mirror of
https://github.com/kdave/btrfs-progs
synced 2024-12-25 07:32:22 +00:00
662d1dddca
Run fstests: btrfs/012 will fail with message: unable to do rollback It is because the rollback function checks sequentially each piece of space to map to a certain block group. If some piece doesn't, rollback refuses to continue. After kernel commit: commit 47ab2a6c689913db23ccae38349714edf8365e0a Btrfs: remove empty block groups automatically Empty block groups are removed, so there are possible gaps: |--block group 1--| |--block group 2--| ^ | gap So the piece of space of the gap belongs to a removed empty block group, and rollback should detect this case, and feel free to continue. Signed-off-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.cz>
2011 lines
52 KiB
C
2011 lines
52 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
#define _XOPEN_SOURCE 600
|
|
#define __USE_XOPEN2K
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <uuid/uuid.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "transaction.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "math.h"
|
|
|
|
struct stripe {
|
|
struct btrfs_device *dev;
|
|
u64 physical;
|
|
};
|
|
|
|
static inline int nr_parity_stripes(struct map_lookup *map)
|
|
{
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
|
return 1;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
return 2;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline int nr_data_stripes(struct map_lookup *map)
|
|
{
|
|
return map->num_stripes - nr_parity_stripes(map);
|
|
}
|
|
|
|
#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
|
|
|
|
static LIST_HEAD(fs_uuids);
|
|
|
|
static struct btrfs_device *__find_device(struct list_head *head, u64 devid,
|
|
u8 *uuid)
|
|
{
|
|
struct btrfs_device *dev;
|
|
struct list_head *cur;
|
|
|
|
list_for_each(cur, head) {
|
|
dev = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (dev->devid == devid &&
|
|
!memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE)) {
|
|
return dev;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct btrfs_fs_devices *find_fsid(u8 *fsid)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
|
|
list_for_each(cur, &fs_uuids) {
|
|
fs_devices = list_entry(cur, struct btrfs_fs_devices, list);
|
|
if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
|
|
return fs_devices;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int device_list_add(const char *path,
|
|
struct btrfs_super_block *disk_super,
|
|
u64 devid, struct btrfs_fs_devices **fs_devices_ret)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices;
|
|
u64 found_transid = btrfs_super_generation(disk_super);
|
|
|
|
fs_devices = find_fsid(disk_super->fsid);
|
|
if (!fs_devices) {
|
|
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
|
|
if (!fs_devices)
|
|
return -ENOMEM;
|
|
INIT_LIST_HEAD(&fs_devices->devices);
|
|
list_add(&fs_devices->list, &fs_uuids);
|
|
memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
|
|
fs_devices->latest_devid = devid;
|
|
fs_devices->latest_trans = found_transid;
|
|
fs_devices->lowest_devid = (u64)-1;
|
|
device = NULL;
|
|
} else {
|
|
device = __find_device(&fs_devices->devices, devid,
|
|
disk_super->dev_item.uuid);
|
|
}
|
|
if (!device) {
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
if (!device) {
|
|
/* we can safely leave the fs_devices entry around */
|
|
return -ENOMEM;
|
|
}
|
|
device->fd = -1;
|
|
device->devid = devid;
|
|
device->generation = found_transid;
|
|
memcpy(device->uuid, disk_super->dev_item.uuid,
|
|
BTRFS_UUID_SIZE);
|
|
device->name = kstrdup(path, GFP_NOFS);
|
|
if (!device->name) {
|
|
kfree(device);
|
|
return -ENOMEM;
|
|
}
|
|
device->label = kstrdup(disk_super->label, GFP_NOFS);
|
|
if (!device->label) {
|
|
kfree(device->name);
|
|
kfree(device);
|
|
return -ENOMEM;
|
|
}
|
|
device->total_devs = btrfs_super_num_devices(disk_super);
|
|
device->super_bytes_used = btrfs_super_bytes_used(disk_super);
|
|
device->total_bytes =
|
|
btrfs_stack_device_total_bytes(&disk_super->dev_item);
|
|
device->bytes_used =
|
|
btrfs_stack_device_bytes_used(&disk_super->dev_item);
|
|
list_add(&device->dev_list, &fs_devices->devices);
|
|
device->fs_devices = fs_devices;
|
|
} else if (!device->name || strcmp(device->name, path)) {
|
|
char *name = strdup(path);
|
|
if (!name)
|
|
return -ENOMEM;
|
|
kfree(device->name);
|
|
device->name = name;
|
|
}
|
|
|
|
|
|
if (found_transid > fs_devices->latest_trans) {
|
|
fs_devices->latest_devid = devid;
|
|
fs_devices->latest_trans = found_transid;
|
|
}
|
|
if (fs_devices->lowest_devid > devid) {
|
|
fs_devices->lowest_devid = devid;
|
|
}
|
|
*fs_devices_ret = fs_devices;
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
|
|
{
|
|
struct btrfs_fs_devices *seed_devices;
|
|
struct btrfs_device *device;
|
|
|
|
again:
|
|
while (!list_empty(&fs_devices->devices)) {
|
|
device = list_entry(fs_devices->devices.next,
|
|
struct btrfs_device, dev_list);
|
|
if (device->fd != -1) {
|
|
fsync(device->fd);
|
|
if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
|
|
fprintf(stderr, "Warning, could not drop caches\n");
|
|
close(device->fd);
|
|
device->fd = -1;
|
|
}
|
|
device->writeable = 0;
|
|
list_del(&device->dev_list);
|
|
/* free the memory */
|
|
free(device->name);
|
|
free(device->label);
|
|
free(device);
|
|
}
|
|
|
|
seed_devices = fs_devices->seed;
|
|
fs_devices->seed = NULL;
|
|
if (seed_devices) {
|
|
struct btrfs_fs_devices *orig;
|
|
|
|
orig = fs_devices;
|
|
fs_devices = seed_devices;
|
|
list_del(&orig->list);
|
|
free(orig);
|
|
goto again;
|
|
} else {
|
|
list_del(&fs_devices->list);
|
|
free(fs_devices);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, int flags)
|
|
{
|
|
int fd;
|
|
struct list_head *head = &fs_devices->devices;
|
|
struct list_head *cur;
|
|
struct btrfs_device *device;
|
|
int ret;
|
|
|
|
list_for_each(cur, head) {
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
if (!device->name) {
|
|
printk("no name for device %llu, skip it now\n", device->devid);
|
|
continue;
|
|
}
|
|
|
|
fd = open(device->name, flags);
|
|
if (fd < 0) {
|
|
ret = -errno;
|
|
goto fail;
|
|
}
|
|
|
|
if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
|
|
fprintf(stderr, "Warning, could not drop caches\n");
|
|
|
|
if (device->devid == fs_devices->latest_devid)
|
|
fs_devices->latest_bdev = fd;
|
|
if (device->devid == fs_devices->lowest_devid)
|
|
fs_devices->lowest_bdev = fd;
|
|
device->fd = fd;
|
|
if (flags & O_RDWR)
|
|
device->writeable = 1;
|
|
}
|
|
return 0;
|
|
fail:
|
|
btrfs_close_devices(fs_devices);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_scan_one_device(int fd, const char *path,
|
|
struct btrfs_fs_devices **fs_devices_ret,
|
|
u64 *total_devs, u64 super_offset, int super_recover)
|
|
{
|
|
struct btrfs_super_block *disk_super;
|
|
char *buf;
|
|
int ret;
|
|
u64 devid;
|
|
|
|
buf = malloc(4096);
|
|
if (!buf) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
disk_super = (struct btrfs_super_block *)buf;
|
|
ret = btrfs_read_dev_super(fd, disk_super, super_offset, super_recover);
|
|
if (ret < 0) {
|
|
ret = -EIO;
|
|
goto error_brelse;
|
|
}
|
|
devid = btrfs_stack_device_id(&disk_super->dev_item);
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_METADUMP)
|
|
*total_devs = 1;
|
|
else
|
|
*total_devs = btrfs_super_num_devices(disk_super);
|
|
|
|
ret = device_list_add(path, disk_super, devid, fs_devices_ret);
|
|
|
|
error_brelse:
|
|
free(buf);
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* this uses a pretty simple search, the expectation is that it is
|
|
* called very infrequently and that a given device has a small number
|
|
* of extents
|
|
*/
|
|
static int find_free_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
struct btrfs_path *path,
|
|
u64 num_bytes, u64 *start)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *dev_extent = NULL;
|
|
u64 hole_size = 0;
|
|
u64 last_byte = 0;
|
|
u64 search_start = root->fs_info->alloc_start;
|
|
u64 search_end = device->total_bytes;
|
|
int ret;
|
|
int slot = 0;
|
|
int start_found;
|
|
struct extent_buffer *l;
|
|
|
|
start_found = 0;
|
|
path->reada = 2;
|
|
|
|
/* FIXME use last free of some kind */
|
|
|
|
/* we don't want to overwrite the superblock on the drive,
|
|
* so we make sure to start at an offset of at least 1MB
|
|
*/
|
|
search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
|
|
|
|
if (search_start >= search_end) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = search_start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
ret = btrfs_previous_item(root, path, 0, key.type);
|
|
if (ret < 0)
|
|
goto error;
|
|
l = path->nodes[0];
|
|
btrfs_item_key_to_cpu(l, &key, path->slots[0]);
|
|
while (1) {
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(l)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto error;
|
|
no_more_items:
|
|
if (!start_found) {
|
|
if (search_start >= search_end) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
*start = search_start;
|
|
start_found = 1;
|
|
goto check_pending;
|
|
}
|
|
*start = last_byte > search_start ?
|
|
last_byte : search_start;
|
|
if (search_end <= *start) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
goto check_pending;
|
|
}
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
if (key.objectid < device->devid)
|
|
goto next;
|
|
|
|
if (key.objectid > device->devid)
|
|
goto no_more_items;
|
|
|
|
if (key.offset >= search_start && key.offset > last_byte &&
|
|
start_found) {
|
|
if (last_byte < search_start)
|
|
last_byte = search_start;
|
|
hole_size = key.offset - last_byte;
|
|
if (key.offset > last_byte &&
|
|
hole_size >= num_bytes) {
|
|
*start = last_byte;
|
|
goto check_pending;
|
|
}
|
|
}
|
|
if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) {
|
|
goto next;
|
|
}
|
|
|
|
start_found = 1;
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
|
|
next:
|
|
path->slots[0]++;
|
|
cond_resched();
|
|
}
|
|
check_pending:
|
|
/* we have to make sure we didn't find an extent that has already
|
|
* been allocated by the map tree or the original allocation
|
|
*/
|
|
btrfs_release_path(path);
|
|
BUG_ON(*start < search_start);
|
|
|
|
if (*start + num_bytes > search_end) {
|
|
ret = -ENOSPC;
|
|
goto error;
|
|
}
|
|
/* check for pending inserts here */
|
|
return 0;
|
|
|
|
error:
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
u64 chunk_tree, u64 chunk_objectid,
|
|
u64 chunk_offset,
|
|
u64 num_bytes, u64 *start)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_dev_extent *extent;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = find_free_dev_extent(trans, device, path, num_bytes, start);
|
|
if (ret) {
|
|
goto err;
|
|
}
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = *start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*extent));
|
|
BUG_ON(ret);
|
|
|
|
leaf = path->nodes[0];
|
|
extent = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_dev_extent);
|
|
btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
|
|
btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
|
|
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
|
|
|
|
write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
|
|
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
err:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int find_next_chunk(struct btrfs_root *root, u64 objectid, u64 *offset)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_key found_key;
|
|
|
|
path = btrfs_alloc_path();
|
|
BUG_ON(!path);
|
|
|
|
key.objectid = objectid;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
|
|
if (ret) {
|
|
*offset = 0;
|
|
} else {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
if (found_key.objectid != objectid)
|
|
*offset = 0;
|
|
else {
|
|
chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
|
|
struct btrfs_chunk);
|
|
*offset = found_key.offset +
|
|
btrfs_chunk_length(path->nodes[0], chunk);
|
|
}
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
|
|
u64 *objectid)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
BUG_ON(ret == 0);
|
|
|
|
ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
|
|
BTRFS_DEV_ITEM_KEY);
|
|
if (ret) {
|
|
*objectid = 1;
|
|
} else {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
*objectid = found_key.offset + 1;
|
|
}
|
|
ret = 0;
|
|
error:
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* the device information is stored in the chunk root
|
|
* the btrfs_device struct should be fully filled in
|
|
*/
|
|
int btrfs_add_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
unsigned long ptr;
|
|
u64 free_devid = 0;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = find_next_devid(root, path, &free_devid);
|
|
if (ret)
|
|
goto out;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = free_devid;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
sizeof(*dev_item));
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
device->devid = free_devid;
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_generation(leaf, dev_item, 0);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
|
|
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
|
|
btrfs_set_device_group(leaf, dev_item, 0);
|
|
btrfs_set_device_seek_speed(leaf, dev_item, 0);
|
|
btrfs_set_device_bandwidth(leaf, dev_item, 0);
|
|
btrfs_set_device_start_offset(leaf, dev_item, 0);
|
|
|
|
ptr = (unsigned long)btrfs_device_uuid(dev_item);
|
|
write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
ptr = (unsigned long)btrfs_device_fsid(dev_item);
|
|
write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
ret = 0;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_update_device(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
|
|
root = device->dev_root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.type = BTRFS_DEV_ITEM_KEY;
|
|
key.offset = device->devid;
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
|
|
|
|
btrfs_set_device_id(leaf, dev_item, device->devid);
|
|
btrfs_set_device_type(leaf, dev_item, device->type);
|
|
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
|
|
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
|
|
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
|
|
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
|
|
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_key *key,
|
|
struct btrfs_chunk *chunk, int item_size)
|
|
{
|
|
struct btrfs_super_block *super_copy = root->fs_info->super_copy;
|
|
struct btrfs_disk_key disk_key;
|
|
u32 array_size;
|
|
u8 *ptr;
|
|
|
|
array_size = btrfs_super_sys_array_size(super_copy);
|
|
if (array_size + item_size + sizeof(disk_key)
|
|
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
|
|
return -EFBIG;
|
|
|
|
ptr = super_copy->sys_chunk_array + array_size;
|
|
btrfs_cpu_key_to_disk(&disk_key, key);
|
|
memcpy(ptr, &disk_key, sizeof(disk_key));
|
|
ptr += sizeof(disk_key);
|
|
memcpy(ptr, chunk, item_size);
|
|
item_size += sizeof(disk_key);
|
|
btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
|
|
return 0;
|
|
}
|
|
|
|
static u64 chunk_bytes_by_type(u64 type, u64 calc_size, int num_stripes,
|
|
int sub_stripes)
|
|
{
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
|
|
return calc_size;
|
|
else if (type & BTRFS_BLOCK_GROUP_RAID10)
|
|
return calc_size * (num_stripes / sub_stripes);
|
|
else if (type & BTRFS_BLOCK_GROUP_RAID5)
|
|
return calc_size * (num_stripes - 1);
|
|
else if (type & BTRFS_BLOCK_GROUP_RAID6)
|
|
return calc_size * (num_stripes - 2);
|
|
else
|
|
return calc_size * num_stripes;
|
|
}
|
|
|
|
|
|
static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
|
|
{
|
|
/* TODO, add a way to store the preferred stripe size */
|
|
return BTRFS_STRIPE_LEN;
|
|
}
|
|
|
|
/*
|
|
* btrfs_device_avail_bytes - count bytes available for alloc_chunk
|
|
*
|
|
* It is not equal to "device->total_bytes - device->bytes_used".
|
|
* We do not allocate any chunk in 1M at beginning of device, and not
|
|
* allowed to allocate any chunk before alloc_start if it is specified.
|
|
* So search holes from max(1M, alloc_start) to device->total_bytes.
|
|
*/
|
|
static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
|
|
struct btrfs_device *device,
|
|
u64 *avail_bytes)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *root = device->dev_root;
|
|
struct btrfs_key key;
|
|
struct btrfs_dev_extent *dev_extent = NULL;
|
|
struct extent_buffer *l;
|
|
u64 search_start = root->fs_info->alloc_start;
|
|
u64 search_end = device->total_bytes;
|
|
u64 extent_end = 0;
|
|
u64 free_bytes = 0;
|
|
int ret;
|
|
int slot = 0;
|
|
|
|
search_start = max(BTRFS_BLOCK_RESERVED_1M_FOR_SUPER, search_start);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = device->devid;
|
|
key.offset = root->fs_info->alloc_start;
|
|
key.type = BTRFS_DEV_EXTENT_KEY;
|
|
|
|
path->reada = 2;
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
ret = btrfs_previous_item(root, path, 0, key.type);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
while (1) {
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(l)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto error;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(l, &key, slot);
|
|
|
|
if (key.objectid < device->devid)
|
|
goto next;
|
|
if (key.objectid > device->devid)
|
|
break;
|
|
if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
|
|
goto next;
|
|
if (key.offset > search_end)
|
|
break;
|
|
if (key.offset > search_start)
|
|
free_bytes += key.offset - search_start;
|
|
|
|
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
|
|
extent_end = key.offset + btrfs_dev_extent_length(l,
|
|
dev_extent);
|
|
if (extent_end > search_start)
|
|
search_start = extent_end;
|
|
if (search_start > search_end)
|
|
break;
|
|
next:
|
|
path->slots[0]++;
|
|
cond_resched();
|
|
}
|
|
|
|
if (search_start < search_end)
|
|
free_bytes += search_end - search_start;
|
|
|
|
*avail_bytes = free_bytes;
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
#define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \
|
|
- sizeof(struct btrfs_item) \
|
|
- sizeof(struct btrfs_chunk)) \
|
|
/ sizeof(struct btrfs_stripe) + 1)
|
|
|
|
#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
|
|
- 2 * sizeof(struct btrfs_disk_key) \
|
|
- 2 * sizeof(struct btrfs_chunk)) \
|
|
/ sizeof(struct btrfs_stripe) + 1)
|
|
|
|
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 *start,
|
|
u64 *num_bytes, u64 type)
|
|
{
|
|
u64 dev_offset;
|
|
struct btrfs_fs_info *info = extent_root->fs_info;
|
|
struct btrfs_root *chunk_root = info->chunk_root;
|
|
struct btrfs_stripe *stripes;
|
|
struct btrfs_device *device = NULL;
|
|
struct btrfs_chunk *chunk;
|
|
struct list_head private_devs;
|
|
struct list_head *dev_list = &info->fs_devices->devices;
|
|
struct list_head *cur;
|
|
struct map_lookup *map;
|
|
int min_stripe_size = 1 * 1024 * 1024;
|
|
u64 calc_size = 8 * 1024 * 1024;
|
|
u64 min_free;
|
|
u64 max_chunk_size = 4 * calc_size;
|
|
u64 avail = 0;
|
|
u64 max_avail = 0;
|
|
u64 percent_max;
|
|
int num_stripes = 1;
|
|
int max_stripes = 0;
|
|
int min_stripes = 1;
|
|
int sub_stripes = 0;
|
|
int looped = 0;
|
|
int ret;
|
|
int index;
|
|
int stripe_len = BTRFS_STRIPE_LEN;
|
|
struct btrfs_key key;
|
|
u64 offset;
|
|
|
|
if (list_empty(dev_list)) {
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
calc_size = 8 * 1024 * 1024;
|
|
max_chunk_size = calc_size * 2;
|
|
min_stripe_size = 1 * 1024 * 1024;
|
|
max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
|
|
} else if (type & BTRFS_BLOCK_GROUP_DATA) {
|
|
calc_size = 1024 * 1024 * 1024;
|
|
max_chunk_size = 10 * calc_size;
|
|
min_stripe_size = 64 * 1024 * 1024;
|
|
max_stripes = BTRFS_MAX_DEVS(chunk_root);
|
|
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
|
|
calc_size = 1024 * 1024 * 1024;
|
|
max_chunk_size = 4 * calc_size;
|
|
min_stripe_size = 32 * 1024 * 1024;
|
|
max_stripes = BTRFS_MAX_DEVS(chunk_root);
|
|
}
|
|
}
|
|
if (type & BTRFS_BLOCK_GROUP_RAID1) {
|
|
num_stripes = min_t(u64, 2,
|
|
btrfs_super_num_devices(info->super_copy));
|
|
if (num_stripes < 2)
|
|
return -ENOSPC;
|
|
min_stripes = 2;
|
|
}
|
|
if (type & BTRFS_BLOCK_GROUP_DUP) {
|
|
num_stripes = 2;
|
|
min_stripes = 2;
|
|
}
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
|
|
num_stripes = btrfs_super_num_devices(info->super_copy);
|
|
if (num_stripes > max_stripes)
|
|
num_stripes = max_stripes;
|
|
min_stripes = 2;
|
|
}
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
|
|
num_stripes = btrfs_super_num_devices(info->super_copy);
|
|
if (num_stripes > max_stripes)
|
|
num_stripes = max_stripes;
|
|
if (num_stripes < 4)
|
|
return -ENOSPC;
|
|
num_stripes &= ~(u32)1;
|
|
sub_stripes = 2;
|
|
min_stripes = 4;
|
|
}
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID5)) {
|
|
num_stripes = btrfs_super_num_devices(info->super_copy);
|
|
if (num_stripes > max_stripes)
|
|
num_stripes = max_stripes;
|
|
if (num_stripes < 2)
|
|
return -ENOSPC;
|
|
min_stripes = 2;
|
|
stripe_len = find_raid56_stripe_len(num_stripes - 1,
|
|
btrfs_super_stripesize(info->super_copy));
|
|
}
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID6)) {
|
|
num_stripes = btrfs_super_num_devices(info->super_copy);
|
|
if (num_stripes > max_stripes)
|
|
num_stripes = max_stripes;
|
|
if (num_stripes < 3)
|
|
return -ENOSPC;
|
|
min_stripes = 3;
|
|
stripe_len = find_raid56_stripe_len(num_stripes - 2,
|
|
btrfs_super_stripesize(info->super_copy));
|
|
}
|
|
|
|
/* we don't want a chunk larger than 10% of the FS */
|
|
percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
|
|
max_chunk_size = min(percent_max, max_chunk_size);
|
|
|
|
again:
|
|
if (chunk_bytes_by_type(type, calc_size, num_stripes, sub_stripes) >
|
|
max_chunk_size) {
|
|
calc_size = max_chunk_size;
|
|
calc_size /= num_stripes;
|
|
calc_size /= stripe_len;
|
|
calc_size *= stripe_len;
|
|
}
|
|
/* we don't want tiny stripes */
|
|
calc_size = max_t(u64, calc_size, min_stripe_size);
|
|
|
|
calc_size /= stripe_len;
|
|
calc_size *= stripe_len;
|
|
INIT_LIST_HEAD(&private_devs);
|
|
cur = dev_list->next;
|
|
index = 0;
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_DUP)
|
|
min_free = calc_size * 2;
|
|
else
|
|
min_free = calc_size;
|
|
|
|
/* build a private list of devices we will allocate from */
|
|
while(index < num_stripes) {
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
ret = btrfs_device_avail_bytes(trans, device, &avail);
|
|
if (ret)
|
|
return ret;
|
|
cur = cur->next;
|
|
if (avail >= min_free) {
|
|
list_move_tail(&device->dev_list, &private_devs);
|
|
index++;
|
|
if (type & BTRFS_BLOCK_GROUP_DUP)
|
|
index++;
|
|
} else if (avail > max_avail)
|
|
max_avail = avail;
|
|
if (cur == dev_list)
|
|
break;
|
|
}
|
|
if (index < num_stripes) {
|
|
list_splice(&private_devs, dev_list);
|
|
if (index >= min_stripes) {
|
|
num_stripes = index;
|
|
if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
|
|
num_stripes /= sub_stripes;
|
|
num_stripes *= sub_stripes;
|
|
}
|
|
looped = 1;
|
|
goto again;
|
|
}
|
|
if (!looped && max_avail > 0) {
|
|
looped = 1;
|
|
calc_size = max_avail;
|
|
goto again;
|
|
}
|
|
return -ENOSPC;
|
|
}
|
|
ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
&offset);
|
|
if (ret)
|
|
return ret;
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
key.offset = offset;
|
|
|
|
chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
|
|
if (!chunk)
|
|
return -ENOMEM;
|
|
|
|
map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map) {
|
|
kfree(chunk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
stripes = &chunk->stripe;
|
|
*num_bytes = chunk_bytes_by_type(type, calc_size,
|
|
num_stripes, sub_stripes);
|
|
index = 0;
|
|
while(index < num_stripes) {
|
|
struct btrfs_stripe *stripe;
|
|
BUG_ON(list_empty(&private_devs));
|
|
cur = private_devs.next;
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
|
|
/* loop over this device again if we're doing a dup group */
|
|
if (!(type & BTRFS_BLOCK_GROUP_DUP) ||
|
|
(index == num_stripes - 1))
|
|
list_move_tail(&device->dev_list, dev_list);
|
|
|
|
ret = btrfs_alloc_dev_extent(trans, device,
|
|
info->chunk_root->root_key.objectid,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
|
|
calc_size, &dev_offset);
|
|
BUG_ON(ret);
|
|
|
|
device->bytes_used += calc_size;
|
|
ret = btrfs_update_device(trans, device);
|
|
BUG_ON(ret);
|
|
|
|
map->stripes[index].dev = device;
|
|
map->stripes[index].physical = dev_offset;
|
|
stripe = stripes + index;
|
|
btrfs_set_stack_stripe_devid(stripe, device->devid);
|
|
btrfs_set_stack_stripe_offset(stripe, dev_offset);
|
|
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
|
|
index++;
|
|
}
|
|
BUG_ON(!list_empty(&private_devs));
|
|
|
|
/* key was set above */
|
|
btrfs_set_stack_chunk_length(chunk, *num_bytes);
|
|
btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
|
|
btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_type(chunk, type);
|
|
btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
|
|
btrfs_set_stack_chunk_io_align(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_io_width(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
|
|
map->sector_size = extent_root->sectorsize;
|
|
map->stripe_len = stripe_len;
|
|
map->io_align = stripe_len;
|
|
map->io_width = stripe_len;
|
|
map->type = type;
|
|
map->num_stripes = num_stripes;
|
|
map->sub_stripes = sub_stripes;
|
|
|
|
ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
|
|
btrfs_chunk_item_size(num_stripes));
|
|
BUG_ON(ret);
|
|
*start = key.offset;;
|
|
|
|
map->ce.start = key.offset;
|
|
map->ce.size = *num_bytes;
|
|
|
|
ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
|
|
BUG_ON(ret);
|
|
|
|
if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
|
|
ret = btrfs_add_system_chunk(trans, chunk_root, &key,
|
|
chunk, btrfs_chunk_item_size(num_stripes));
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
kfree(chunk);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *extent_root, u64 *start,
|
|
u64 num_bytes, u64 type)
|
|
{
|
|
u64 dev_offset;
|
|
struct btrfs_fs_info *info = extent_root->fs_info;
|
|
struct btrfs_root *chunk_root = info->chunk_root;
|
|
struct btrfs_stripe *stripes;
|
|
struct btrfs_device *device = NULL;
|
|
struct btrfs_chunk *chunk;
|
|
struct list_head *dev_list = &info->fs_devices->devices;
|
|
struct list_head *cur;
|
|
struct map_lookup *map;
|
|
u64 calc_size = 8 * 1024 * 1024;
|
|
int num_stripes = 1;
|
|
int sub_stripes = 0;
|
|
int ret;
|
|
int index;
|
|
int stripe_len = BTRFS_STRIPE_LEN;
|
|
struct btrfs_key key;
|
|
|
|
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
|
|
key.type = BTRFS_CHUNK_ITEM_KEY;
|
|
ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
&key.offset);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chunk = kmalloc(btrfs_chunk_item_size(num_stripes), GFP_NOFS);
|
|
if (!chunk)
|
|
return -ENOMEM;
|
|
|
|
map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map) {
|
|
kfree(chunk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
stripes = &chunk->stripe;
|
|
calc_size = num_bytes;
|
|
|
|
index = 0;
|
|
cur = dev_list->next;
|
|
device = list_entry(cur, struct btrfs_device, dev_list);
|
|
|
|
while (index < num_stripes) {
|
|
struct btrfs_stripe *stripe;
|
|
|
|
ret = btrfs_alloc_dev_extent(trans, device,
|
|
info->chunk_root->root_key.objectid,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID, key.offset,
|
|
calc_size, &dev_offset);
|
|
BUG_ON(ret);
|
|
|
|
device->bytes_used += calc_size;
|
|
ret = btrfs_update_device(trans, device);
|
|
BUG_ON(ret);
|
|
|
|
map->stripes[index].dev = device;
|
|
map->stripes[index].physical = dev_offset;
|
|
stripe = stripes + index;
|
|
btrfs_set_stack_stripe_devid(stripe, device->devid);
|
|
btrfs_set_stack_stripe_offset(stripe, dev_offset);
|
|
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
|
|
index++;
|
|
}
|
|
|
|
/* key was set above */
|
|
btrfs_set_stack_chunk_length(chunk, num_bytes);
|
|
btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
|
|
btrfs_set_stack_chunk_stripe_len(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_type(chunk, type);
|
|
btrfs_set_stack_chunk_num_stripes(chunk, num_stripes);
|
|
btrfs_set_stack_chunk_io_align(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_io_width(chunk, stripe_len);
|
|
btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
|
|
btrfs_set_stack_chunk_sub_stripes(chunk, sub_stripes);
|
|
map->sector_size = extent_root->sectorsize;
|
|
map->stripe_len = stripe_len;
|
|
map->io_align = stripe_len;
|
|
map->io_width = stripe_len;
|
|
map->type = type;
|
|
map->num_stripes = num_stripes;
|
|
map->sub_stripes = sub_stripes;
|
|
|
|
ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
|
|
btrfs_chunk_item_size(num_stripes));
|
|
BUG_ON(ret);
|
|
*start = key.offset;
|
|
|
|
map->ce.start = key.offset;
|
|
map->ce.size = num_bytes;
|
|
|
|
ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
|
|
BUG_ON(ret);
|
|
|
|
kfree(chunk);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
|
|
{
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
int ret;
|
|
|
|
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
|
if (!ce) {
|
|
fprintf(stderr, "No mapping for %llu-%llu\n",
|
|
(unsigned long long)logical,
|
|
(unsigned long long)logical+len);
|
|
return 1;
|
|
}
|
|
if (ce->start > logical || ce->start + ce->size < logical) {
|
|
fprintf(stderr, "Invalid mapping for %llu-%llu, got "
|
|
"%llu-%llu\n", (unsigned long long)logical,
|
|
(unsigned long long)logical+len,
|
|
(unsigned long long)ce->start,
|
|
(unsigned long long)ce->start + ce->size);
|
|
return 1;
|
|
}
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
|
|
ret = map->num_stripes;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
|
ret = map->sub_stripes;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
|
|
ret = 2;
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
ret = 3;
|
|
else
|
|
ret = 1;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_next_metadata(struct btrfs_mapping_tree *map_tree, u64 *logical,
|
|
u64 *size)
|
|
{
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
|
|
ce = search_cache_extent(&map_tree->cache_tree, *logical);
|
|
|
|
while (ce) {
|
|
ce = next_cache_extent(ce);
|
|
if (!ce)
|
|
return -ENOENT;
|
|
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
if (map->type & BTRFS_BLOCK_GROUP_METADATA) {
|
|
*logical = ce->start;
|
|
*size = ce->size;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
|
|
u64 chunk_start, u64 physical, u64 devid,
|
|
u64 **logical, int *naddrs, int *stripe_len)
|
|
{
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
u64 *buf;
|
|
u64 bytenr;
|
|
u64 length;
|
|
u64 stripe_nr;
|
|
u64 rmap_len;
|
|
int i, j, nr = 0;
|
|
|
|
ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
|
|
BUG_ON(!ce);
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
|
|
length = ce->size;
|
|
rmap_len = map->stripe_len;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID10)
|
|
length = ce->size / (map->num_stripes / map->sub_stripes);
|
|
else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
|
|
length = ce->size / map->num_stripes;
|
|
else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
|
|
BTRFS_BLOCK_GROUP_RAID6)) {
|
|
length = ce->size / nr_data_stripes(map);
|
|
rmap_len = map->stripe_len * nr_data_stripes(map);
|
|
}
|
|
|
|
buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
|
|
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
if (devid && map->stripes[i].dev->devid != devid)
|
|
continue;
|
|
if (map->stripes[i].physical > physical ||
|
|
map->stripes[i].physical + length <= physical)
|
|
continue;
|
|
|
|
stripe_nr = (physical - map->stripes[i].physical) /
|
|
map->stripe_len;
|
|
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
stripe_nr = (stripe_nr * map->num_stripes + i) /
|
|
map->sub_stripes;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
|
|
stripe_nr = stripe_nr * map->num_stripes + i;
|
|
} /* else if RAID[56], multiply by nr_data_stripes().
|
|
* Alternatively, just use rmap_len below instead of
|
|
* map->stripe_len */
|
|
|
|
bytenr = ce->start + stripe_nr * rmap_len;
|
|
for (j = 0; j < nr; j++) {
|
|
if (buf[j] == bytenr)
|
|
break;
|
|
}
|
|
if (j == nr)
|
|
buf[nr++] = bytenr;
|
|
}
|
|
|
|
*logical = buf;
|
|
*naddrs = nr;
|
|
*stripe_len = rmap_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int parity_smaller(u64 a, u64 b)
|
|
{
|
|
return a > b;
|
|
}
|
|
|
|
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
|
|
static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
|
|
{
|
|
struct btrfs_bio_stripe s;
|
|
int i;
|
|
u64 l;
|
|
int again = 1;
|
|
|
|
while (again) {
|
|
again = 0;
|
|
for (i = 0; i < bbio->num_stripes - 1; i++) {
|
|
if (parity_smaller(raid_map[i], raid_map[i+1])) {
|
|
s = bbio->stripes[i];
|
|
l = raid_map[i];
|
|
bbio->stripes[i] = bbio->stripes[i+1];
|
|
raid_map[i] = raid_map[i+1];
|
|
bbio->stripes[i+1] = s;
|
|
raid_map[i+1] = l;
|
|
again = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
|
|
u64 logical, u64 *length,
|
|
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
|
u64 **raid_map_ret)
|
|
{
|
|
return __btrfs_map_block(map_tree, rw, logical, length, NULL,
|
|
multi_ret, mirror_num, raid_map_ret);
|
|
}
|
|
|
|
int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
|
|
u64 logical, u64 *length, u64 *type,
|
|
struct btrfs_multi_bio **multi_ret, int mirror_num,
|
|
u64 **raid_map_ret)
|
|
{
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
u64 offset;
|
|
u64 stripe_offset;
|
|
u64 stripe_nr;
|
|
u64 *raid_map = NULL;
|
|
int stripes_allocated = 8;
|
|
int stripes_required = 1;
|
|
int stripe_index;
|
|
int i;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
|
|
if (multi_ret && rw == READ) {
|
|
stripes_allocated = 1;
|
|
}
|
|
again:
|
|
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
|
if (!ce) {
|
|
kfree(multi);
|
|
*length = (u64)-1;
|
|
return -ENOENT;
|
|
}
|
|
if (ce->start > logical) {
|
|
kfree(multi);
|
|
*length = ce->start - logical;
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (multi_ret) {
|
|
multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
|
|
GFP_NOFS);
|
|
if (!multi)
|
|
return -ENOMEM;
|
|
}
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
offset = logical - ce->start;
|
|
|
|
if (rw == WRITE) {
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
stripes_required = map->num_stripes;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
stripes_required = map->sub_stripes;
|
|
}
|
|
}
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)
|
|
&& multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
|
|
/* RAID[56] write or recovery. Return all stripes */
|
|
stripes_required = map->num_stripes;
|
|
|
|
/* Only allocate the map if we've already got a large enough multi_ret */
|
|
if (stripes_allocated >= stripes_required) {
|
|
raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
|
|
if (!raid_map) {
|
|
kfree(multi);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if our multi bio struct is too small, back off and try again */
|
|
if (multi_ret && stripes_allocated < stripes_required) {
|
|
stripes_allocated = stripes_required;
|
|
kfree(multi);
|
|
multi = NULL;
|
|
goto again;
|
|
}
|
|
stripe_nr = offset;
|
|
/*
|
|
* stripe_nr counts the total number of stripes we have to stride
|
|
* to get to this block
|
|
*/
|
|
stripe_nr = stripe_nr / map->stripe_len;
|
|
|
|
stripe_offset = stripe_nr * map->stripe_len;
|
|
BUG_ON(offset < stripe_offset);
|
|
|
|
/* stripe_offset is the offset of this block in its stripe*/
|
|
stripe_offset = offset - stripe_offset;
|
|
|
|
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
|
|
BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
|
|
BTRFS_BLOCK_GROUP_RAID10 |
|
|
BTRFS_BLOCK_GROUP_DUP)) {
|
|
/* we limit the length of each bio to what fits in a stripe */
|
|
*length = min_t(u64, ce->size - offset,
|
|
map->stripe_len - stripe_offset);
|
|
} else {
|
|
*length = ce->size - offset;
|
|
}
|
|
|
|
if (!multi_ret)
|
|
goto out;
|
|
|
|
multi->num_stripes = 1;
|
|
stripe_index = 0;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
|
|
if (rw == WRITE)
|
|
multi->num_stripes = map->num_stripes;
|
|
else if (mirror_num)
|
|
stripe_index = mirror_num - 1;
|
|
else
|
|
stripe_index = stripe_nr % map->num_stripes;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
|
|
int factor = map->num_stripes / map->sub_stripes;
|
|
|
|
stripe_index = stripe_nr % factor;
|
|
stripe_index *= map->sub_stripes;
|
|
|
|
if (rw == WRITE)
|
|
multi->num_stripes = map->sub_stripes;
|
|
else if (mirror_num)
|
|
stripe_index += mirror_num - 1;
|
|
|
|
stripe_nr = stripe_nr / factor;
|
|
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
|
|
if (rw == WRITE)
|
|
multi->num_stripes = map->num_stripes;
|
|
else if (mirror_num)
|
|
stripe_index = mirror_num - 1;
|
|
} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
|
|
BTRFS_BLOCK_GROUP_RAID6)) {
|
|
|
|
if (raid_map) {
|
|
int rot;
|
|
u64 tmp;
|
|
u64 raid56_full_stripe_start;
|
|
u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
|
|
|
|
/*
|
|
* align the start of our data stripe in the logical
|
|
* address space
|
|
*/
|
|
raid56_full_stripe_start = offset / full_stripe_len;
|
|
raid56_full_stripe_start *= full_stripe_len;
|
|
|
|
/* get the data stripe number */
|
|
stripe_nr = raid56_full_stripe_start / map->stripe_len;
|
|
stripe_nr = stripe_nr / nr_data_stripes(map);
|
|
|
|
/* Work out the disk rotation on this stripe-set */
|
|
rot = stripe_nr % map->num_stripes;
|
|
|
|
/* Fill in the logical address of each stripe */
|
|
tmp = stripe_nr * nr_data_stripes(map);
|
|
|
|
for (i = 0; i < nr_data_stripes(map); i++)
|
|
raid_map[(i+rot) % map->num_stripes] =
|
|
ce->start + (tmp + i) * map->stripe_len;
|
|
|
|
raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
|
|
if (map->type & BTRFS_BLOCK_GROUP_RAID6)
|
|
raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
|
|
|
|
*length = map->stripe_len;
|
|
stripe_index = 0;
|
|
stripe_offset = 0;
|
|
multi->num_stripes = map->num_stripes;
|
|
} else {
|
|
stripe_index = stripe_nr % nr_data_stripes(map);
|
|
stripe_nr = stripe_nr / nr_data_stripes(map);
|
|
|
|
/*
|
|
* Mirror #0 or #1 means the original data block.
|
|
* Mirror #2 is RAID5 parity block.
|
|
* Mirror #3 is RAID6 Q block.
|
|
*/
|
|
if (mirror_num > 1)
|
|
stripe_index = nr_data_stripes(map) + mirror_num - 2;
|
|
|
|
/* We distribute the parity blocks across stripes */
|
|
stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
|
|
}
|
|
} else {
|
|
/*
|
|
* after this do_div call, stripe_nr is the number of stripes
|
|
* on this device we have to walk to find the data, and
|
|
* stripe_index is the number of our device in the stripe array
|
|
*/
|
|
stripe_index = stripe_nr % map->num_stripes;
|
|
stripe_nr = stripe_nr / map->num_stripes;
|
|
}
|
|
BUG_ON(stripe_index >= map->num_stripes);
|
|
|
|
for (i = 0; i < multi->num_stripes; i++) {
|
|
multi->stripes[i].physical =
|
|
map->stripes[stripe_index].physical + stripe_offset +
|
|
stripe_nr * map->stripe_len;
|
|
multi->stripes[i].dev = map->stripes[stripe_index].dev;
|
|
stripe_index++;
|
|
}
|
|
*multi_ret = multi;
|
|
|
|
if (type)
|
|
*type = map->type;
|
|
|
|
if (raid_map) {
|
|
sort_parity_stripes(multi, raid_map);
|
|
*raid_map_ret = raid_map;
|
|
}
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
|
|
u8 *uuid, u8 *fsid)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *cur_devices;
|
|
|
|
cur_devices = root->fs_info->fs_devices;
|
|
while (cur_devices) {
|
|
if (!fsid ||
|
|
!memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
|
|
device = __find_device(&cur_devices->devices,
|
|
devid, uuid);
|
|
if (device)
|
|
return device;
|
|
}
|
|
cur_devices = cur_devices->seed;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct btrfs_device *
|
|
btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
|
|
u64 devid, int instance)
|
|
{
|
|
struct list_head *head = &fs_devices->devices;
|
|
struct btrfs_device *dev;
|
|
int num_found = 0;
|
|
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (dev->devid == devid && num_found++ == instance)
|
|
return dev;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
|
|
{
|
|
struct cache_extent *ce;
|
|
struct map_lookup *map;
|
|
struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
|
|
int readonly = 0;
|
|
int i;
|
|
|
|
/*
|
|
* During chunk recovering, we may fail to find block group's
|
|
* corresponding chunk, we will rebuild it later
|
|
*/
|
|
ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
|
|
if (!root->fs_info->is_chunk_recover)
|
|
BUG_ON(!ce);
|
|
else
|
|
return 0;
|
|
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
for (i = 0; i < map->num_stripes; i++) {
|
|
if (!map->stripes[i].dev->writeable) {
|
|
readonly = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return readonly;
|
|
}
|
|
|
|
static struct btrfs_device *fill_missing_device(u64 devid)
|
|
{
|
|
struct btrfs_device *device;
|
|
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
device->devid = devid;
|
|
device->fd = -1;
|
|
return device;
|
|
}
|
|
|
|
static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_chunk *chunk)
|
|
{
|
|
struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
|
|
struct map_lookup *map;
|
|
struct cache_extent *ce;
|
|
u64 logical;
|
|
u64 length;
|
|
u64 devid;
|
|
u8 uuid[BTRFS_UUID_SIZE];
|
|
int num_stripes;
|
|
int ret;
|
|
int i;
|
|
|
|
logical = key->offset;
|
|
length = btrfs_chunk_length(leaf, chunk);
|
|
|
|
ce = search_cache_extent(&map_tree->cache_tree, logical);
|
|
|
|
/* already mapped? */
|
|
if (ce && ce->start <= logical && ce->start + ce->size > logical) {
|
|
return 0;
|
|
}
|
|
|
|
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
|
|
map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
|
|
if (!map)
|
|
return -ENOMEM;
|
|
|
|
map->ce.start = logical;
|
|
map->ce.size = length;
|
|
map->num_stripes = num_stripes;
|
|
map->io_width = btrfs_chunk_io_width(leaf, chunk);
|
|
map->io_align = btrfs_chunk_io_align(leaf, chunk);
|
|
map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
|
|
map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
|
|
map->type = btrfs_chunk_type(leaf, chunk);
|
|
map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
map->stripes[i].physical =
|
|
btrfs_stripe_offset_nr(leaf, chunk, i);
|
|
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
|
|
read_extent_buffer(leaf, uuid, (unsigned long)
|
|
btrfs_stripe_dev_uuid_nr(chunk, i),
|
|
BTRFS_UUID_SIZE);
|
|
map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
|
|
NULL);
|
|
if (!map->stripes[i].dev) {
|
|
map->stripes[i].dev = fill_missing_device(devid);
|
|
printf("warning, device %llu is missing\n",
|
|
(unsigned long long)devid);
|
|
}
|
|
|
|
}
|
|
ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
|
|
BUG_ON(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fill_device_from_item(struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item,
|
|
struct btrfs_device *device)
|
|
{
|
|
unsigned long ptr;
|
|
|
|
device->devid = btrfs_device_id(leaf, dev_item);
|
|
device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
|
|
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
|
|
device->type = btrfs_device_type(leaf, dev_item);
|
|
device->io_align = btrfs_device_io_align(leaf, dev_item);
|
|
device->io_width = btrfs_device_io_width(leaf, dev_item);
|
|
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
|
|
|
|
ptr = (unsigned long)btrfs_device_uuid(dev_item);
|
|
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices;
|
|
int ret;
|
|
|
|
fs_devices = root->fs_info->fs_devices->seed;
|
|
while (fs_devices) {
|
|
if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
|
|
fs_devices = find_fsid(fsid);
|
|
if (!fs_devices) {
|
|
/* missing all seed devices */
|
|
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
|
|
if (!fs_devices) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
INIT_LIST_HEAD(&fs_devices->devices);
|
|
list_add(&fs_devices->list, &fs_uuids);
|
|
memcpy(fs_devices->fsid, fsid, BTRFS_FSID_SIZE);
|
|
}
|
|
|
|
ret = btrfs_open_devices(fs_devices, O_RDONLY);
|
|
if (ret)
|
|
goto out;
|
|
|
|
fs_devices->seed = root->fs_info->fs_devices->seed;
|
|
root->fs_info->fs_devices->seed = fs_devices;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int read_one_dev(struct btrfs_root *root,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_dev_item *dev_item)
|
|
{
|
|
struct btrfs_device *device;
|
|
u64 devid;
|
|
int ret = 0;
|
|
u8 fs_uuid[BTRFS_UUID_SIZE];
|
|
u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
|
|
devid = btrfs_device_id(leaf, dev_item);
|
|
read_extent_buffer(leaf, dev_uuid,
|
|
(unsigned long)btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
read_extent_buffer(leaf, fs_uuid,
|
|
(unsigned long)btrfs_device_fsid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
|
|
ret = open_seed_devices(root, fs_uuid);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
|
|
if (!device) {
|
|
printk("warning devid %llu not found already\n",
|
|
(unsigned long long)devid);
|
|
device = kzalloc(sizeof(*device), GFP_NOFS);
|
|
if (!device)
|
|
return -ENOMEM;
|
|
device->fd = -1;
|
|
list_add(&device->dev_list,
|
|
&root->fs_info->fs_devices->devices);
|
|
}
|
|
|
|
fill_device_from_item(leaf, dev_item, device);
|
|
device->dev_root = root->fs_info->dev_root;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_sys_array(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_super_block *super_copy = root->fs_info->super_copy;
|
|
struct extent_buffer *sb;
|
|
struct btrfs_disk_key *disk_key;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_key key;
|
|
u32 num_stripes;
|
|
u32 len = 0;
|
|
u8 *ptr;
|
|
u8 *array_end;
|
|
int ret = 0;
|
|
|
|
sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
|
|
BTRFS_SUPER_INFO_SIZE);
|
|
if (!sb)
|
|
return -ENOMEM;
|
|
btrfs_set_buffer_uptodate(sb);
|
|
write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
|
|
array_end = ((u8 *)super_copy->sys_chunk_array) +
|
|
btrfs_super_sys_array_size(super_copy);
|
|
|
|
/*
|
|
* we do this loop twice, once for the device items and
|
|
* once for all of the chunks. This way there are device
|
|
* structs filled in for every chunk
|
|
*/
|
|
ptr = super_copy->sys_chunk_array;
|
|
|
|
while (ptr < array_end) {
|
|
disk_key = (struct btrfs_disk_key *)ptr;
|
|
btrfs_disk_key_to_cpu(&key, disk_key);
|
|
|
|
len = sizeof(*disk_key);
|
|
ptr += len;
|
|
|
|
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
chunk = (struct btrfs_chunk *)(ptr - (u8 *)super_copy);
|
|
ret = read_one_chunk(root, &key, sb, chunk);
|
|
if (ret)
|
|
break;
|
|
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
|
|
len = btrfs_chunk_item_size(num_stripes);
|
|
} else {
|
|
BUG();
|
|
}
|
|
ptr += len;
|
|
}
|
|
free_extent_buffer(sb);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_read_chunk_tree(struct btrfs_root *root)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
struct btrfs_key found_key;
|
|
int ret;
|
|
int slot;
|
|
|
|
root = root->fs_info->chunk_root;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Read all device items, and then all the chunk items. All
|
|
* device items are found before any chunk item (their object id
|
|
* is smaller than the lowest possible object id for a chunk
|
|
* item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
|
|
*/
|
|
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
|
|
key.offset = 0;
|
|
key.type = 0;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto error;
|
|
while(1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret == 0)
|
|
continue;
|
|
if (ret < 0)
|
|
goto error;
|
|
break;
|
|
}
|
|
btrfs_item_key_to_cpu(leaf, &found_key, slot);
|
|
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
|
|
struct btrfs_dev_item *dev_item;
|
|
dev_item = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_dev_item);
|
|
ret = read_one_dev(root, leaf, dev_item);
|
|
BUG_ON(ret);
|
|
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
|
|
struct btrfs_chunk *chunk;
|
|
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
|
|
ret = read_one_chunk(root, &found_key, leaf, chunk);
|
|
BUG_ON(ret);
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
|
|
ret = 0;
|
|
error:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
struct list_head *btrfs_scanned_uuids(void)
|
|
{
|
|
return &fs_uuids;
|
|
}
|
|
|
|
static int rmw_eb(struct btrfs_fs_info *info,
|
|
struct extent_buffer *eb, struct extent_buffer *orig_eb)
|
|
{
|
|
int ret;
|
|
unsigned long orig_off = 0;
|
|
unsigned long dest_off = 0;
|
|
unsigned long copy_len = eb->len;
|
|
|
|
ret = read_whole_eb(info, eb, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (eb->start + eb->len <= orig_eb->start ||
|
|
eb->start >= orig_eb->start + orig_eb->len)
|
|
return 0;
|
|
/*
|
|
* | ----- orig_eb ------- |
|
|
* | ----- stripe ------- |
|
|
* | ----- orig_eb ------- |
|
|
* | ----- orig_eb ------- |
|
|
*/
|
|
if (eb->start > orig_eb->start)
|
|
orig_off = eb->start - orig_eb->start;
|
|
if (orig_eb->start > eb->start)
|
|
dest_off = orig_eb->start - eb->start;
|
|
|
|
if (copy_len > orig_eb->len - orig_off)
|
|
copy_len = orig_eb->len - orig_off;
|
|
if (copy_len > eb->len - dest_off)
|
|
copy_len = eb->len - dest_off;
|
|
|
|
memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
|
|
return 0;
|
|
}
|
|
|
|
static void split_eb_for_raid56(struct btrfs_fs_info *info,
|
|
struct extent_buffer *orig_eb,
|
|
struct extent_buffer **ebs,
|
|
u64 stripe_len, u64 *raid_map,
|
|
int num_stripes)
|
|
{
|
|
struct extent_buffer *eb;
|
|
u64 start = orig_eb->start;
|
|
u64 this_eb_start;
|
|
int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
|
|
break;
|
|
|
|
eb = malloc(sizeof(struct extent_buffer) + stripe_len);
|
|
if (!eb)
|
|
BUG();
|
|
memset(eb, 0, sizeof(struct extent_buffer) + stripe_len);
|
|
|
|
eb->start = raid_map[i];
|
|
eb->len = stripe_len;
|
|
eb->refs = 1;
|
|
eb->flags = 0;
|
|
eb->fd = -1;
|
|
eb->dev_bytenr = (u64)-1;
|
|
|
|
this_eb_start = raid_map[i];
|
|
|
|
if (start > this_eb_start ||
|
|
start + orig_eb->len < this_eb_start + stripe_len) {
|
|
ret = rmw_eb(info, eb, orig_eb);
|
|
BUG_ON(ret);
|
|
} else {
|
|
memcpy(eb->data, orig_eb->data + eb->start - start, stripe_len);
|
|
}
|
|
ebs[i] = eb;
|
|
}
|
|
}
|
|
|
|
int write_raid56_with_parity(struct btrfs_fs_info *info,
|
|
struct extent_buffer *eb,
|
|
struct btrfs_multi_bio *multi,
|
|
u64 stripe_len, u64 *raid_map)
|
|
{
|
|
struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
|
|
int i;
|
|
int j;
|
|
int ret;
|
|
int alloc_size = eb->len;
|
|
|
|
ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_NOFS);
|
|
BUG_ON(!ebs);
|
|
|
|
if (stripe_len > alloc_size)
|
|
alloc_size = stripe_len;
|
|
|
|
split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
|
|
multi->num_stripes);
|
|
|
|
for (i = 0; i < multi->num_stripes; i++) {
|
|
struct extent_buffer *new_eb;
|
|
if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
|
|
ebs[i]->dev_bytenr = multi->stripes[i].physical;
|
|
ebs[i]->fd = multi->stripes[i].dev->fd;
|
|
multi->stripes[i].dev->total_ios++;
|
|
BUG_ON(ebs[i]->start != raid_map[i]);
|
|
continue;
|
|
}
|
|
new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_NOFS);
|
|
BUG_ON(!new_eb);
|
|
new_eb->dev_bytenr = multi->stripes[i].physical;
|
|
new_eb->fd = multi->stripes[i].dev->fd;
|
|
multi->stripes[i].dev->total_ios++;
|
|
new_eb->len = stripe_len;
|
|
|
|
if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
|
|
p_eb = new_eb;
|
|
else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
|
|
q_eb = new_eb;
|
|
}
|
|
if (q_eb) {
|
|
void **pointers;
|
|
|
|
pointers = kmalloc(sizeof(*pointers) * multi->num_stripes,
|
|
GFP_NOFS);
|
|
BUG_ON(!pointers);
|
|
|
|
ebs[multi->num_stripes - 2] = p_eb;
|
|
ebs[multi->num_stripes - 1] = q_eb;
|
|
|
|
for (i = 0; i < multi->num_stripes; i++)
|
|
pointers[i] = ebs[i]->data;
|
|
|
|
raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
|
|
kfree(pointers);
|
|
} else {
|
|
ebs[multi->num_stripes - 1] = p_eb;
|
|
memcpy(p_eb->data, ebs[0]->data, stripe_len);
|
|
for (j = 1; j < multi->num_stripes - 1; j++) {
|
|
for (i = 0; i < stripe_len; i += sizeof(unsigned long)) {
|
|
*(unsigned long *)(p_eb->data + i) ^=
|
|
*(unsigned long *)(ebs[j]->data + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < multi->num_stripes; i++) {
|
|
ret = write_extent_to_disk(ebs[i]);
|
|
BUG_ON(ret);
|
|
if (ebs[i] != eb)
|
|
kfree(ebs[i]);
|
|
}
|
|
|
|
kfree(ebs);
|
|
|
|
return 0;
|
|
}
|