
|
|
char *buffer = malloc(st->st_size);
|
|
|
|
if (!buffer) {
|
|
ret = -ENOMEM;
|
|
goto end;
|
|
}
|
|
|
|
ret_read = pread64(fd, buffer, st->st_size, bytes_read);
|
|
if (ret_read == -1) {
|
|
error("cannot read %s at offset %llu length %llu: %s",
|
|
path_name, (unsigned long long)bytes_read,
|
|
(unsigned long long)st->st_size,
|
|
strerror(errno));
|
|
free(buffer);
|
|
goto end;
|
|
}
|
|
|
|
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
|
|
buffer, st->st_size);
|
|
free(buffer);
|
|
goto end;
|
|
}
|
|
|
|
/* round up our st_size to the FS blocksize */
|
|
total_bytes = (u64)blocks * sectorsize;
|
|
|
|
/*
|
|
* do our IO in extent buffers so it can work
|
|
* against any raid type
|
|
*/
|
|
eb = calloc(1, sizeof(*eb) + sectorsize);
|
|
if (!eb) {
|
|
ret = -ENOMEM;
|
|
goto end;
|
|
}
|
|
|
|
again:
|
|
|
|
/*
|
|
* keep our extent size at 1MB max, this makes it easier to work inside
|
|
* the tiny block groups created during mkfs
|
|
*/
|
|
cur_bytes = min(total_bytes, (u64)SZ_1M);
|
|
ret = btrfs_reserve_extent(trans, root, cur_bytes, 0, 0, (u64)-1,
|
|
&key, 1);
|
|
if (ret)
|
|
goto end;
|
|
|
|
first_block = key.objectid;
|
|
bytes_read = 0;
|
|
|
|
while (bytes_read < cur_bytes) {
|
|
|
|
memset(eb->data, 0, sectorsize);
|
|
|
|
ret_read = pread64(fd, eb->data, sectorsize, file_pos + bytes_read);
|
|
if (ret_read == -1) {
|
|
error("cannot read %s at offset %llu length %llu: %s",
|
|
path_name,
|
|
(unsigned long long)file_pos + bytes_read,
|
|
(unsigned long long)sectorsize,
|
|
strerror(errno));
|
|
goto end;
|
|
}
|
|
|
|
eb->start = first_block + bytes_read;
|
|
eb->len = sectorsize;
|
|
|
|
/*
|
|
* we're doing the csum before we record the extent, but
|
|
* that's ok
|
|
*/
|
|
ret = btrfs_csum_file_block(trans, root->fs_info->csum_root,
|
|
first_block + bytes_read + sectorsize,
|
|
first_block + bytes_read,
|
|
eb->data, sectorsize);
|
|
if (ret)
|
|
goto end;
|
|
|
|
ret = write_and_map_eb(root->fs_info, eb);
|
|
if (ret) {
|
|
error("failed to write %s", path_name);
|
|
goto end;
|
|
}
|
|
|
|
bytes_read += sectorsize;
|
|
}
|
|
|
|
if (bytes_read) {
|
|
ret = btrfs_record_file_extent(trans, root, objectid, btrfs_inode,
|
|
file_pos, first_block, cur_bytes);
|
|
if (ret)
|
|
goto end;
|
|
|
|
}
|
|
|
|
file_pos += cur_bytes;
|
|
total_bytes -= cur_bytes;
|
|
|
|
if (total_bytes)
|
|
goto again;
|
|
|
|
end:
|
|
free(eb);
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
static int traverse_directory(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, const char *dir_name,
|
|
struct directory_name_entry *dir_head)
|
|
{
|
|
int ret = 0;
|
|
|
|
struct btrfs_inode_item cur_inode;
|
|
struct btrfs_inode_item *inode_item;
|
|
int count, i, dir_index_cnt;
|
|
struct direct **files;
|
|
struct stat st;
|
|
struct directory_name_entry *dir_entry, *parent_dir_entry;
|
|
struct direct *cur_file;
|
|
ino_t parent_inum, cur_inum;
|
|
ino_t highest_inum = 0;
|
|
const char *parent_dir_name;
|
|
char real_path[PATH_MAX];
|
|
struct btrfs_path path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key root_dir_key;
|
|
u64 root_dir_inode_size = 0;
|
|
|
|
/* Add list for source directory */
|
|
dir_entry = malloc(sizeof(struct directory_name_entry));
|
|
if (!dir_entry)
|
|
return -ENOMEM;
|
|
dir_entry->dir_name = dir_name;
|
|
dir_entry->path = realpath(dir_name, real_path);
|
|
if (!dir_entry->path) {
|
|
error("realpath failed for %s: %s", dir_name, strerror(errno));
|
|
ret = -1;
|
|
goto fail_no_dir;
|
|
}
|
|
|
|
parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID;
|
|
dir_entry->inum = parent_inum;
|
|
list_add_tail(&dir_entry->list, &dir_head->list);
|
|
|
|
btrfs_init_path(&path);
|
|
|
|
root_dir_key.objectid = btrfs_root_dirid(&root->root_item);
|
|
root_dir_key.offset = 0;
|
|
root_dir_key.type = BTRFS_INODE_ITEM_KEY;
|
|
ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1);
|
|
if (ret) {
|
|
error("failed to lookup root dir: %d", ret);
|
|
goto fail_no_dir;
|
|
}
|
|
|
|
leaf = path.nodes[0];
|
|
inode_item = btrfs_item_ptr(leaf, path.slots[0],
|
|
struct btrfs_inode_item);
|
|
|
|
root_dir_inode_size = calculate_dir_inode_size(dir_name);
|
|
btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
btrfs_release_path(&path);
|
|
|
|
do {
|
|
parent_dir_entry = list_entry(dir_head->list.next,
|
|
struct directory_name_entry,
|
|
list);
|
|
list_del(&parent_dir_entry->list);
|
|
|
|
parent_inum = parent_dir_entry->inum;
|
|
parent_dir_name = parent_dir_entry->dir_name;
|
|
if (chdir(parent_dir_entry->path)) {
|
|
error("chdir failed for %s: %s",
|
|
parent_dir_name, strerror(errno));
|
|
ret = -1;
|
|
goto fail_no_files;
|
|
}
|
|
|
|
count = scandir(parent_dir_entry->path, &files,
|
|
directory_select, NULL);
|
|
if (count == -1)
|
|
{
|
|
error("scandir failed for %s: %s",
|
|
parent_dir_name, strerror (errno));
|
|
ret = -1;
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < count; i++) {
|
|
cur_file = files[i];
|
|
|
|
if (lstat(cur_file->d_name, &st) == -1) {
|
|
error("lstat failed for %s: %s",
|
|
cur_file->d_name, strerror(errno));
|
|
ret = -1;
|
|
goto fail;
|
|
}
|
|
|
|
cur_inum = st.st_ino;
|
|
ret = add_directory_items(trans, root,
|
|
cur_inum, parent_inum,
|
|
cur_file->d_name,
|
|
&st, &dir_index_cnt);
|
|
if (ret) {
|
|
error("unable to add directory items for %s: %d",
|
|
cur_file->d_name, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = add_inode_items(trans, root, &st,
|
|
cur_file->d_name, cur_inum,
|
|
&cur_inode);
|
|
if (ret == -EEXIST) {
|
|
if (st.st_nlink <= 1) {
|
|
error(
|
|
"item %s already exists but has wrong st_nlink %lu <= 1",
|
|
cur_file->d_name,
|
|
(unsigned long)st.st_nlink);
|
|
goto fail;
|
|
}
|
|
continue;
|
|
}
|
|
if (ret) {
|
|
error("unable to add inode items for %s: %d",
|
|
cur_file->d_name, ret);
|
|
goto fail;
|
|
}
|
|
|
|
ret = add_xattr_item(trans, root,
|
|
cur_inum, cur_file->d_name);
|
|
if (ret) {
|
|
error("unable to add xattr items for %s: %d",
|
|
cur_file->d_name, ret);
|
|
if(ret != -ENOTSUP)
|
|
goto fail;
|
|
}
|
|
|
|
if (S_ISDIR(st.st_mode)) {
|
|
char tmp[PATH_MAX];
|
|
|
|
dir_entry = malloc(sizeof(struct directory_name_entry));
|
|
if (!dir_entry) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
dir_entry->dir_name = cur_file->d_name;
|
|
if (path_cat_out(tmp, parent_dir_entry->path,
|
|
cur_file->d_name)) {
|
|
error("invalid path: %s/%s",
|
|
parent_dir_entry->path,
|
|
cur_file->d_name);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
dir_entry->path = strdup(tmp);
|
|
if (!dir_entry->path) {
|
|
error("not enough memory to store path");
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
dir_entry->inum = cur_inum;
|
|
list_add_tail(&dir_entry->list, &dir_head->list);
|
|
} else if (S_ISREG(st.st_mode)) {
|
|
ret = add_file_items(trans, root, &cur_inode,
|
|
cur_inum, &st,
|
|
cur_file->d_name);
|
|
if (ret) {
|
|
error("unable to add file items for %s: %d",
|
|
cur_file->d_name, ret);
|
|
goto fail;
|
|
}
|
|
} else if (S_ISLNK(st.st_mode)) {
|
|
ret = add_symbolic_link(trans, root,
|
|
cur_inum, cur_file->d_name);
|
|
if (ret) {
|
|
error("unable to add symlink for %s: %d",
|
|
cur_file->d_name, ret);
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
|
|
free_namelist(files, count);
|
|
free(parent_dir_entry);
|
|
|
|
index_cnt = 2;
|
|
|
|
} while (!list_empty(&dir_head->list));
|
|
|
|
out:
|
|
return !!ret;
|
|
fail:
|
|
free_namelist(files, count);
|
|
fail_no_files:
|
|
free(parent_dir_entry);
|
|
goto out;
|
|
fail_no_dir:
|
|
free(dir_entry);
|
|
goto out;
|
|
}
|
|
|
|
static int create_chunks(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 num_of_meta_chunks,
|
|
u64 size_of_data,
|
|
struct mkfs_allocation *allocation)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 chunk_start;
|
|
u64 chunk_size;
|
|
u64 meta_type = BTRFS_BLOCK_GROUP_METADATA;
|
|
u64 data_type = BTRFS_BLOCK_GROUP_DATA;
|
|
u64 minimum_data_chunk_size = SZ_8M;
|
|
u64 i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_of_meta_chunks; i++) {
|
|
ret = btrfs_alloc_chunk(trans, fs_info,
|
|
&chunk_start, &chunk_size, meta_type);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_make_block_group(trans, fs_info, 0,
|
|
meta_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
chunk_start, chunk_size);
|
|
allocation->metadata += chunk_size;
|
|
if (ret)
|
|
return ret;
|
|
set_extent_dirty(&root->fs_info->free_space_cache,
|
|
chunk_start, chunk_start + chunk_size - 1);
|
|
}
|
|
|
|
if (size_of_data < minimum_data_chunk_size)
|
|
size_of_data = minimum_data_chunk_size;
|
|
|
|
ret = btrfs_alloc_data_chunk(trans, fs_info,
|
|
&chunk_start, size_of_data, data_type, 0);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_make_block_group(trans, fs_info, 0,
|
|
data_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
chunk_start, size_of_data);
|
|
allocation->data += size_of_data;
|
|
if (ret)
|
|
return ret;
|
|
set_extent_dirty(&root->fs_info->free_space_cache,
|
|
chunk_start, chunk_start + size_of_data - 1);
|
|
return ret;
|
|
}
|
|
|
|
static int make_image(const char *source_dir, struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
struct btrfs_trans_handle *trans;
|
|
struct stat root_st;
|
|
struct directory_name_entry dir_head;
|
|
struct directory_name_entry *dir_entry = NULL;
|
|
|
|
ret = lstat(source_dir, &root_st);
|
|
if (ret) {
|
|
error("unable to lstat %s: %s", source_dir, strerror(errno));
|
|
ret = -errno;
|
|
goto out;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&dir_head.list);
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(IS_ERR(trans));
|
|
ret = traverse_directory(trans, root, source_dir, &dir_head);
|
|
if (ret) {
|
|
error("unable to traverse directory %s: %d", source_dir, ret);
|
|
goto fail;
|
|
}
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret) {
|
|
error("transaction commit failed: %d", ret);
|
|
goto out;
|
|
}
|
|
|
|
if (verbose)
|
|
printf("Making image is completed.\n");
|
|
return 0;
|
|
fail:
|
|
/*
|
|
* Since we don't have btrfs_abort_transaction() yet, uncommitted trans
|
|
* will trigger a BUG_ON().
|
|
*
|
|
* However before mkfs is fully finished, the magic number is invalid,
|
|
* so even we commit transaction here, the fs still can't be mounted.
|
|
*
|
|
* To do a graceful error out, here we commit transaction as a
|
|
* workaround.
|
|
* Since we have already hit some problem, the return value doesn't
|
|
* matter now.
|
|
*/
|
|
btrfs_commit_transaction(trans, root);
|
|
while (!list_empty(&dir_head.list)) {
|
|
dir_entry = list_entry(dir_head.list.next,
|
|
struct directory_name_entry, list);
|
|
list_del(&dir_entry->list);
|
|
free(dir_entry);
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This ignores symlinks with unreadable targets and subdirs that can't
|
|
* be read. It's a best-effort to give a rough estimate of the size of
|
|
* a subdir. It doesn't guarantee that prepopulating btrfs from this
|
|
* tree won't still run out of space.
|
|
*/
|
|
static u64 global_total_size;
|
|
static u64 fs_block_size;
|
|
static int ftw_add_entry_size(const char *fpath, const struct stat *st,
|
|
int type)
|
|
{
|
|
if (type == FTW_F || type == FTW_D)
|
|
global_total_size += round_up(st->st_size, fs_block_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u64 size_sourcedir(const char *dir_name, u64 sectorsize,
|
|
u64 *num_of_meta_chunks_ret, u64 *size_of_data_ret)
|
|
{
|
|
u64 dir_size = 0;
|
|
u64 total_size = 0;
|
|
int ret;
|
|
u64 default_chunk_size = SZ_8M;
|
|
u64 allocated_meta_size = SZ_8M;
|
|
u64 allocated_total_size = 20 * SZ_1M; /* 20MB */
|
|
u64 num_of_meta_chunks = 0;
|
|
u64 num_of_data_chunks = 0;
|
|
u64 num_of_allocated_meta_chunks =
|
|
allocated_meta_size / default_chunk_size;
|
|
|
|
global_total_size = 0;
|
|
fs_block_size = sectorsize;
|
|
ret = ftw(dir_name, ftw_add_entry_size, 10);
|
|
dir_size = global_total_size;
|
|
if (ret < 0) {
|
|
error("ftw subdir walk of %s failed: %s", dir_name,
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
num_of_data_chunks = (dir_size + default_chunk_size - 1) /
|
|
default_chunk_size;
|
|
|
|
num_of_meta_chunks = (dir_size / 2) / default_chunk_size;
|
|
if (((dir_size / 2) % default_chunk_size) != 0)
|
|
num_of_meta_chunks++;
|
|
if (num_of_meta_chunks <= num_of_allocated_meta_chunks)
|
|
num_of_meta_chunks = 0;
|
|
else
|
|
num_of_meta_chunks -= num_of_allocated_meta_chunks;
|
|
|
|
total_size = allocated_total_size +
|
|
(num_of_data_chunks * default_chunk_size) +
|
|
(num_of_meta_chunks * default_chunk_size);
|
|
|
|
*num_of_meta_chunks_ret = num_of_meta_chunks;
|
|
*size_of_data_ret = num_of_data_chunks * default_chunk_size;
|
|
return total_size;
|
|
}
|
|
|
|
static int zero_output_file(int out_fd, u64 size)
|
|
{
|
|
int loop_num;
|
|
u64 location = 0;
|
|
char buf[SZ_4K];
|
|
int ret = 0, i;
|
|
ssize_t written;
|
|
|
|
memset(buf, 0, SZ_4K);
|
|
|
|
/* Only zero out the first 1M */
|
|
loop_num = SZ_1M / SZ_4K;
|
|
for (i = 0; i < loop_num; i++) {
|
|
written = pwrite64(out_fd, buf, SZ_4K, location);
|
|
if (written != SZ_4K)
|
|
ret = -EIO;
|
|
location += SZ_4K;
|
|
}
|
|
|
|
/* Then enlarge the file to size */
|
|
written = pwrite64(out_fd, buf, 1, size - 1);
|
|
if (written < 1)
|
|
ret = -EIO;
|
|
return ret;
|
|
}
|
|
|
|
static int is_ssd(const char *file)
|
|
{
|
|
blkid_probe probe;
|
|
char wholedisk[PATH_MAX];
|
|
char sysfs_path[PATH_MAX];
|
|
dev_t devno;
|
|
int fd;
|
|
char rotational;
|
|
int ret;
|
|
|
|
probe = blkid_new_probe_from_filename(file);
|
|
if (!probe)
|
|
return 0;
|
|
|
|
/* Device number of this disk (possibly a partition) */
|
|
devno = blkid_probe_get_devno(probe);
|
|
if (!devno) {
|
|
blkid_free_probe(probe);
|
|
return 0;
|
|
}
|
|
|
|
/* Get whole disk name (not full path) for this devno */
|
|
ret = blkid_devno_to_wholedisk(devno,
|
|
wholedisk, sizeof(wholedisk), NULL);
|
|
if (ret) {
|
|
blkid_free_probe(probe);
|
|
return 0;
|
|
}
|
|
|
|
snprintf(sysfs_path, PATH_MAX, "/sys/block/%s/queue/rotational",
|
|
wholedisk);
|
|
|
|
blkid_free_probe(probe);
|
|
|
|
fd = open(sysfs_path, O_RDONLY);
|
|
if (fd < 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (read(fd, &rotational, 1) < 1) {
|
|
close(fd);
|
|
return 0;
|
|
}
|
|
close(fd);
|
|
|
|
return rotational == '0';
|
|
}
|
|
|
|
static int _cmp_device_by_id(void *priv, struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
return list_entry(a, struct btrfs_device, dev_list)->devid -
|
|
list_entry(b, struct btrfs_device, dev_list)->devid;
|
|
}
|
|
|
|
static void list_all_devices(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
struct btrfs_device *device;
|
|
int number_of_devices = 0;
|
|
u64 total_block_count = 0;
|
|
|
|
fs_devices = root->fs_info->fs_devices;
|
|
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list)
|
|
number_of_devices++;
|
|
|
|
list_sort(NULL, &fs_devices->devices, _cmp_device_by_id);
|
|
|
|
printf("Number of devices: %d\n", number_of_devices);
|
|
/* printf("Total devices size: %10s\n", */
|
|
/* pretty_size(total_block_count)); */
|
|
printf("Devices:\n");
|
|
printf(" ID SIZE PATH\n");
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
printf(" %3llu %10s %s\n",
|
|
device->devid,
|
|
pretty_size(device->total_bytes),
|
|
device->name);
|
|
total_block_count += device->total_bytes;
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
static int is_temp_block_group(struct extent_buffer *node,
|
|
struct btrfs_block_group_item *bgi,
|
|
u64 data_profile, u64 meta_profile,
|
|
u64 sys_profile)
|
|
{
|
|
u64 flag = btrfs_disk_block_group_flags(node, bgi);
|
|
u64 flag_type = flag & BTRFS_BLOCK_GROUP_TYPE_MASK;
|
|
u64 flag_profile = flag & BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
u64 used = btrfs_disk_block_group_used(node, bgi);
|
|
|
|
/*
|
|
* Chunks meets all the following conditions is a temp chunk
|
|
* 1) Empty chunk
|
|
* Temp chunk is always empty.
|
|
*
|
|
* 2) profile mismatch with mkfs profile.
|
|
* Temp chunk is always in SINGLE
|
|
*
|
|
* 3) Size differs with mkfs_alloc
|
|
* Special case for SINGLE/SINGLE btrfs.
|
|
* In that case, temp data chunk and real data chunk are always empty.
|
|
* So we need to use mkfs_alloc to be sure which chunk is the newly
|
|
* allocated.
|
|
*
|
|
* Normally, new chunk size is equal to mkfs one (One chunk)
|
|
* If it has multiple chunks, we just refuse to delete any one.
|
|
* As they are all single, so no real problem will happen.
|
|
* So only use condition 1) and 2) to judge them.
|
|
*/
|
|
if (used != 0)
|
|
return 0;
|
|
switch (flag_type) {
|
|
case BTRFS_BLOCK_GROUP_DATA:
|
|
case BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA:
|
|
data_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
if (flag_profile != data_profile)
|
|
return 1;
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_METADATA:
|
|
meta_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
if (flag_profile != meta_profile)
|
|
return 1;
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_SYSTEM:
|
|
sys_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
|
|
if (flag_profile != sys_profile)
|
|
return 1;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Note: if current is a block group, it will skip it anyway */
|
|
static int next_block_group(struct btrfs_root *root,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_key key;
|
|
int ret = 0;
|
|
|
|
while (1) {
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret)
|
|
goto out;
|
|
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
|
|
if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY)
|
|
goto out;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/* This function will cleanup */
|
|
static int cleanup_temp_chunks(struct btrfs_fs_info *fs_info,
|
|
struct mkfs_allocation *alloc,
|
|
u64 data_profile, u64 meta_profile,
|
|
u64 sys_profile)
|
|
{
|
|
struct btrfs_trans_handle *trans = NULL;
|
|
struct btrfs_block_group_item *bgi;
|
|
struct btrfs_root *root = fs_info->extent_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
struct btrfs_path path;
|
|
int ret = 0;
|
|
|
|
btrfs_init_path(&path);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(IS_ERR(trans));
|
|
|
|
key.objectid = 0;
|
|
key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
|
|
key.offset = 0;
|
|
|
|
while (1) {
|
|
/*
|
|
* as the rest of the loop may modify the tree, we need to
|
|
* start a new search each time.
|
|
*/
|
|
ret = btrfs_search_slot(trans, root, &key, &path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
/* Don't pollute ret for >0 case */
|
|
if (ret > 0)
|
|
ret = 0;
|
|
|
|
btrfs_item_key_to_cpu(path.nodes[0], &found_key,
|
|
path.slots[0]);
|
|
if (found_key.objectid < key.objectid)
|
|
goto out;
|
|
if (found_key.type != BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
ret = next_block_group(root, &path);
|
|
if (ret < 0)
|
|
goto out;
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
btrfs_item_key_to_cpu(path.nodes[0], &found_key,
|
|
path.slots[0]);
|
|
}
|
|
|
|
bgi = btrfs_item_ptr(path.nodes[0], path.slots[0],
|
|
struct btrfs_block_group_item);
|
|
if (is_temp_block_group(path.nodes[0], bgi,
|
|
data_profile, meta_profile,
|
|
sys_profile)) {
|
|
u64 flags = btrfs_disk_block_group_flags(path.nodes[0],
|
|
bgi);
|
|
|
|
ret = btrfs_free_block_group(trans, fs_info,
|
|
found_key.objectid, found_key.offset);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
|
|
BTRFS_BLOCK_GROUP_DATA)
|
|
alloc->data -= found_key.offset;
|
|
else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
|
|
BTRFS_BLOCK_GROUP_METADATA)
|
|
alloc->metadata -= found_key.offset;
|
|
else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
|
|
BTRFS_BLOCK_GROUP_SYSTEM)
|
|
alloc->system -= found_key.offset;
|
|
else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
|
|
(BTRFS_BLOCK_GROUP_METADATA |
|
|
BTRFS_BLOCK_GROUP_DATA))
|
|
alloc->mixed -= found_key.offset;
|
|
}
|
|
btrfs_release_path(&path);
|
|
key.objectid = found_key.objectid + found_key.offset;
|
|
}
|
|
out:
|
|
if (trans)
|
|
btrfs_commit_transaction(trans, root);
|
|
btrfs_release_path(&path);
|
|
return ret;
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
char *file;
|
|
struct btrfs_root *root;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_trans_handle *trans;
|
|
char *label = NULL;
|
|
u64 block_count = 0;
|
|
u64 dev_block_count = 0;
|
|
u64 alloc_start = 0;
|
|
u64 metadata_profile = 0;
|
|
u64 data_profile = 0;
|
|
u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
|
|
BTRFS_MKFS_DEFAULT_NODE_SIZE);
|
|
u32 sectorsize = 4096;
|
|
u32 stripesize = 4096;
|
|
int zero_end = 1;
|
|
int fd = -1;
|
|
int ret;
|
|
int close_ret;
|
|
int i;
|
|
int mixed = 0;
|
|
int nodesize_forced = 0;
|
|
int data_profile_opt = 0;
|
|
int metadata_profile_opt = 0;
|
|
int discard = 1;
|
|
int ssd = 0;
|
|
int force_overwrite = 0;
|
|
char *source_dir = NULL;
|
|
int source_dir_set = 0;
|
|
u64 num_of_meta_chunks = 0;
|
|
u64 size_of_data = 0;
|
|
u64 source_dir_size = 0;
|
|
u64 min_dev_size;
|
|
int dev_cnt = 0;
|
|
int saved_optind;
|
|
char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = { 0 };
|
|
u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
|
|
struct mkfs_allocation allocation = { 0 };
|
|
struct btrfs_mkfs_config mkfs_cfg;
|
|
|
|
while(1) {
|
|
int c;
|
|
static const struct option long_options[] = {
|
|
{ "alloc-start", required_argument, NULL, 'A'},
|
|
{ "byte-count", required_argument, NULL, 'b' },
|
|
{ "force", no_argument, NULL, 'f' },
|
|
{ "leafsize", required_argument, NULL, 'l' },
|
|
{ "label", required_argument, NULL, 'L'},
|
|
{ "metadata", required_argument, NULL, 'm' },
|
|
{ "mixed", no_argument, NULL, 'M' },
|
|
{ "nodesize", required_argument, NULL, 'n' },
|
|
{ "sectorsize", required_argument, NULL, 's' },
|
|
{ "data", required_argument, NULL, 'd' },
|
|
{ "version", no_argument, NULL, 'V' },
|
|
{ "rootdir", required_argument, NULL, 'r' },
|
|
{ "nodiscard", no_argument, NULL, 'K' },
|
|
{ "features", required_argument, NULL, 'O' },
|
|
{ "uuid", required_argument, NULL, 'U' },
|
|
{ "quiet", 0, NULL, 'q' },
|
|
{ "help", no_argument, NULL, GETOPT_VAL_HELP },
|
|
{ NULL, 0, NULL, 0}
|
|
};
|
|
|
|
c = getopt_long(argc, argv, "A:b:fl:n:s:m:d:L:O:r:U:VMKq",
|
|
long_options, NULL);
|
|
if (c < 0)
|
|
break;
|
|
switch(c) {
|
|
case 'A':
|
|
alloc_start = parse_size(optarg);
|
|
break;
|
|
case 'f':
|
|
force_overwrite = 1;
|
|
break;
|
|
case 'd':
|
|
data_profile = parse_profile(optarg);
|
|
data_profile_opt = 1;
|
|
break;
|
|
case 'l':
|
|
warning("--leafsize is deprecated, use --nodesize");
|
|
/* fall through */
|
|
case 'n':
|
|
nodesize = parse_size(optarg);
|
|
nodesize_forced = 1;
|
|
break;
|
|
case 'L':
|
|
label = parse_label(optarg);
|
|
break;
|
|
case 'm':
|
|
metadata_profile = parse_profile(optarg);
|
|
metadata_profile_opt = 1;
|
|
break;
|
|
case 'M':
|
|
mixed = 1;
|
|
break;
|
|
case 'O': {
|
|
char *orig = strdup(optarg);
|
|
char *tmp = orig;
|
|
|
|
tmp = btrfs_parse_fs_features(tmp, &features);
|
|
if (tmp) {
|
|
error("unrecognized filesystem feature '%s'",
|
|
tmp);
|
|
free(orig);
|
|
goto error;
|
|
}
|
|
free(orig);
|
|
if (features & BTRFS_FEATURE_LIST_ALL) {
|
|
btrfs_list_all_fs_features(0);
|
|
goto success;
|
|
}
|
|
break;
|
|
}
|
|
case 's':
|
|
sectorsize = parse_size(optarg);
|
|
break;
|
|
case 'b':
|
|
block_count = parse_size(optarg);
|
|
zero_end = 0;
|
|
break;
|
|
case 'V':
|
|
printf("mkfs.btrfs, part of %s\n",
|
|
PACKAGE_STRING);
|
|
goto success;
|
|
case 'r':
|
|
source_dir = optarg;
|
|
source_dir_set = 1;
|
|
break;
|
|
case 'U':
|
|
strncpy(fs_uuid, optarg,
|
|
BTRFS_UUID_UNPARSED_SIZE - 1);
|
|
break;
|
|
case 'K':
|
|
discard = 0;
|
|
break;
|
|
case 'q':
|
|
verbose = 0;
|
|
break;
|
|
case GETOPT_VAL_HELP:
|
|
default:
|
|
print_usage(c != GETOPT_VAL_HELP);
|
|
}
|
|
}
|
|
|
|
if (verbose) {
|
|
printf("%s\n", PACKAGE_STRING);
|
|
printf("See %s for more information.\n\n", PACKAGE_URL);
|
|
}
|
|
|
|
sectorsize = max(sectorsize, (u32)sysconf(_SC_PAGESIZE));
|
|
stripesize = sectorsize;
|
|
saved_optind = optind;
|
|
dev_cnt = argc - optind;
|
|
if (dev_cnt == 0)
|
|
print_usage(1);
|
|
|
|
if (source_dir_set && dev_cnt > 1) {
|
|
error("the option -r is limited to a single device");
|
|
goto error;
|
|
}
|
|
|
|
if (*fs_uuid) {
|
|
uuid_t dummy_uuid;
|
|
|
|
if (uuid_parse(fs_uuid, dummy_uuid) != 0) {
|
|
error("could not parse UUID: %s", fs_uuid);
|
|
goto error;
|
|
}
|
|
if (!test_uuid_unique(fs_uuid)) {
|
|
error("non-unique UUID: %s", fs_uuid);
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
while (dev_cnt-- > 0) {
|
|
file = argv[optind++];
|
|
if (is_block_device(file) == 1)
|
|
ret = test_dev_for_mkfs(file, force_overwrite);
|
|
else
|
|
ret = test_status_for_mkfs(file, force_overwrite);
|
|
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
optind = saved_optind;
|
|
dev_cnt = argc - optind;
|
|
|
|
file = argv[optind++];
|
|
ssd = is_ssd(file);
|
|
|
|
/*
|
|
* Set default profiles according to number of added devices.
|
|
* For mixed groups defaults are single/single.
|
|
*/
|
|
if (!mixed) {
|
|
if (!metadata_profile_opt) {
|
|
if (dev_cnt == 1 && ssd && verbose)
|
|
printf("Detected a SSD, turning off metadata "
|
|
"duplication. Mkfs with -m dup if you want to "
|
|
"force metadata duplication.\n");
|
|
|
|
metadata_profile = (dev_cnt > 1) ?
|
|
BTRFS_BLOCK_GROUP_RAID1 : (ssd) ?
|
|
0: BTRFS_BLOCK_GROUP_DUP;
|
|
}
|
|
if (!data_profile_opt) {
|
|
data_profile = (dev_cnt > 1) ?
|
|
BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */
|
|
}
|
|
} else {
|
|
u32 best_nodesize = max_t(u32, sysconf(_SC_PAGESIZE), sectorsize);
|
|
|
|
if (metadata_profile_opt || data_profile_opt) {
|
|
if (metadata_profile != data_profile) {
|
|
error(
|
|
"with mixed block groups data and metadata profiles must be the same");
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (!nodesize_forced)
|
|
nodesize = best_nodesize;
|
|
}
|
|
|
|
/*
|
|
* FS features that can be set by other means than -O
|
|
* just set the bit here
|
|
*/
|
|
if (mixed)
|
|
features |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS;
|
|
|
|
if ((data_profile | metadata_profile) &
|
|
(BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
|
|
features |= BTRFS_FEATURE_INCOMPAT_RAID56;
|
|
}
|
|
|
|
if (btrfs_check_nodesize(nodesize, sectorsize,
|
|
features))
|
|
goto error;
|
|
|
|
if (sectorsize < sizeof(struct btrfs_super_block)) {
|
|
error("sectorsize smaller than superblock: %u < %zu",
|
|
sectorsize, sizeof(struct btrfs_super_block));
|
|
goto error;
|
|
}
|
|
|
|
min_dev_size = btrfs_min_dev_size(nodesize, mixed, metadata_profile,
|
|
data_profile);
|
|
/* Check device/block_count after the nodesize is determined */
|
|
if (block_count && block_count < min_dev_size) {
|
|
error("size %llu is too small to make a usable filesystem",
|
|
block_count);
|
|
error("minimum size for btrfs filesystem is %llu",
|
|
min_dev_size);
|
|
goto error;
|
|
}
|
|
for (i = saved_optind; i < saved_optind + dev_cnt; i++) {
|
|
char *path;
|
|
|
|
path = argv[i];
|
|
ret = test_minimum_size(path, min_dev_size);
|
|
if (ret < 0) {
|
|
error("failed to check size for %s: %s",
|
|
path, strerror(-ret));
|
|
goto error;
|
|
}
|
|
if (ret > 0) {
|
|
error("'%s' is too small to make a usable filesystem",
|
|
path);
|
|
error("minimum size for each btrfs device is %llu",
|
|
min_dev_size);
|
|
goto error;
|
|
}
|
|
}
|
|
ret = test_num_disk_vs_raid(metadata_profile, data_profile,
|
|
dev_cnt, mixed, ssd);
|
|
if (ret)
|
|
goto error;
|
|
|
|
dev_cnt--;
|
|
|
|
if (!source_dir_set) {
|
|
/*
|
|
* open without O_EXCL so that the problem should not
|
|
* occur by the following processing.
|
|
* (btrfs_register_one_device() fails if O_EXCL is on)
|
|
*/
|
|
fd = open(file, O_RDWR);
|
|
if (fd < 0) {
|
|
error("unable to open %s: %s", file, strerror(errno));
|
|
goto error;
|
|
}
|
|
ret = btrfs_prepare_device(fd, file, &dev_block_count,
|
|
block_count,
|
|
(zero_end ? PREP_DEVICE_ZERO_END : 0) |
|
|
(discard ? PREP_DEVICE_DISCARD : 0) |
|
|
(verbose ? PREP_DEVICE_VERBOSE : 0));
|
|
if (ret) {
|
|
goto error;
|
|
}
|
|
if (block_count && block_count > dev_block_count) {
|
|
error("%s is smaller than requested size, expected %llu, found %llu",
|
|
file,
|
|
(unsigned long long)block_count,
|
|
(unsigned long long)dev_block_count);
|
|
goto error;
|
|
}
|
|
} else {
|
|
fd = open(file, O_CREAT | O_RDWR,
|
|
S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH);
|
|
if (fd < 0) {
|
|
error("unable to open %s: %s", file, strerror(errno));
|
|
goto error;
|
|
}
|
|
|
|
source_dir_size = size_sourcedir(source_dir, sectorsize,
|
|
&num_of_meta_chunks, &size_of_data);
|
|
if(block_count < source_dir_size)
|
|
block_count = source_dir_size;
|
|
ret = zero_output_file(fd, block_count);
|
|
if (ret) {
|
|
error("unable to zero the output file");
|
|
goto error;
|
|
}
|
|
/* our "device" is the new image file */
|
|
dev_block_count = block_count;
|
|
}
|
|
|
|
/* To create the first block group and chunk 0 in make_btrfs */
|
|
if (dev_block_count < BTRFS_MKFS_SYSTEM_GROUP_SIZE) {
|
|
error("device is too small to make filesystem, must be at least %llu",
|
|
(unsigned long long)BTRFS_MKFS_SYSTEM_GROUP_SIZE);
|
|
goto error;
|
|
}
|
|
|
|
if (group_profile_max_safe_loss(metadata_profile) <
|
|
group_profile_max_safe_loss(data_profile)){
|
|
warning("metadata has lower redundancy than data!\n");
|
|
}
|
|
|
|
mkfs_cfg.label = label;
|
|
memcpy(mkfs_cfg.fs_uuid, fs_uuid, sizeof(mkfs_cfg.fs_uuid));
|
|
mkfs_cfg.num_bytes = dev_block_count;
|
|
mkfs_cfg.nodesize = nodesize;
|
|
mkfs_cfg.sectorsize = sectorsize;
|
|
mkfs_cfg.stripesize = stripesize;
|
|
mkfs_cfg.features = features;
|
|
|
|
ret = make_btrfs(fd, &mkfs_cfg);
|
|
if (ret) {
|
|
error("error during mkfs: %s", strerror(-ret));
|
|
goto error;
|
|
}
|
|
|
|
fs_info = open_ctree_fs_info(file, 0, 0, 0,
|
|
OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
|
|
if (!fs_info) {
|
|
error("open ctree failed");
|
|
goto error;
|
|
}
|
|
close(fd);
|
|
fd = -1;
|
|
root = fs_info->fs_root;
|
|
fs_info->alloc_start = alloc_start;
|
|
|
|
ret = create_metadata_block_groups(root, mixed, &allocation);
|
|
if (ret) {
|
|
error("failed to create default block groups: %d", ret);
|
|
goto error;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
error("failed to start transaction");
|
|
goto error;
|
|
}
|
|
|
|
ret = create_data_block_groups(trans, root, mixed, &allocation);
|
|
if (ret) {
|
|
error("failed to create default data block groups: %d", ret);
|
|
goto error;
|
|
}
|
|
|
|
ret = make_root_dir(trans, root);
|
|
if (ret) {
|
|
error("failed to setup the root directory: %d", ret);
|
|
goto error;
|
|
}
|
|
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret) {
|
|
error("unable to commit transaction: %d", ret);
|
|
goto out;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
error("failed to start transaction");
|
|
goto error;
|
|
}
|
|
|
|
if (dev_cnt == 0)
|
|
goto raid_groups;
|
|
|
|
while (dev_cnt-- > 0) {
|
|
file = argv[optind++];
|
|
|
|
/*
|
|
* open without O_EXCL so that the problem should not
|
|
* occur by the following processing.
|
|
* (btrfs_register_one_device() fails if O_EXCL is on)
|
|
*/
|
|
fd = open(file, O_RDWR);
|
|
if (fd < 0) {
|
|
error("unable to open %s: %s", file, strerror(errno));
|
|
goto error;
|
|
}
|
|
ret = btrfs_device_already_in_root(root, fd,
|
|
BTRFS_SUPER_INFO_OFFSET);
|
|
if (ret) {
|
|
error("skipping duplicate device %s in the filesystem",
|
|
file);
|
|
close(fd);
|
|
continue;
|
|
}
|
|
ret = btrfs_prepare_device(fd, file, &dev_block_count,
|
|
block_count,
|
|
(verbose ? PREP_DEVICE_VERBOSE : 0) |
|
|
(zero_end ? PREP_DEVICE_ZERO_END : 0) |
|
|
(discard ? PREP_DEVICE_DISCARD : 0));
|
|
if (ret) {
|
|
goto error;
|
|
}
|
|
|
|
ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count,
|
|
sectorsize, sectorsize, sectorsize);
|
|
if (ret) {
|
|
error("unable to add %s to filesystem: %d", file, ret);
|
|
goto out;
|
|
}
|
|
if (verbose >= 2) {
|
|
struct btrfs_device *device;
|
|
|
|
device = container_of(fs_info->fs_devices->devices.next,
|
|
struct btrfs_device, dev_list);
|
|
printf("adding device %s id %llu\n", file,
|
|
(unsigned long long)device->devid);
|
|
}
|
|
}
|
|
|
|
raid_groups:
|
|
if (!source_dir_set) {
|
|
ret = create_raid_groups(trans, root, data_profile,
|
|
metadata_profile, mixed, &allocation);
|
|
if (ret) {
|
|
error("unable to create raid groups: %d", ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = create_tree(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID);
|
|
if (ret) {
|
|
error("unable to create data reloc tree: %d", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret) {
|
|
error("unable to commit transaction: %d", ret);
|
|
goto out;
|
|
}
|
|
|
|
if (source_dir_set) {
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(IS_ERR(trans));
|
|
ret = create_chunks(trans, root,
|
|
num_of_meta_chunks, size_of_data,
|
|
&allocation);
|
|
if (ret) {
|
|
error("unable to create chunks: %d", ret);
|
|
goto out;
|
|
}
|
|
ret = btrfs_commit_transaction(trans, root);
|
|
if (ret) {
|
|
error("transaction commit failed: %d", ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = make_image(source_dir, root);
|
|
if (ret) {
|
|
error("error wihle filling filesystem: %d", ret);
|
|
goto out;
|
|
}
|
|
}
|
|
ret = cleanup_temp_chunks(fs_info, &allocation, data_profile,
|
|
metadata_profile, metadata_profile);
|
|
if (ret < 0) {
|
|
error("failed to cleanup temporary chunks: %d", ret);
|
|
goto out;
|
|
}
|
|
|
|
if (verbose) {
|
|
char features_buf[64];
|
|
|
|
printf("Label: %s\n", label);
|
|
printf("UUID: %s\n", mkfs_cfg.fs_uuid);
|
|
printf("Node size: %u\n", nodesize);
|
|
printf("Sector size: %u\n", sectorsize);
|
|
printf("Filesystem size: %s\n",
|
|
pretty_size(btrfs_super_total_bytes(fs_info->super_copy)));
|
|
printf("Block group profiles:\n");
|
|
if (allocation.data)
|
|
printf(" Data: %-8s %16s\n",
|
|
btrfs_group_profile_str(data_profile),
|
|
pretty_size(allocation.data));
|
|
if (allocation.metadata)
|
|
printf(" Metadata: %-8s %16s\n",
|
|
btrfs_group_profile_str(metadata_profile),
|
|
pretty_size(allocation.metadata));
|
|
if (allocation.mixed)
|
|
printf(" Data+Metadata: %-8s %16s\n",
|
|
btrfs_group_profile_str(data_profile),
|
|
pretty_size(allocation.mixed));
|
|
printf(" System: %-8s %16s\n",
|
|
btrfs_group_profile_str(metadata_profile),
|
|
pretty_size(allocation.system));
|
|
printf("SSD detected: %s\n", ssd ? "yes" : "no");
|
|
btrfs_parse_features_to_string(features_buf, features);
|
|
printf("Incompat features: %s", features_buf);
|
|
printf("\n");
|
|
|
|
list_all_devices(root);
|
|
}
|
|
|
|
/*
|
|
* The filesystem is now fully set up, commit the remaining changes and
|
|
* fix the signature as the last step before closing the devices.
|
|
*/
|
|
fs_info->finalize_on_close = 1;
|
|
out:
|
|
close_ret = close_ctree(root);
|
|
|
|
if (!close_ret) {
|
|
optind = saved_optind;
|
|
dev_cnt = argc - optind;
|
|
while (dev_cnt-- > 0) {
|
|
file = argv[optind++];
|
|
if (is_block_device(file) == 1)
|
|
btrfs_register_one_device(file);
|
|
}
|
|
}
|
|
|
|
btrfs_close_all_devices();
|
|
free(label);
|
|
|
|
return !!ret;
|
|
error:
|
|
if (fd > 0)
|
|
close(fd);
|
|
|
|
free(label);
|
|
exit(1);
|
|
success:
|
|
exit(0);
|
|
}
|