mirror of
https://github.com/kdave/btrfs-progs
synced 2025-01-12 16:59:51 +00:00
fac1fae3ef
We have been overloading the extent_state flags for use on the extent buffers as well. When we sync extent-io-tree.[ch] this will become impossible, so rename these flags to EXTENT_BUFFER_* and use those definitions instead of the extent_state definitions. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2376 lines
63 KiB
C
2376 lines
63 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <uuid/uuid.h>
|
|
#include "kerncompat.h"
|
|
#include "kernel-shared/ctree.h"
|
|
#include "kernel-shared/disk-io.h"
|
|
#include "kernel-shared/volumes.h"
|
|
#include "kernel-shared/transaction.h"
|
|
#include "zoned.h"
|
|
#include "crypto/crc32c.h"
|
|
#include "common/utils.h"
|
|
#include "kernel-shared/print-tree.h"
|
|
#include "common/rbtree-utils.h"
|
|
#include "common/device-scan.h"
|
|
#include "common/device-utils.h"
|
|
#include "crypto/hash.h"
|
|
|
|
/* specified errno for check_tree_block */
|
|
#define BTRFS_BAD_BYTENR (-1)
|
|
#define BTRFS_BAD_FSID (-2)
|
|
#define BTRFS_BAD_LEVEL (-3)
|
|
#define BTRFS_BAD_NRITEMS (-4)
|
|
|
|
/* Calculate max possible nritems for a leaf/node */
|
|
static u32 max_nritems(u8 level, u32 nodesize)
|
|
{
|
|
|
|
if (level == 0)
|
|
return ((nodesize - sizeof(struct btrfs_header)) /
|
|
sizeof(struct btrfs_item));
|
|
return ((nodesize - sizeof(struct btrfs_header)) /
|
|
sizeof(struct btrfs_key_ptr));
|
|
}
|
|
|
|
static int check_tree_block(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *buf)
|
|
{
|
|
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
u32 nodesize = fs_info->nodesize;
|
|
bool fsid_match = false;
|
|
int ret = BTRFS_BAD_FSID;
|
|
|
|
if (buf->start != btrfs_header_bytenr(buf))
|
|
return BTRFS_BAD_BYTENR;
|
|
if (btrfs_header_level(buf) >= BTRFS_MAX_LEVEL)
|
|
return BTRFS_BAD_LEVEL;
|
|
if (btrfs_header_nritems(buf) > max_nritems(btrfs_header_level(buf),
|
|
nodesize))
|
|
return BTRFS_BAD_NRITEMS;
|
|
|
|
/* Only leaf can be empty */
|
|
if (btrfs_header_nritems(buf) == 0 &&
|
|
btrfs_header_level(buf) != 0)
|
|
return BTRFS_BAD_NRITEMS;
|
|
|
|
while (fs_devices) {
|
|
/*
|
|
* Checking the incompat flag is only valid for the current
|
|
* fs. For seed devices it's forbidden to have their uuid
|
|
* changed so reading ->fsid in this case is fine
|
|
*/
|
|
if (fs_devices == fs_info->fs_devices &&
|
|
btrfs_fs_incompat(fs_info, METADATA_UUID))
|
|
fsid_match = !memcmp_extent_buffer(buf,
|
|
fs_devices->metadata_uuid,
|
|
btrfs_header_fsid(),
|
|
BTRFS_FSID_SIZE);
|
|
else
|
|
fsid_match = !memcmp_extent_buffer(buf,
|
|
fs_devices->fsid,
|
|
btrfs_header_fsid(),
|
|
BTRFS_FSID_SIZE);
|
|
|
|
|
|
if (fs_info->ignore_fsid_mismatch || fsid_match) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
fs_devices = fs_devices->seed;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void print_tree_block_error(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb,
|
|
int err)
|
|
{
|
|
char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'};
|
|
char found_uuid[BTRFS_UUID_UNPARSED_SIZE] = {'\0'};
|
|
u8 buf[BTRFS_UUID_SIZE];
|
|
|
|
if (!err)
|
|
return;
|
|
|
|
fprintf(stderr, "bad tree block %llu, ", eb->start);
|
|
switch (err) {
|
|
case BTRFS_BAD_FSID:
|
|
read_extent_buffer(eb, buf, btrfs_header_fsid(),
|
|
BTRFS_UUID_SIZE);
|
|
uuid_unparse(buf, found_uuid);
|
|
uuid_unparse(fs_info->fs_devices->metadata_uuid, fs_uuid);
|
|
fprintf(stderr, "fsid mismatch, want=%s, have=%s\n",
|
|
fs_uuid, found_uuid);
|
|
break;
|
|
case BTRFS_BAD_BYTENR:
|
|
fprintf(stderr, "bytenr mismatch, want=%llu, have=%llu\n",
|
|
eb->start, btrfs_header_bytenr(eb));
|
|
break;
|
|
case BTRFS_BAD_LEVEL:
|
|
fprintf(stderr, "bad level, %u > %d\n",
|
|
btrfs_header_level(eb), BTRFS_MAX_LEVEL);
|
|
break;
|
|
case BTRFS_BAD_NRITEMS:
|
|
fprintf(stderr, "invalid nr_items: %u\n",
|
|
btrfs_header_nritems(eb));
|
|
break;
|
|
}
|
|
}
|
|
|
|
int btrfs_csum_data(struct btrfs_fs_info *fs_info, u16 csum_type, const u8 *data,
|
|
u8 *out, size_t len)
|
|
{
|
|
memset(out, 0, BTRFS_CSUM_SIZE);
|
|
|
|
switch (csum_type) {
|
|
case BTRFS_CSUM_TYPE_CRC32:
|
|
return hash_crc32c(data, len, out);
|
|
case BTRFS_CSUM_TYPE_XXHASH:
|
|
return hash_xxhash(data, len, out);
|
|
case BTRFS_CSUM_TYPE_SHA256:
|
|
return hash_sha256(data, len, out);
|
|
case BTRFS_CSUM_TYPE_BLAKE2:
|
|
return hash_blake2b(data, len, out);
|
|
default:
|
|
fprintf(stderr, "ERROR: unknown csum type: %d\n", csum_type);
|
|
ASSERT(0);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int __csum_tree_block_size(struct extent_buffer *buf, u16 csum_size,
|
|
int verify, int silent, u16 csum_type)
|
|
{
|
|
u8 result[BTRFS_CSUM_SIZE];
|
|
u32 len;
|
|
|
|
len = buf->len - BTRFS_CSUM_SIZE;
|
|
btrfs_csum_data(buf->fs_info, csum_type, (u8 *)buf->data + BTRFS_CSUM_SIZE,
|
|
result, len);
|
|
|
|
if (verify) {
|
|
if (buf->fs_info && buf->fs_info->skip_csum_check) {
|
|
/* printf("skip csum check for block %llu\n", buf->start); */
|
|
} else if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
|
|
if (!silent) {
|
|
char found[BTRFS_CSUM_STRING_LEN];
|
|
char wanted[BTRFS_CSUM_STRING_LEN];
|
|
|
|
btrfs_format_csum(csum_type, result, found);
|
|
btrfs_format_csum(csum_type, (u8 *)buf->data, wanted);
|
|
printk(
|
|
"checksum verify failed on %llu wanted %s found %s\n",
|
|
(unsigned long long)buf->start,
|
|
wanted, found);
|
|
}
|
|
return 1;
|
|
}
|
|
} else {
|
|
write_extent_buffer(buf, result, 0, csum_size);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int csum_tree_block_size(struct extent_buffer *buf, u16 csum_size, int verify,
|
|
u16 csum_type)
|
|
{
|
|
return __csum_tree_block_size(buf, csum_size, verify, 0, csum_type);
|
|
}
|
|
|
|
int verify_tree_block_csum_silent(struct extent_buffer *buf, u16 csum_size,
|
|
u16 csum_type)
|
|
{
|
|
return __csum_tree_block_size(buf, csum_size, 1, 1, csum_type);
|
|
}
|
|
|
|
static int csum_tree_block(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *buf, int verify)
|
|
{
|
|
u16 csum_size = fs_info->csum_size;
|
|
u16 csum_type = fs_info->csum_type;
|
|
|
|
if (fs_info->force_csum_type != -1) {
|
|
/* printf("CSUM TREE: offset %llu\n", buf->start); */
|
|
csum_type = fs_info->force_csum_type;
|
|
csum_size = btrfs_csum_type_size(csum_type);
|
|
}
|
|
|
|
if (verify && fs_info->suppress_check_block_errors)
|
|
return verify_tree_block_csum_silent(buf, csum_size, csum_type);
|
|
return csum_tree_block_size(buf, csum_size, verify, csum_type);
|
|
}
|
|
|
|
struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
|
|
u64 bytenr, u32 blocksize)
|
|
{
|
|
return find_extent_buffer(fs_info, bytenr, blocksize);
|
|
}
|
|
|
|
struct extent_buffer* btrfs_find_create_tree_block(
|
|
struct btrfs_fs_info *fs_info, u64 bytenr)
|
|
{
|
|
return alloc_extent_buffer(fs_info, bytenr, fs_info->nodesize);
|
|
}
|
|
|
|
void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 parent_transid)
|
|
{
|
|
struct extent_buffer *eb;
|
|
u64 length;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
struct btrfs_device *device;
|
|
|
|
eb = btrfs_find_tree_block(fs_info, bytenr, fs_info->nodesize);
|
|
if (!(eb && btrfs_buffer_uptodate(eb, parent_transid)) &&
|
|
!btrfs_map_block(fs_info, READ, bytenr, &length, &multi, 0,
|
|
NULL)) {
|
|
device = multi->stripes[0].dev;
|
|
device->total_ios++;
|
|
readahead(device->fd, multi->stripes[0].physical,
|
|
fs_info->nodesize);
|
|
}
|
|
|
|
free_extent_buffer(eb);
|
|
kfree(multi);
|
|
}
|
|
|
|
static int verify_parent_transid(struct extent_buffer *eb, u64 parent_transid,
|
|
int ignore)
|
|
{
|
|
int ret;
|
|
|
|
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
|
|
return 0;
|
|
|
|
if (extent_buffer_uptodate(eb) &&
|
|
btrfs_header_generation(eb) == parent_transid) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
printk("parent transid verify failed on %llu wanted %llu found %llu\n",
|
|
(unsigned long long)eb->start,
|
|
(unsigned long long)parent_transid,
|
|
(unsigned long long)btrfs_header_generation(eb));
|
|
if (ignore) {
|
|
eb->flags |= EXTENT_BUFFER_BAD_TRANSID;
|
|
printk("Ignoring transid failure\n");
|
|
return 0;
|
|
}
|
|
|
|
ret = 1;
|
|
out:
|
|
clear_extent_buffer_uptodate(eb);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static int read_on_restore(struct extent_buffer *eb)
|
|
{
|
|
struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct btrfs_device *device;
|
|
int ret;
|
|
|
|
/*
|
|
* For on_restoring mode, there should be only one device, and logical
|
|
* address is mapped 1:1 to device physical offset.
|
|
*/
|
|
list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
|
|
if (device->devid == 1)
|
|
break;
|
|
}
|
|
device->total_ios++;
|
|
|
|
ret = btrfs_pread(device->fd, eb->data, eb->len, eb->start,
|
|
eb->fs_info->zoned);
|
|
if (ret != eb->len)
|
|
ret = -EIO;
|
|
else
|
|
ret = 0;
|
|
return ret;
|
|
}
|
|
|
|
int read_whole_eb(struct btrfs_fs_info *info, struct extent_buffer *eb, int mirror)
|
|
{
|
|
unsigned long offset = 0;
|
|
int ret = 0;
|
|
unsigned long bytes_left = eb->len;
|
|
|
|
while (bytes_left) {
|
|
u64 read_len = bytes_left;
|
|
|
|
if (info->on_restoring)
|
|
return read_on_restore(eb);
|
|
|
|
ret = read_data_from_disk(info, eb->data + offset,
|
|
eb->start + offset, &read_len,
|
|
mirror);
|
|
if (ret < 0)
|
|
return ret;
|
|
offset += read_len;
|
|
bytes_left -= read_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct extent_buffer* read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 parent_transid)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *eb;
|
|
u64 best_transid = 0;
|
|
u32 sectorsize = fs_info->sectorsize;
|
|
int mirror_num = 1;
|
|
int good_mirror = 0;
|
|
int candidate_mirror = 0;
|
|
int num_copies;
|
|
int ignore = 0;
|
|
|
|
/*
|
|
* Don't even try to create tree block for unaligned tree block
|
|
* bytenr.
|
|
* Such unaligned tree block will free overlapping extent buffer,
|
|
* causing use-after-free bugs for fuzzed images.
|
|
*/
|
|
if (bytenr < sectorsize || !IS_ALIGNED(bytenr, sectorsize)) {
|
|
error("tree block bytenr %llu is not aligned to sectorsize %u",
|
|
bytenr, sectorsize);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
eb = btrfs_find_create_tree_block(fs_info, bytenr);
|
|
if (!eb)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (btrfs_buffer_uptodate(eb, parent_transid))
|
|
return eb;
|
|
|
|
num_copies = btrfs_num_copies(fs_info, eb->start, eb->len);
|
|
while (1) {
|
|
ret = read_whole_eb(fs_info, eb, mirror_num);
|
|
if (ret == 0 && csum_tree_block(fs_info, eb, 1) == 0 &&
|
|
check_tree_block(fs_info, eb) == 0 &&
|
|
verify_parent_transid(eb, parent_transid, ignore) == 0) {
|
|
if (eb->flags & EXTENT_BUFFER_BAD_TRANSID &&
|
|
list_empty(&eb->recow)) {
|
|
list_add_tail(&eb->recow,
|
|
&fs_info->recow_ebs);
|
|
eb->refs++;
|
|
}
|
|
|
|
/*
|
|
* check_tree_block() is less strict to allow btrfs
|
|
* check to get raw eb with bad key order and fix it.
|
|
* But we still need to try to get a good copy if
|
|
* possible, or bad key order can go into tools like
|
|
* btrfs ins dump-tree.
|
|
*/
|
|
if (btrfs_header_level(eb))
|
|
ret = btrfs_check_node(fs_info, NULL, eb);
|
|
else
|
|
ret = btrfs_check_leaf(fs_info, NULL, eb);
|
|
if (!ret || candidate_mirror == mirror_num) {
|
|
btrfs_set_buffer_uptodate(eb);
|
|
return eb;
|
|
}
|
|
if (candidate_mirror <= 0)
|
|
candidate_mirror = mirror_num;
|
|
}
|
|
if (ignore) {
|
|
if (candidate_mirror > 0) {
|
|
mirror_num = candidate_mirror;
|
|
continue;
|
|
}
|
|
if (check_tree_block(fs_info, eb)) {
|
|
if (!fs_info->suppress_check_block_errors)
|
|
print_tree_block_error(fs_info, eb,
|
|
check_tree_block(fs_info, eb));
|
|
} else {
|
|
if (!fs_info->suppress_check_block_errors)
|
|
fprintf(stderr, "Csum didn't match\n");
|
|
}
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
if (num_copies == 1 && fs_info->allow_transid_mismatch) {
|
|
ignore = 1;
|
|
continue;
|
|
}
|
|
if (btrfs_header_generation(eb) > best_transid) {
|
|
best_transid = btrfs_header_generation(eb);
|
|
good_mirror = mirror_num;
|
|
}
|
|
mirror_num++;
|
|
if (mirror_num > num_copies) {
|
|
if (!fs_info->allow_transid_mismatch) {
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
if (candidate_mirror > 0)
|
|
mirror_num = candidate_mirror;
|
|
else
|
|
mirror_num = good_mirror;
|
|
ignore = 1;
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* We failed to read this tree block, it be should deleted right now
|
|
* to avoid stale cache populate the cache.
|
|
*/
|
|
free_extent_buffer_nocache(eb);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
int write_and_map_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
|
|
{
|
|
int ret;
|
|
u64 *raid_map = NULL;
|
|
struct btrfs_multi_bio *multi = NULL;
|
|
|
|
/* write_data_to_disk() will handle all mirrors and RAID56. */
|
|
ret = write_data_to_disk(fs_info, eb->data, eb->start, eb->len);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("failed to write bytenr %llu length %u: %m",
|
|
eb->start, eb->len);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
kfree(raid_map);
|
|
kfree(multi);
|
|
return ret;
|
|
}
|
|
|
|
int write_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *eb)
|
|
{
|
|
if (check_tree_block(fs_info, eb)) {
|
|
print_tree_block_error(fs_info, eb,
|
|
check_tree_block(fs_info, eb));
|
|
BUG();
|
|
}
|
|
|
|
if (trans && !btrfs_buffer_uptodate(eb, trans->transid))
|
|
BUG();
|
|
|
|
btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
|
|
csum_tree_block(fs_info, eb, 0);
|
|
|
|
return write_and_map_eb(fs_info, eb);
|
|
}
|
|
|
|
void btrfs_setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
|
|
u64 objectid)
|
|
{
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
root->ref_cows = 0;
|
|
root->track_dirty = 0;
|
|
|
|
root->fs_info = fs_info;
|
|
root->objectid = objectid;
|
|
root->last_trans = 0;
|
|
root->last_inode_alloc = 0;
|
|
|
|
INIT_LIST_HEAD(&root->dirty_list);
|
|
INIT_LIST_HEAD(&root->unaligned_extent_recs);
|
|
memset(&root->root_key, 0, sizeof(root->root_key));
|
|
memset(&root->root_item, 0, sizeof(root->root_item));
|
|
root->root_key.objectid = objectid;
|
|
}
|
|
|
|
static int read_root_node(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root, u64 bytenr, u64 gen,
|
|
int level)
|
|
{
|
|
root->node = read_tree_block(fs_info, bytenr, gen);
|
|
if (!extent_buffer_uptodate(root->node))
|
|
goto err;
|
|
if (btrfs_header_level(root->node) != level) {
|
|
error("root [%llu %llu] level %d does not match %d\n",
|
|
root->root_key.objectid, root->root_key.offset,
|
|
btrfs_header_level(root->node), level);
|
|
goto err;
|
|
}
|
|
return 0;
|
|
err:
|
|
free_extent_buffer(root->node);
|
|
root->node = NULL;
|
|
return -EIO;
|
|
}
|
|
|
|
int btrfs_find_and_setup_root(struct btrfs_root *tree_root,
|
|
struct btrfs_fs_info *fs_info,
|
|
u64 objectid, struct btrfs_root *root)
|
|
{
|
|
int ret;
|
|
|
|
btrfs_setup_root(root, fs_info, objectid);
|
|
ret = btrfs_find_last_root(tree_root, objectid,
|
|
&root->root_item, &root->root_key);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return read_root_node(fs_info, root,
|
|
btrfs_root_bytenr(&root->root_item),
|
|
btrfs_root_generation(&root->root_item),
|
|
btrfs_root_level(&root->root_item));
|
|
}
|
|
|
|
static int find_and_setup_log_root(struct btrfs_root *tree_root,
|
|
struct btrfs_fs_info *fs_info,
|
|
struct btrfs_super_block *disk_super)
|
|
{
|
|
u64 blocknr = btrfs_super_log_root(disk_super);
|
|
struct btrfs_root *log_root = malloc(sizeof(struct btrfs_root));
|
|
int ret;
|
|
|
|
if (!log_root)
|
|
return -ENOMEM;
|
|
|
|
if (blocknr == 0) {
|
|
free(log_root);
|
|
return 0;
|
|
}
|
|
|
|
btrfs_setup_root(log_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
|
|
ret = read_root_node(fs_info, log_root, blocknr,
|
|
btrfs_super_generation(disk_super) + 1,
|
|
btrfs_super_log_root_level(disk_super));
|
|
if (ret) {
|
|
free(log_root);
|
|
fs_info->log_root_tree = NULL;
|
|
return ret;
|
|
}
|
|
fs_info->log_root_tree = log_root;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_free_fs_root(struct btrfs_root *root)
|
|
{
|
|
if (root->node)
|
|
free_extent_buffer(root->node);
|
|
if (root->commit_root)
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root);
|
|
return 0;
|
|
}
|
|
|
|
static void __free_fs_root(struct rb_node *node)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
root = container_of(node, struct btrfs_root, rb_node);
|
|
btrfs_free_fs_root(root);
|
|
}
|
|
|
|
FREE_RB_BASED_TREE(fs_roots, __free_fs_root);
|
|
|
|
struct btrfs_root *btrfs_read_fs_root_no_cache(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *l;
|
|
u64 generation;
|
|
int ret = 0;
|
|
|
|
root = calloc(1, sizeof(*root));
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
if (location->offset == (u64)-1) {
|
|
ret = btrfs_find_and_setup_root(tree_root, fs_info,
|
|
location->objectid, root);
|
|
if (ret) {
|
|
free(root);
|
|
return ERR_PTR(ret);
|
|
}
|
|
goto insert;
|
|
}
|
|
|
|
btrfs_setup_root(root, fs_info,
|
|
location->objectid);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
free(root);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
|
|
if (ret != 0) {
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
l = path->nodes[0];
|
|
read_extent_buffer(l, &root->root_item,
|
|
btrfs_item_ptr_offset(l, path->slots[0]),
|
|
sizeof(root->root_item));
|
|
memcpy(&root->root_key, location, sizeof(*location));
|
|
ret = 0;
|
|
out:
|
|
btrfs_free_path(path);
|
|
if (ret) {
|
|
free(root);
|
|
return ERR_PTR(ret);
|
|
}
|
|
generation = btrfs_root_generation(&root->root_item);
|
|
ret = read_root_node(fs_info, root,
|
|
btrfs_root_bytenr(&root->root_item), generation,
|
|
btrfs_root_level(&root->root_item));
|
|
if (ret) {
|
|
free(root);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
insert:
|
|
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
|
|
root->track_dirty = 1;
|
|
if (is_fstree(root->root_key.objectid))
|
|
root->ref_cows = 1;
|
|
return root;
|
|
}
|
|
|
|
static int btrfs_global_roots_compare_keys(struct rb_node *node,
|
|
void *data)
|
|
{
|
|
struct btrfs_key *key = (struct btrfs_key *)data;
|
|
struct btrfs_root *root;
|
|
|
|
root = rb_entry(node, struct btrfs_root, rb_node);
|
|
return btrfs_comp_cpu_keys(key, &root->root_key);
|
|
}
|
|
|
|
static int btrfs_global_roots_compare(struct rb_node *node1,
|
|
struct rb_node *node2)
|
|
{
|
|
struct btrfs_root *root = rb_entry(node2, struct btrfs_root, rb_node);
|
|
return btrfs_global_roots_compare_keys(node1, &root->root_key);
|
|
}
|
|
|
|
static int btrfs_fs_roots_compare_objectids(struct rb_node *node,
|
|
void *data)
|
|
{
|
|
u64 objectid = *((u64 *)data);
|
|
struct btrfs_root *root;
|
|
|
|
root = rb_entry(node, struct btrfs_root, rb_node);
|
|
if (objectid > root->objectid)
|
|
return 1;
|
|
else if (objectid < root->objectid)
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_fs_roots_compare_roots(struct rb_node *node1, struct rb_node *node2)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
root = rb_entry(node2, struct btrfs_root, rb_node);
|
|
return btrfs_fs_roots_compare_objectids(node1, (void *)&root->objectid);
|
|
}
|
|
|
|
int btrfs_global_root_insert(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root)
|
|
{
|
|
return rb_insert(&fs_info->global_roots_tree, &root->rb_node,
|
|
btrfs_global_roots_compare);
|
|
}
|
|
|
|
struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct rb_node *node;
|
|
|
|
/*
|
|
* Some callers use the key->offset = (u64)-1 convention for looking up
|
|
* roots, so set this to 0 if we ended up here from that.
|
|
*/
|
|
if (key->offset == (u64)-1)
|
|
key->offset = 0;
|
|
|
|
node = rb_search(&fs_info->global_roots_tree, (void *)key,
|
|
btrfs_global_roots_compare_keys, NULL);
|
|
if (node)
|
|
return rb_entry(node, struct btrfs_root, rb_node);
|
|
return NULL;
|
|
}
|
|
|
|
u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
u64 ret = 0;
|
|
|
|
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
|
|
return ret;
|
|
|
|
/*
|
|
* We use this because we won't have this many global roots, and -1 is
|
|
* special, so we need something that'll not be found if we have any
|
|
* errors from here on.
|
|
*/
|
|
ret = BTRFS_LAST_FREE_OBJECTID;
|
|
block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
|
|
if (block_group)
|
|
ret = block_group->global_root_id;
|
|
return ret;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info,
|
|
u64 bytenr)
|
|
{
|
|
struct btrfs_key key = {
|
|
.objectid = BTRFS_CSUM_TREE_OBJECTID,
|
|
.type = BTRFS_ROOT_ITEM_KEY,
|
|
.offset = btrfs_global_root_id(fs_info, bytenr),
|
|
};
|
|
|
|
return btrfs_global_root(fs_info, &key);
|
|
}
|
|
|
|
struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info,
|
|
u64 bytenr)
|
|
{
|
|
struct btrfs_key key = {
|
|
.objectid = BTRFS_EXTENT_TREE_OBJECTID,
|
|
.type = BTRFS_ROOT_ITEM_KEY,
|
|
.offset = btrfs_global_root_id(fs_info, bytenr),
|
|
};
|
|
|
|
return btrfs_global_root(fs_info, &key);
|
|
}
|
|
|
|
struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *location)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct rb_node *node;
|
|
int ret;
|
|
u64 objectid = location->objectid;
|
|
|
|
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
|
|
return fs_info->tree_root;
|
|
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
|
|
return btrfs_global_root(fs_info, location);
|
|
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
|
|
return fs_info->chunk_root;
|
|
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
|
|
return fs_info->dev_root;
|
|
if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
|
|
return btrfs_global_root(fs_info, location);
|
|
if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
|
|
return fs_info->uuid_root ? fs_info->uuid_root : ERR_PTR(-ENOENT);
|
|
if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
|
|
return fs_info->quota_enabled ? fs_info->quota_root :
|
|
ERR_PTR(-ENOENT);
|
|
if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
|
|
root = btrfs_global_root(fs_info, location);
|
|
return root ? root : ERR_PTR(-ENOENT);
|
|
}
|
|
if (location->objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
|
|
return fs_info->block_group_root ? fs_info->block_group_root :
|
|
ERR_PTR(-ENOENT);
|
|
|
|
BUG_ON(location->objectid == BTRFS_TREE_RELOC_OBJECTID);
|
|
|
|
node = rb_search(&fs_info->fs_root_tree, (void *)&objectid,
|
|
btrfs_fs_roots_compare_objectids, NULL);
|
|
if (node)
|
|
return container_of(node, struct btrfs_root, rb_node);
|
|
|
|
root = btrfs_read_fs_root_no_cache(fs_info, location);
|
|
if (IS_ERR(root))
|
|
return root;
|
|
|
|
ret = rb_insert(&fs_info->fs_root_tree, &root->rb_node,
|
|
btrfs_fs_roots_compare_roots);
|
|
BUG_ON(ret);
|
|
return root;
|
|
}
|
|
|
|
static void __free_global_root(struct rb_node *node)
|
|
{
|
|
struct btrfs_root *root;
|
|
|
|
root = rb_entry(node, struct btrfs_root, rb_node);
|
|
kfree(root);
|
|
}
|
|
|
|
FREE_RB_BASED_TREE(global_roots, __free_global_root);
|
|
|
|
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (fs_info->quota_root)
|
|
free(fs_info->quota_root);
|
|
|
|
free_global_roots_tree(&fs_info->global_roots_tree);
|
|
free(fs_info->tree_root);
|
|
free(fs_info->chunk_root);
|
|
free(fs_info->dev_root);
|
|
free(fs_info->uuid_root);
|
|
free(fs_info->block_group_root);
|
|
free(fs_info->super_copy);
|
|
free(fs_info->log_root_tree);
|
|
free(fs_info);
|
|
}
|
|
|
|
struct btrfs_fs_info *btrfs_new_fs_info(int writable, u64 sb_bytenr)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
|
|
fs_info = calloc(1, sizeof(struct btrfs_fs_info));
|
|
if (!fs_info)
|
|
return NULL;
|
|
|
|
fs_info->tree_root = calloc(1, sizeof(struct btrfs_root));
|
|
fs_info->chunk_root = calloc(1, sizeof(struct btrfs_root));
|
|
fs_info->dev_root = calloc(1, sizeof(struct btrfs_root));
|
|
fs_info->quota_root = calloc(1, sizeof(struct btrfs_root));
|
|
fs_info->uuid_root = calloc(1, sizeof(struct btrfs_root));
|
|
fs_info->block_group_root = calloc(1, sizeof(struct btrfs_root));
|
|
fs_info->super_copy = calloc(1, BTRFS_SUPER_INFO_SIZE);
|
|
|
|
if (!fs_info->tree_root || !fs_info->chunk_root || !fs_info->dev_root ||
|
|
!fs_info->quota_root || !fs_info->uuid_root ||
|
|
!fs_info->block_group_root || !fs_info->super_copy)
|
|
goto free_all;
|
|
|
|
extent_buffer_init_cache(fs_info);
|
|
extent_io_tree_init(&fs_info->dirty_buffers);
|
|
extent_io_tree_init(&fs_info->free_space_cache);
|
|
extent_io_tree_init(&fs_info->pinned_extents);
|
|
extent_io_tree_init(&fs_info->extent_ins);
|
|
|
|
fs_info->block_group_cache_tree = RB_ROOT;
|
|
fs_info->excluded_extents = NULL;
|
|
|
|
fs_info->fs_root_tree = RB_ROOT;
|
|
cache_tree_init(&fs_info->mapping_tree.cache_tree);
|
|
|
|
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
|
|
INIT_LIST_HEAD(&fs_info->space_info);
|
|
INIT_LIST_HEAD(&fs_info->recow_ebs);
|
|
|
|
if (!writable)
|
|
fs_info->readonly = 1;
|
|
|
|
fs_info->super_bytenr = sb_bytenr;
|
|
fs_info->data_alloc_profile = (u64)-1;
|
|
fs_info->metadata_alloc_profile = (u64)-1;
|
|
fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
|
|
fs_info->nr_global_roots = 1;
|
|
fs_info->force_csum_type = -1;
|
|
|
|
return fs_info;
|
|
|
|
free_all:
|
|
btrfs_free_fs_info(fs_info);
|
|
return NULL;
|
|
}
|
|
|
|
int btrfs_check_fs_compatibility(struct btrfs_super_block *sb,
|
|
unsigned int flags)
|
|
{
|
|
u64 features;
|
|
|
|
features = btrfs_super_incompat_flags(sb) &
|
|
~BTRFS_FEATURE_INCOMPAT_SUPP;
|
|
if (features) {
|
|
printk("couldn't open because of unsupported "
|
|
"option features (%llx).\n",
|
|
(unsigned long long)features);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
features = btrfs_super_incompat_flags(sb);
|
|
if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
|
|
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
|
|
btrfs_set_super_incompat_flags(sb, features);
|
|
}
|
|
|
|
features = btrfs_super_compat_ro_flags(sb);
|
|
if (flags & OPEN_CTREE_WRITES) {
|
|
if (flags & OPEN_CTREE_INVALIDATE_FST) {
|
|
/* Clear the FREE_SPACE_TREE_VALID bit on disk... */
|
|
features &= ~BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID;
|
|
btrfs_set_super_compat_ro_flags(sb, features);
|
|
/* ... and ignore the free space tree bit. */
|
|
features &= ~BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE;
|
|
}
|
|
if (features & ~BTRFS_FEATURE_COMPAT_RO_SUPP) {
|
|
printk("couldn't open RDWR because of unsupported "
|
|
"option features (0x%llx)\n",
|
|
(unsigned long long)features);
|
|
return -ENOTSUP;
|
|
}
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int find_best_backup_root(struct btrfs_super_block *super)
|
|
{
|
|
struct btrfs_root_backup *backup;
|
|
u64 orig_gen = btrfs_super_generation(super);
|
|
u64 gen = 0;
|
|
int best_index = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
|
|
backup = super->super_roots + i;
|
|
if (btrfs_backup_tree_root_gen(backup) != orig_gen &&
|
|
btrfs_backup_tree_root_gen(backup) > gen) {
|
|
best_index = i;
|
|
gen = btrfs_backup_tree_root_gen(backup);
|
|
}
|
|
}
|
|
return best_index;
|
|
}
|
|
|
|
static int read_root_or_create_block(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_root *root, u64 bytenr,
|
|
u64 gen, int level, unsigned flags,
|
|
char *str)
|
|
{
|
|
int ret;
|
|
|
|
ret = read_root_node(fs_info, root, bytenr, gen, level);
|
|
if (ret) {
|
|
if (!(flags & OPEN_CTREE_PARTIAL)) {
|
|
error("could not setup %s tree", str);
|
|
return -EIO;
|
|
}
|
|
warning("could not setup %s tree, skipping it", str);
|
|
/*
|
|
* Need a blank node here just so we don't screw up in the
|
|
* million of places that assume a root has a valid ->node
|
|
*/
|
|
root->node = btrfs_find_create_tree_block(fs_info, 0);
|
|
if (!root->node)
|
|
return -ENOMEM;
|
|
clear_extent_buffer_uptodate(root->node);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool maybe_load_block_groups(struct btrfs_fs_info *fs_info,
|
|
u64 flags)
|
|
{
|
|
struct btrfs_root *root = btrfs_block_group_root(fs_info);
|
|
|
|
if (flags & OPEN_CTREE_NO_BLOCK_GROUPS)
|
|
return false;
|
|
|
|
if (root && extent_buffer_uptodate(root->node))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int load_global_roots_objectid(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, u64 objectid,
|
|
unsigned flags, char *str)
|
|
{
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root;
|
|
int ret;
|
|
int found = 0;
|
|
struct btrfs_key key = {
|
|
.objectid = objectid,
|
|
.type = BTRFS_ROOT_ITEM_KEY,
|
|
.offset = 0,
|
|
};
|
|
|
|
|
|
ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
error("could not find %s tree", str);
|
|
return ret;
|
|
}
|
|
ret = 0;
|
|
|
|
while (1) {
|
|
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(tree_root, path);
|
|
if (ret) {
|
|
if (ret > 0)
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid != objectid)
|
|
break;
|
|
|
|
if (key.offset >= fs_info->nr_global_roots) {
|
|
warning("global root with too large of an offset [%llu %llu]",
|
|
key.objectid, key.offset);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
root = calloc(1, sizeof(*root));
|
|
if (!root) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
btrfs_setup_root(root, fs_info, objectid);
|
|
read_extent_buffer(path->nodes[0], &root->root_item,
|
|
btrfs_item_ptr_offset(path->nodes[0],
|
|
path->slots[0]),
|
|
sizeof(root->root_item));
|
|
memcpy(&root->root_key, &key, sizeof(key));
|
|
ret = read_root_or_create_block(fs_info, root,
|
|
btrfs_root_bytenr(&root->root_item),
|
|
btrfs_root_generation(&root->root_item),
|
|
btrfs_root_level(&root->root_item),
|
|
flags, str);
|
|
if (ret) {
|
|
free(root);
|
|
break;
|
|
}
|
|
root->track_dirty = 1;
|
|
|
|
ret = btrfs_global_root_insert(fs_info, root);
|
|
if (ret) {
|
|
free_extent_buffer(root->node);
|
|
free(root);
|
|
break;
|
|
}
|
|
|
|
found++;
|
|
path->slots[0]++;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* We didn't find all of our roots, create empty ones if we have PARTIAL
|
|
* set.
|
|
*/
|
|
if (!ret && found < fs_info->nr_global_roots) {
|
|
int i;
|
|
|
|
if (!(flags & OPEN_CTREE_PARTIAL)) {
|
|
error("could not setup %s tree", str);
|
|
return -EIO;
|
|
}
|
|
|
|
warning("could not setup %s tree, skipping it", str);
|
|
for (i = found; i < fs_info->nr_global_roots; i++) {
|
|
root = calloc(1, sizeof(*root));
|
|
if (!root) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
btrfs_setup_root(root, fs_info, objectid);
|
|
root->root_key.objectid = objectid;
|
|
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
root->root_key.offset = i;
|
|
root->track_dirty = 1;
|
|
root->node = btrfs_find_create_tree_block(fs_info, 0);
|
|
if (!root->node) {
|
|
free(root);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
clear_extent_buffer_uptodate(root->node);
|
|
ret = btrfs_global_root_insert(fs_info, root);
|
|
if (ret) {
|
|
free_extent_buffer(root->node);
|
|
free(root);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int load_global_roots(struct btrfs_fs_info *fs_info, unsigned flags)
|
|
{
|
|
struct btrfs_path *path;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = load_global_roots_objectid(fs_info, path,
|
|
BTRFS_EXTENT_TREE_OBJECTID, flags,
|
|
"extent");
|
|
if (ret)
|
|
goto out;
|
|
ret = load_global_roots_objectid(fs_info, path,
|
|
BTRFS_CSUM_TREE_OBJECTID, flags,
|
|
"csum");
|
|
if (ret)
|
|
goto out;
|
|
if (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
|
|
goto out;
|
|
ret = load_global_roots_objectid(fs_info, path,
|
|
BTRFS_FREE_SPACE_TREE_OBJECTID, flags,
|
|
"free space");
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int load_important_roots(struct btrfs_fs_info *fs_info,
|
|
u64 root_tree_bytenr, unsigned flags)
|
|
{
|
|
struct btrfs_super_block *sb = fs_info->super_copy;
|
|
struct btrfs_root_backup *backup = NULL;
|
|
struct btrfs_root *root;
|
|
u64 bytenr, gen;
|
|
int level;
|
|
int index = -1;
|
|
int ret;
|
|
|
|
if (flags & OPEN_CTREE_BACKUP_ROOT) {
|
|
index = find_best_backup_root(sb);
|
|
if (index >= BTRFS_NUM_BACKUP_ROOTS) {
|
|
fprintf(stderr, "Invalid backup root number\n");
|
|
return -EIO;
|
|
}
|
|
backup = sb->super_roots + index;
|
|
}
|
|
|
|
if (!btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
|
|
!(btrfs_super_flags(fs_info->super_copy) &
|
|
BTRFS_SUPER_FLAG_CHANGING_BG_TREE)) {
|
|
free(fs_info->block_group_root);
|
|
fs_info->block_group_root = NULL;
|
|
goto tree_root;
|
|
}
|
|
|
|
root = fs_info->block_group_root;
|
|
btrfs_setup_root(root, fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID);
|
|
|
|
tree_root:
|
|
if (backup) {
|
|
bytenr = btrfs_backup_tree_root(backup);
|
|
gen = btrfs_backup_tree_root_gen(backup);
|
|
level = btrfs_backup_tree_root_level(backup);
|
|
} else {
|
|
if (root_tree_bytenr)
|
|
bytenr = root_tree_bytenr;
|
|
else
|
|
bytenr = btrfs_super_root(sb);
|
|
gen = btrfs_super_generation(sb);
|
|
level = btrfs_super_root_level(sb);
|
|
}
|
|
|
|
fs_info->generation = gen;
|
|
fs_info->last_trans_committed = gen;
|
|
root = fs_info->tree_root;
|
|
btrfs_setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
|
|
|
|
ret = read_root_node(fs_info, root, bytenr, gen, level);
|
|
if (ret) {
|
|
fprintf(stderr, "Couldn't read tree root\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_setup_all_roots(struct btrfs_fs_info *fs_info, u64 root_tree_bytenr,
|
|
unsigned flags)
|
|
{
|
|
struct btrfs_super_block *sb = fs_info->super_copy;
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
ret = load_important_roots(fs_info, root_tree_bytenr, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = load_global_roots(fs_info, flags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) ||
|
|
btrfs_super_flags(sb) & BTRFS_SUPER_FLAG_CHANGING_BG_TREE) {
|
|
ret = btrfs_find_and_setup_root(root, fs_info,
|
|
BTRFS_BLOCK_GROUP_TREE_OBJECTID,
|
|
fs_info->block_group_root);
|
|
if (ret) {
|
|
error("couldn't load block group tree");
|
|
return -EIO;
|
|
}
|
|
fs_info->block_group_root->track_dirty = 1;
|
|
}
|
|
|
|
ret = btrfs_find_and_setup_root(root, fs_info,
|
|
BTRFS_DEV_TREE_OBJECTID,
|
|
fs_info->dev_root);
|
|
if (ret) {
|
|
printk("Couldn't setup device tree\n");
|
|
return -EIO;
|
|
}
|
|
fs_info->dev_root->track_dirty = 1;
|
|
|
|
ret = btrfs_find_and_setup_root(root, fs_info,
|
|
BTRFS_UUID_TREE_OBJECTID,
|
|
fs_info->uuid_root);
|
|
if (ret) {
|
|
free(fs_info->uuid_root);
|
|
fs_info->uuid_root = NULL;
|
|
} else {
|
|
fs_info->uuid_root->track_dirty = 1;
|
|
}
|
|
|
|
ret = btrfs_find_and_setup_root(root, fs_info,
|
|
BTRFS_QUOTA_TREE_OBJECTID,
|
|
fs_info->quota_root);
|
|
if (ret) {
|
|
free(fs_info->quota_root);
|
|
fs_info->quota_root = NULL;
|
|
} else {
|
|
fs_info->quota_enabled = 1;
|
|
}
|
|
|
|
ret = find_and_setup_log_root(root, fs_info, sb);
|
|
if (ret) {
|
|
printk("Couldn't setup log root tree\n");
|
|
if (!(flags & OPEN_CTREE_PARTIAL))
|
|
return -EIO;
|
|
}
|
|
|
|
if (maybe_load_block_groups(fs_info, flags)) {
|
|
ret = btrfs_read_block_groups(fs_info);
|
|
/*
|
|
* If we don't find any blockgroups (ENOENT) we're either
|
|
* restoring or creating the filesystem, where it's expected,
|
|
* anything else is error
|
|
*/
|
|
if (ret < 0 && ret != -ENOENT) {
|
|
errno = -ret;
|
|
error("failed to read block groups: %m");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
key.objectid = BTRFS_FS_TREE_OBJECTID;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
key.offset = (u64)-1;
|
|
fs_info->fs_root = btrfs_read_fs_root(fs_info, &key);
|
|
|
|
if (IS_ERR(fs_info->fs_root))
|
|
return -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static void release_global_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct rb_node *n;
|
|
|
|
for (n = rb_first(&fs_info->global_roots_tree); n; n = rb_next(n)) {
|
|
root = rb_entry(n, struct btrfs_root, rb_node);
|
|
if (root->node)
|
|
free_extent_buffer(root->node);
|
|
if (root->commit_root)
|
|
free_extent_buffer(root->commit_root);
|
|
root->node = NULL;
|
|
root->commit_root = NULL;
|
|
}
|
|
}
|
|
|
|
void btrfs_release_all_roots(struct btrfs_fs_info *fs_info)
|
|
{
|
|
release_global_roots(fs_info);
|
|
if (fs_info->block_group_root)
|
|
free_extent_buffer(fs_info->block_group_root->node);
|
|
if (fs_info->quota_root)
|
|
free_extent_buffer(fs_info->quota_root->node);
|
|
if (fs_info->dev_root)
|
|
free_extent_buffer(fs_info->dev_root->node);
|
|
if (fs_info->tree_root)
|
|
free_extent_buffer(fs_info->tree_root->node);
|
|
if (fs_info->log_root_tree)
|
|
free_extent_buffer(fs_info->log_root_tree->node);
|
|
if (fs_info->chunk_root)
|
|
free_extent_buffer(fs_info->chunk_root->node);
|
|
if (fs_info->uuid_root)
|
|
free_extent_buffer(fs_info->uuid_root->node);
|
|
}
|
|
|
|
static void free_map_lookup(struct cache_extent *ce)
|
|
{
|
|
struct map_lookup *map;
|
|
|
|
map = container_of(ce, struct map_lookup, ce);
|
|
kfree(map);
|
|
}
|
|
|
|
FREE_EXTENT_CACHE_BASED_TREE(mapping_cache, free_map_lookup);
|
|
|
|
void btrfs_cleanup_all_caches(struct btrfs_fs_info *fs_info)
|
|
{
|
|
while (!list_empty(&fs_info->recow_ebs)) {
|
|
struct extent_buffer *eb;
|
|
eb = list_first_entry(&fs_info->recow_ebs,
|
|
struct extent_buffer, recow);
|
|
list_del_init(&eb->recow);
|
|
free_extent_buffer(eb);
|
|
}
|
|
free_mapping_cache_tree(&fs_info->mapping_tree.cache_tree);
|
|
extent_io_tree_cleanup(&fs_info->dirty_buffers);
|
|
extent_buffer_free_cache(fs_info);
|
|
extent_io_tree_cleanup(&fs_info->free_space_cache);
|
|
extent_io_tree_cleanup(&fs_info->pinned_extents);
|
|
extent_io_tree_cleanup(&fs_info->extent_ins);
|
|
}
|
|
|
|
int btrfs_scan_fs_devices(int fd, const char *path,
|
|
struct btrfs_fs_devices **fs_devices,
|
|
u64 sb_bytenr, unsigned sbflags,
|
|
int skip_devices)
|
|
{
|
|
u64 total_devs;
|
|
u64 dev_size;
|
|
off_t seek_ret;
|
|
int ret;
|
|
if (!sb_bytenr)
|
|
sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
|
|
|
|
seek_ret = lseek(fd, 0, SEEK_END);
|
|
if (seek_ret < 0)
|
|
return -errno;
|
|
|
|
dev_size = seek_ret;
|
|
lseek(fd, 0, SEEK_SET);
|
|
if (sb_bytenr > dev_size) {
|
|
error("superblock bytenr %llu is larger than device size %llu",
|
|
(unsigned long long)sb_bytenr,
|
|
(unsigned long long)dev_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = btrfs_scan_one_device(fd, path, fs_devices,
|
|
&total_devs, sb_bytenr, sbflags);
|
|
if (ret) {
|
|
fprintf(stderr, "No valid Btrfs found on %s\n", path);
|
|
return ret;
|
|
}
|
|
|
|
if (!skip_devices && total_devs != 1) {
|
|
ret = btrfs_scan_devices(0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_setup_chunk_tree_and_device_map(struct btrfs_fs_info *fs_info,
|
|
u64 chunk_root_bytenr)
|
|
{
|
|
struct btrfs_super_block *sb = fs_info->super_copy;
|
|
u64 generation;
|
|
int ret;
|
|
|
|
btrfs_setup_root(fs_info->chunk_root, fs_info,
|
|
BTRFS_CHUNK_TREE_OBJECTID);
|
|
|
|
ret = btrfs_read_sys_array(fs_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
generation = btrfs_super_chunk_root_generation(sb);
|
|
|
|
if (chunk_root_bytenr && !IS_ALIGNED(chunk_root_bytenr,
|
|
fs_info->sectorsize)) {
|
|
warning("chunk_root_bytenr %llu is unaligned to %u, ignore it",
|
|
chunk_root_bytenr, fs_info->sectorsize);
|
|
chunk_root_bytenr = 0;
|
|
}
|
|
|
|
if (!chunk_root_bytenr)
|
|
chunk_root_bytenr = btrfs_super_chunk_root(sb);
|
|
else
|
|
generation = 0;
|
|
|
|
ret = read_root_node(fs_info, fs_info->chunk_root, chunk_root_bytenr,
|
|
generation, btrfs_super_chunk_root_level(sb));
|
|
if (ret) {
|
|
if (fs_info->ignore_chunk_tree_error) {
|
|
warning("cannot read chunk root, continue anyway");
|
|
fs_info->chunk_root = NULL;
|
|
return 0;
|
|
} else {
|
|
error("cannot read chunk root");
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
if (!(btrfs_super_flags(sb) & BTRFS_SUPER_FLAG_METADUMP)) {
|
|
ret = btrfs_read_chunk_tree(fs_info);
|
|
if (ret) {
|
|
fprintf(stderr, "Couldn't read chunk tree\n");
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct btrfs_fs_info *__open_ctree_fd(int fp, struct open_ctree_flags *ocf)
|
|
{
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_super_block *disk_super;
|
|
struct btrfs_fs_devices *fs_devices = NULL;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
int oflags;
|
|
unsigned sbflags = SBREAD_DEFAULT;
|
|
unsigned flags = ocf->flags;
|
|
u64 sb_bytenr = ocf->sb_bytenr;
|
|
|
|
if (sb_bytenr == 0)
|
|
sb_bytenr = BTRFS_SUPER_INFO_OFFSET;
|
|
|
|
/* try to drop all the caches */
|
|
if (posix_fadvise(fp, 0, 0, POSIX_FADV_DONTNEED))
|
|
fprintf(stderr, "Warning, could not drop caches\n");
|
|
|
|
fs_info = btrfs_new_fs_info(flags & OPEN_CTREE_WRITES, sb_bytenr);
|
|
if (!fs_info) {
|
|
error_msg(ERROR_MSG_MEMORY, "fs_info");
|
|
return NULL;
|
|
}
|
|
if (flags & OPEN_CTREE_RESTORE)
|
|
fs_info->on_restoring = 1;
|
|
if (flags & OPEN_CTREE_SUPPRESS_CHECK_BLOCK_ERRORS)
|
|
fs_info->suppress_check_block_errors = 1;
|
|
if (flags & OPEN_CTREE_IGNORE_FSID_MISMATCH)
|
|
fs_info->ignore_fsid_mismatch = 1;
|
|
if (flags & OPEN_CTREE_SKIP_CSUM_CHECK)
|
|
fs_info->skip_csum_check = 1;
|
|
if (flags & OPEN_CTREE_IGNORE_CHUNK_TREE_ERROR)
|
|
fs_info->ignore_chunk_tree_error = 1;
|
|
if (flags & OPEN_CTREE_HIDE_NAMES)
|
|
fs_info->hide_names = 1;
|
|
if (flags & OPEN_CTREE_ALLOW_TRANSID_MISMATCH)
|
|
fs_info->allow_transid_mismatch = 1;
|
|
|
|
if ((flags & OPEN_CTREE_RECOVER_SUPER)
|
|
&& (flags & OPEN_CTREE_TEMPORARY_SUPER)) {
|
|
fprintf(stderr,
|
|
"cannot open a filesystem with temporary super block for recovery");
|
|
goto out;
|
|
}
|
|
|
|
if (flags & OPEN_CTREE_TEMPORARY_SUPER)
|
|
sbflags = SBREAD_TEMPORARY;
|
|
|
|
if (flags & OPEN_CTREE_IGNORE_FSID_MISMATCH)
|
|
sbflags |= SBREAD_IGNORE_FSID_MISMATCH;
|
|
|
|
ret = btrfs_scan_fs_devices(fp, ocf->filename, &fs_devices, sb_bytenr,
|
|
sbflags, (flags & OPEN_CTREE_NO_DEVICES));
|
|
if (ret)
|
|
goto out;
|
|
|
|
fs_info->fs_devices = fs_devices;
|
|
if (flags & OPEN_CTREE_WRITES)
|
|
oflags = O_RDWR;
|
|
else
|
|
oflags = O_RDONLY;
|
|
|
|
if (flags & OPEN_CTREE_EXCLUSIVE)
|
|
oflags |= O_EXCL;
|
|
|
|
ret = btrfs_open_devices(fs_info, fs_devices, oflags);
|
|
if (ret)
|
|
goto out;
|
|
|
|
disk_super = fs_info->super_copy;
|
|
if (flags & OPEN_CTREE_RECOVER_SUPER)
|
|
ret = btrfs_read_dev_super(fs_devices->latest_bdev, disk_super,
|
|
sb_bytenr, SBREAD_RECOVER);
|
|
else
|
|
ret = btrfs_read_dev_super(fp, disk_super, sb_bytenr,
|
|
sbflags);
|
|
if (ret) {
|
|
printk("No valid btrfs found\n");
|
|
goto out_devices;
|
|
}
|
|
|
|
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID &&
|
|
!fs_info->ignore_fsid_mismatch) {
|
|
fprintf(stderr, "ERROR: Filesystem UUID change in progress\n");
|
|
goto out_devices;
|
|
}
|
|
|
|
/* CHECK: ignore_csum_mismatch */
|
|
|
|
ASSERT(!memcmp(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE));
|
|
if (btrfs_fs_incompat(fs_info, METADATA_UUID))
|
|
ASSERT(!memcmp(disk_super->metadata_uuid,
|
|
fs_devices->metadata_uuid, BTRFS_FSID_SIZE));
|
|
|
|
fs_info->sectorsize = btrfs_super_sectorsize(disk_super);
|
|
fs_info->nodesize = btrfs_super_nodesize(disk_super);
|
|
fs_info->stripesize = btrfs_super_stripesize(disk_super);
|
|
fs_info->csum_type = btrfs_super_csum_type(disk_super);
|
|
fs_info->csum_size = btrfs_super_csum_size(disk_super);
|
|
fs_info->leaf_data_size = __BTRFS_LEAF_DATA_SIZE(fs_info->nodesize);
|
|
|
|
ret = btrfs_check_fs_compatibility(fs_info->super_copy, flags);
|
|
if (ret)
|
|
goto out_devices;
|
|
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
|
|
fs_info->nr_global_roots =
|
|
btrfs_super_nr_global_roots(fs_info->super_copy);
|
|
|
|
/*
|
|
* fs_info->zone_size (and zoned) are not known before reading the
|
|
* chunk tree, so it's 0 at this point. But, fs_info->zoned == 0
|
|
* will cause btrfs_pread() not to use an aligned bounce buffer,
|
|
* causing EINVAL when the file is opened with O_DIRECT. Temporarily
|
|
* set zoned = 1 in that case.
|
|
*/
|
|
if (fcntl(fp, F_GETFL) & O_DIRECT)
|
|
fs_info->zoned = 1;
|
|
|
|
ret = btrfs_setup_chunk_tree_and_device_map(fs_info, ocf->chunk_tree_bytenr);
|
|
if (ret)
|
|
goto out_chunk;
|
|
|
|
fs_info->zoned = 0;
|
|
|
|
/* Chunk tree root is unable to read, return directly */
|
|
if (!fs_info->chunk_root)
|
|
return fs_info;
|
|
|
|
/*
|
|
* Get zone type information of zoned block devices. This will also
|
|
* handle emulation of a zoned filesystem if a regular device has the
|
|
* zoned incompat feature flag set.
|
|
*/
|
|
ret = btrfs_get_dev_zone_info_all_devices(fs_info);
|
|
if (ret) {
|
|
error("zoned: failed to read device zone info: %d", ret);
|
|
goto out_chunk;
|
|
}
|
|
|
|
ret = btrfs_check_zoned_mode(fs_info);
|
|
if (ret) {
|
|
error("zoned: failed to initialize zoned mode: %d", ret);
|
|
goto out_chunk;
|
|
}
|
|
|
|
eb = fs_info->chunk_root->node;
|
|
read_extent_buffer(eb, fs_info->chunk_tree_uuid,
|
|
btrfs_header_chunk_tree_uuid(eb),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
ret = btrfs_setup_all_roots(fs_info, ocf->root_tree_bytenr, flags);
|
|
if (ret && !(flags & __OPEN_CTREE_RETURN_CHUNK_ROOT) &&
|
|
!fs_info->ignore_chunk_tree_error)
|
|
goto out_chunk;
|
|
|
|
return fs_info;
|
|
|
|
out_chunk:
|
|
btrfs_release_all_roots(fs_info);
|
|
btrfs_cleanup_all_caches(fs_info);
|
|
out_devices:
|
|
btrfs_close_devices(fs_devices);
|
|
out:
|
|
btrfs_free_fs_info(fs_info);
|
|
return NULL;
|
|
}
|
|
|
|
struct btrfs_fs_info *open_ctree_fs_info(struct open_ctree_flags *ocf)
|
|
{
|
|
int fp;
|
|
int ret;
|
|
struct btrfs_fs_info *info;
|
|
int oflags = O_RDWR;
|
|
struct stat st;
|
|
|
|
ret = stat(ocf->filename, &st);
|
|
if (ret < 0) {
|
|
error("cannot stat '%s': %m", ocf->filename);
|
|
return NULL;
|
|
}
|
|
if (!(((st.st_mode & S_IFMT) == S_IFREG) || ((st.st_mode & S_IFMT) == S_IFBLK))) {
|
|
error("not a regular file or block device: %s", ocf->filename);
|
|
return NULL;
|
|
}
|
|
|
|
if (!(ocf->flags & OPEN_CTREE_WRITES))
|
|
oflags = O_RDONLY;
|
|
|
|
if ((oflags & O_RDWR) && zoned_model(ocf->filename) == ZONED_HOST_MANAGED)
|
|
oflags |= O_DIRECT;
|
|
|
|
fp = open(ocf->filename, oflags);
|
|
if (fp < 0) {
|
|
error("cannot open '%s': %m", ocf->filename);
|
|
return NULL;
|
|
}
|
|
info = __open_ctree_fd(fp, ocf);
|
|
close(fp);
|
|
return info;
|
|
}
|
|
|
|
struct btrfs_root *open_ctree(const char *filename, u64 sb_bytenr,
|
|
unsigned flags)
|
|
{
|
|
struct btrfs_fs_info *info;
|
|
struct open_ctree_flags ocf = { 0 };
|
|
|
|
/* This flags may not return fs_info with any valid root */
|
|
BUG_ON(flags & OPEN_CTREE_IGNORE_CHUNK_TREE_ERROR);
|
|
ocf.filename = filename;
|
|
ocf.sb_bytenr = sb_bytenr;
|
|
ocf.flags = flags;
|
|
info = open_ctree_fs_info(&ocf);
|
|
if (!info)
|
|
return NULL;
|
|
if (flags & __OPEN_CTREE_RETURN_CHUNK_ROOT)
|
|
return info->chunk_root;
|
|
return info->fs_root;
|
|
}
|
|
|
|
struct btrfs_root *open_ctree_fd(int fp, const char *path, u64 sb_bytenr,
|
|
unsigned flags)
|
|
{
|
|
struct btrfs_fs_info *info;
|
|
struct open_ctree_flags ocf = { 0 };
|
|
|
|
/* This flags may not return fs_info with any valid root */
|
|
if (flags & OPEN_CTREE_IGNORE_CHUNK_TREE_ERROR) {
|
|
error("invalid open_ctree flags: 0x%llx",
|
|
(unsigned long long)flags);
|
|
return NULL;
|
|
}
|
|
ocf.filename = path;
|
|
ocf.sb_bytenr = sb_bytenr;
|
|
ocf.flags = flags;
|
|
info = __open_ctree_fd(fp, &ocf);
|
|
if (!info)
|
|
return NULL;
|
|
if (flags & __OPEN_CTREE_RETURN_CHUNK_ROOT)
|
|
return info->chunk_root;
|
|
return info->fs_root;
|
|
}
|
|
|
|
/*
|
|
* Check if the super is valid:
|
|
* - nodesize/sectorsize - minimum, maximum, alignment
|
|
* - tree block starts - alignment
|
|
* - number of devices - something sane
|
|
* - sys array size - maximum
|
|
*/
|
|
int btrfs_check_super(struct btrfs_super_block *sb, unsigned sbflags)
|
|
{
|
|
u8 result[BTRFS_CSUM_SIZE];
|
|
u16 csum_type;
|
|
int csum_size;
|
|
u8 *metadata_uuid;
|
|
|
|
if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
|
|
if (btrfs_super_magic(sb) == BTRFS_MAGIC_TEMPORARY) {
|
|
if (!(sbflags & SBREAD_TEMPORARY)) {
|
|
error("superblock magic doesn't match");
|
|
return -EIO;
|
|
}
|
|
}
|
|
}
|
|
|
|
csum_type = btrfs_super_csum_type(sb);
|
|
if (csum_type >= btrfs_super_num_csums()) {
|
|
error("unsupported checksum algorithm %u", csum_type);
|
|
return -EIO;
|
|
}
|
|
csum_size = btrfs_super_csum_size(sb);
|
|
|
|
btrfs_csum_data(NULL, csum_type, (u8 *)sb + BTRFS_CSUM_SIZE,
|
|
result, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
|
|
if (memcmp(result, sb->csum, csum_size)) {
|
|
error("superblock checksum mismatch");
|
|
return -EIO;
|
|
}
|
|
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
error("tree_root level too big: %d >= %d",
|
|
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
|
|
goto error_out;
|
|
}
|
|
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
error("chunk_root level too big: %d >= %d",
|
|
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
|
|
goto error_out;
|
|
}
|
|
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
|
|
error("log_root level too big: %d >= %d",
|
|
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
|
|
goto error_out;
|
|
}
|
|
|
|
if (!IS_ALIGNED(btrfs_super_root(sb), 4096)) {
|
|
error("tree_root block unaligned: %llu", btrfs_super_root(sb));
|
|
goto error_out;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096)) {
|
|
error("chunk_root block unaligned: %llu",
|
|
btrfs_super_chunk_root(sb));
|
|
goto error_out;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096)) {
|
|
error("log_root block unaligned: %llu",
|
|
btrfs_super_log_root(sb));
|
|
goto error_out;
|
|
}
|
|
if (btrfs_super_nodesize(sb) < 4096) {
|
|
error("nodesize too small: %u < 4096",
|
|
btrfs_super_nodesize(sb));
|
|
goto error_out;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_nodesize(sb), 4096)) {
|
|
error("nodesize unaligned: %u", btrfs_super_nodesize(sb));
|
|
goto error_out;
|
|
}
|
|
if (btrfs_super_sectorsize(sb) < 4096) {
|
|
error("sectorsize too small: %u < 4096",
|
|
btrfs_super_sectorsize(sb));
|
|
goto error_out;
|
|
}
|
|
if (!IS_ALIGNED(btrfs_super_sectorsize(sb), 4096)) {
|
|
error("sectorsize unaligned: %u", btrfs_super_sectorsize(sb));
|
|
goto error_out;
|
|
}
|
|
if (btrfs_super_total_bytes(sb) == 0) {
|
|
error("invalid total_bytes 0");
|
|
goto error_out;
|
|
}
|
|
if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
|
|
error("invalid bytes_used %llu", btrfs_super_bytes_used(sb));
|
|
goto error_out;
|
|
}
|
|
if ((btrfs_super_stripesize(sb) != 4096)
|
|
&& (btrfs_super_stripesize(sb) != btrfs_super_sectorsize(sb))) {
|
|
error("invalid stripesize %u", btrfs_super_stripesize(sb));
|
|
goto error_out;
|
|
}
|
|
|
|
if (btrfs_super_incompat_flags(sb) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
|
|
metadata_uuid = sb->metadata_uuid;
|
|
else
|
|
metadata_uuid = sb->fsid;
|
|
|
|
if (memcmp(metadata_uuid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
|
|
char fsid[BTRFS_UUID_UNPARSED_SIZE];
|
|
char dev_fsid[BTRFS_UUID_UNPARSED_SIZE];
|
|
|
|
uuid_unparse(sb->metadata_uuid, fsid);
|
|
uuid_unparse(sb->dev_item.fsid, dev_fsid);
|
|
if (sbflags & SBREAD_IGNORE_FSID_MISMATCH) {
|
|
warning("ignored: dev_item fsid mismatch: %s != %s",
|
|
dev_fsid, fsid);
|
|
} else {
|
|
error("dev_item UUID does not match fsid: %s != %s",
|
|
dev_fsid, fsid);
|
|
goto error_out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hint to catch really bogus numbers, bitflips or so
|
|
*/
|
|
if (btrfs_super_num_devices(sb) > (1UL << 31)) {
|
|
warning("suspicious number of devices: %llu",
|
|
btrfs_super_num_devices(sb));
|
|
}
|
|
|
|
if (btrfs_super_num_devices(sb) == 0) {
|
|
error("number of devices is 0");
|
|
goto error_out;
|
|
}
|
|
|
|
/*
|
|
* Obvious sys_chunk_array corruptions, it must hold at least one key
|
|
* and one chunk
|
|
*/
|
|
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
|
|
error("system chunk array too big %u > %u",
|
|
btrfs_super_sys_array_size(sb),
|
|
BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
|
|
goto error_out;
|
|
}
|
|
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
|
|
+ sizeof(struct btrfs_chunk)) {
|
|
error("system chunk array too small %u < %zu",
|
|
btrfs_super_sys_array_size(sb),
|
|
sizeof(struct btrfs_disk_key) +
|
|
sizeof(struct btrfs_chunk));
|
|
goto error_out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error_out:
|
|
error("superblock checksum matches but it has invalid members");
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* btrfs_read_dev_super - read a valid superblock from a block device
|
|
* @fd: file descriptor of the device
|
|
* @sb: buffer where the superblock is going to be read in
|
|
* @sb_bytenr: offset of the particular superblock copy we want
|
|
* @sbflags: flags controlling how the superblock is read
|
|
*
|
|
* This function is used by various btrfs commands to obtain a valid superblock.
|
|
*
|
|
* It's mode of operation is controlled by the @sb_bytenr and @sbdflags
|
|
* parameters. If SBREAD_RECOVER flag is set and @sb_bytenr is
|
|
* BTRFS_SUPER_INFO_OFFSET then the function reads all 3 superblock copies and
|
|
* returns the newest one. If SBREAD_RECOVER is not set then only a single
|
|
* copy is read, which one is decided by @sb_bytenr. If @sb_bytenr !=
|
|
* BTRFS_SUPER_INFO_OFFSET then the @sbflags is effectively ignored and only a
|
|
* single copy is read.
|
|
*/
|
|
int btrfs_read_dev_super(int fd, struct btrfs_super_block *sb, u64 sb_bytenr,
|
|
unsigned sbflags)
|
|
{
|
|
u8 fsid[BTRFS_FSID_SIZE];
|
|
u8 metadata_uuid[BTRFS_FSID_SIZE];
|
|
int fsid_is_initialized = 0;
|
|
struct btrfs_super_block buf;
|
|
int i;
|
|
int ret;
|
|
int max_super = sbflags & SBREAD_RECOVER ? BTRFS_SUPER_MIRROR_MAX : 1;
|
|
u64 transid = 0;
|
|
bool metadata_uuid_set = false;
|
|
u64 bytenr;
|
|
|
|
if (sb_bytenr != BTRFS_SUPER_INFO_OFFSET) {
|
|
ret = sbread(fd, &buf, sb_bytenr);
|
|
/* real error */
|
|
if (ret < 0)
|
|
return -errno;
|
|
|
|
/* Not large enough sb, return -ENOENT instead of normal -EIO */
|
|
if (ret < BTRFS_SUPER_INFO_SIZE)
|
|
return -ENOENT;
|
|
|
|
if (btrfs_super_bytenr(&buf) != sb_bytenr)
|
|
return -EIO;
|
|
|
|
ret = btrfs_check_super(&buf, sbflags);
|
|
if (ret < 0)
|
|
return ret;
|
|
memcpy(sb, &buf, BTRFS_SUPER_INFO_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* we would like to check all the supers, but that would make
|
|
* a btrfs mount succeed after a mkfs from a different FS.
|
|
* So, we need to add a special mount option to scan for
|
|
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
|
|
*/
|
|
|
|
for (i = 0; i < max_super; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
ret = sbread(fd, &buf, bytenr);
|
|
|
|
if (ret < BTRFS_SUPER_INFO_SIZE)
|
|
break;
|
|
|
|
if (btrfs_super_bytenr(&buf) != bytenr )
|
|
continue;
|
|
/* if magic is NULL, the device was removed */
|
|
if (btrfs_super_magic(&buf) == 0 && i == 0)
|
|
break;
|
|
if (btrfs_check_super(&buf, sbflags))
|
|
continue;
|
|
|
|
if (!fsid_is_initialized) {
|
|
if (btrfs_super_incompat_flags(&buf) &
|
|
BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
|
|
metadata_uuid_set = true;
|
|
memcpy(metadata_uuid, buf.metadata_uuid,
|
|
sizeof(metadata_uuid));
|
|
}
|
|
memcpy(fsid, buf.fsid, sizeof(fsid));
|
|
fsid_is_initialized = 1;
|
|
} else if (memcmp(fsid, buf.fsid, sizeof(fsid)) ||
|
|
(metadata_uuid_set && memcmp(metadata_uuid,
|
|
buf.metadata_uuid,
|
|
sizeof(metadata_uuid)))) {
|
|
/*
|
|
* the superblocks (the original one and
|
|
* its backups) contain data of different
|
|
* filesystems -> the super cannot be trusted
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
if (btrfs_super_generation(&buf) > transid) {
|
|
memcpy(sb, &buf, BTRFS_SUPER_INFO_SIZE);
|
|
transid = btrfs_super_generation(&buf);
|
|
}
|
|
}
|
|
|
|
return transid > 0 ? 0 : -1;
|
|
}
|
|
|
|
static int write_dev_supers(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_super_block *sb,
|
|
struct btrfs_device *device)
|
|
{
|
|
u64 bytenr;
|
|
u8 result[BTRFS_CSUM_SIZE];
|
|
int i, ret;
|
|
u16 csum_type = btrfs_super_csum_type(sb);
|
|
|
|
/*
|
|
* We need to write super block after all metadata written.
|
|
* This is the equivalent of kernel pre-flush for FUA.
|
|
*/
|
|
ret = fsync(device->fd);
|
|
if (ret < 0) {
|
|
error(
|
|
"failed to write super block for devid %llu: flush error: %m",
|
|
device->devid);
|
|
return -errno;
|
|
}
|
|
if (fs_info->super_bytenr != BTRFS_SUPER_INFO_OFFSET) {
|
|
btrfs_set_super_bytenr(sb, fs_info->super_bytenr);
|
|
btrfs_csum_data(fs_info, csum_type, (u8 *)sb + BTRFS_CSUM_SIZE,
|
|
result, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
memcpy(&sb->csum[0], result, BTRFS_CSUM_SIZE);
|
|
|
|
/*
|
|
* super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
|
|
* zero filled, we can use it directly
|
|
*/
|
|
ret = sbwrite(device->fd, fs_info->super_copy, fs_info->super_bytenr);
|
|
if (ret != BTRFS_SUPER_INFO_SIZE) {
|
|
errno = EIO;
|
|
error(
|
|
"failed to write super block for devid %llu: write error: %m",
|
|
device->devid);
|
|
return -EIO;
|
|
}
|
|
ret = fsync(device->fd);
|
|
if (ret < 0) {
|
|
error(
|
|
"failed to write super block for devid %llu: flush error: %m",
|
|
device->devid);
|
|
return -errno;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
bytenr = btrfs_sb_offset(i);
|
|
if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
|
|
break;
|
|
|
|
btrfs_set_super_bytenr(sb, bytenr);
|
|
|
|
btrfs_csum_data(fs_info, csum_type, (u8 *)sb + BTRFS_CSUM_SIZE,
|
|
result, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
|
|
memcpy(&sb->csum[0], result, BTRFS_CSUM_SIZE);
|
|
|
|
/*
|
|
* super_copy is BTRFS_SUPER_INFO_SIZE bytes and is
|
|
* zero filled, we can use it directly
|
|
*/
|
|
ret = sbwrite(device->fd, fs_info->super_copy, bytenr);
|
|
if (ret != BTRFS_SUPER_INFO_SIZE) {
|
|
errno = EIO;
|
|
error(
|
|
"failed to write super block for devid %llu: write error: %m",
|
|
device->devid);
|
|
return -errno;
|
|
}
|
|
/*
|
|
* Flush after the primary sb write, this is the equivalent of
|
|
* kernel post-flush for FUA write.
|
|
*/
|
|
if (i == 0) {
|
|
ret = fsync(device->fd);
|
|
if (ret < 0) {
|
|
error(
|
|
"failed to write super block for devid %llu: flush error: %m",
|
|
device->devid);
|
|
return -errno;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* copy all the root pointers into the super backup array.
|
|
* this will bump the backup pointer by one when it is
|
|
* done
|
|
*/
|
|
static void backup_super_roots(struct btrfs_fs_info *info)
|
|
{
|
|
struct btrfs_root_backup *root_backup;
|
|
int next_backup;
|
|
int last_backup;
|
|
|
|
last_backup = find_best_backup_root(info->super_copy);
|
|
next_backup = (last_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
|
|
|
|
/* just overwrite the last backup if we're at the same generation */
|
|
root_backup = info->super_copy->super_roots + last_backup;
|
|
if (btrfs_backup_tree_root_gen(root_backup) ==
|
|
btrfs_header_generation(info->tree_root->node))
|
|
next_backup = last_backup;
|
|
|
|
root_backup = info->super_copy->super_roots + next_backup;
|
|
|
|
/*
|
|
* make sure all of our padding and empty slots get zero filled
|
|
* regardless of which ones we use today
|
|
*/
|
|
memset(root_backup, 0, sizeof(*root_backup));
|
|
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
|
|
btrfs_set_backup_tree_root_gen(root_backup,
|
|
btrfs_header_generation(info->tree_root->node));
|
|
btrfs_set_backup_tree_root_level(root_backup,
|
|
btrfs_header_level(info->tree_root->node));
|
|
|
|
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
|
|
btrfs_set_backup_chunk_root_gen(root_backup,
|
|
btrfs_header_generation(info->chunk_root->node));
|
|
btrfs_set_backup_chunk_root_level(root_backup,
|
|
btrfs_header_level(info->chunk_root->node));
|
|
|
|
/*
|
|
* we might commit during log recovery, which happens before we set
|
|
* the fs_root. Make sure it is valid before we fill it in.
|
|
*/
|
|
if (info->fs_root && info->fs_root->node) {
|
|
btrfs_set_backup_fs_root(root_backup,
|
|
info->fs_root->node->start);
|
|
btrfs_set_backup_fs_root_gen(root_backup,
|
|
btrfs_header_generation(info->fs_root->node));
|
|
btrfs_set_backup_fs_root_level(root_backup,
|
|
btrfs_header_level(info->fs_root->node));
|
|
}
|
|
|
|
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
|
|
btrfs_set_backup_dev_root_gen(root_backup,
|
|
btrfs_header_generation(info->dev_root->node));
|
|
btrfs_set_backup_dev_root_level(root_backup,
|
|
btrfs_header_level(info->dev_root->node));
|
|
|
|
btrfs_set_backup_total_bytes(root_backup,
|
|
btrfs_super_total_bytes(info->super_copy));
|
|
btrfs_set_backup_bytes_used(root_backup,
|
|
btrfs_super_bytes_used(info->super_copy));
|
|
btrfs_set_backup_num_devices(root_backup,
|
|
btrfs_super_num_devices(info->super_copy));
|
|
|
|
if (!btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
|
|
struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
|
|
struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
|
|
|
|
btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
|
|
btrfs_set_backup_csum_root_gen(root_backup,
|
|
btrfs_header_generation(csum_root->node));
|
|
btrfs_set_backup_csum_root_level(root_backup,
|
|
btrfs_header_level(csum_root->node));
|
|
|
|
btrfs_set_backup_extent_root(root_backup,
|
|
extent_root->node->start);
|
|
btrfs_set_backup_extent_root_gen(root_backup,
|
|
btrfs_header_generation(extent_root->node));
|
|
btrfs_set_backup_extent_root_level(root_backup,
|
|
btrfs_header_level(extent_root->node));
|
|
}
|
|
}
|
|
|
|
int write_all_supers(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct list_head *head = &fs_info->fs_devices->devices;
|
|
struct btrfs_device *dev;
|
|
struct btrfs_super_block *sb;
|
|
struct btrfs_dev_item *dev_item;
|
|
int ret;
|
|
u64 flags;
|
|
|
|
backup_super_roots(fs_info);
|
|
sb = fs_info->super_copy;
|
|
dev_item = &sb->dev_item;
|
|
list_for_each_entry(dev, head, dev_list) {
|
|
if (!dev->writeable)
|
|
continue;
|
|
|
|
btrfs_set_stack_device_generation(dev_item, 0);
|
|
btrfs_set_stack_device_type(dev_item, dev->type);
|
|
btrfs_set_stack_device_id(dev_item, dev->devid);
|
|
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
|
|
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
|
|
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
|
|
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
|
|
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
|
|
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(dev_item->fsid, fs_info->fs_devices->metadata_uuid,
|
|
BTRFS_FSID_SIZE);
|
|
|
|
flags = btrfs_super_flags(sb);
|
|
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
|
|
|
|
ret = write_dev_supers(fs_info, sb, dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int write_ctree_super(struct btrfs_trans_handle *trans)
|
|
{
|
|
int ret;
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *chunk_root = fs_info->chunk_root;
|
|
|
|
if (fs_info->readonly)
|
|
return 0;
|
|
|
|
btrfs_set_super_generation(fs_info->super_copy,
|
|
trans->transid);
|
|
btrfs_set_super_root(fs_info->super_copy,
|
|
tree_root->node->start);
|
|
btrfs_set_super_root_level(fs_info->super_copy,
|
|
btrfs_header_level(tree_root->node));
|
|
btrfs_set_super_chunk_root(fs_info->super_copy,
|
|
chunk_root->node->start);
|
|
btrfs_set_super_chunk_root_level(fs_info->super_copy,
|
|
btrfs_header_level(chunk_root->node));
|
|
btrfs_set_super_chunk_root_generation(fs_info->super_copy,
|
|
btrfs_header_generation(chunk_root->node));
|
|
|
|
ret = write_all_supers(fs_info);
|
|
if (ret)
|
|
fprintf(stderr, "failed to write new super block err %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
int close_ctree_fs_info(struct btrfs_fs_info *fs_info)
|
|
{
|
|
int ret;
|
|
int err = 0;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *root = fs_info->tree_root;
|
|
|
|
if (fs_info->last_trans_committed !=
|
|
fs_info->generation) {
|
|
BUG_ON(!root);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
goto skip_commit;
|
|
}
|
|
btrfs_commit_transaction(trans, root);
|
|
trans = btrfs_start_transaction(root, 1);
|
|
BUG_ON(IS_ERR(trans));
|
|
ret = commit_tree_roots(trans, fs_info);
|
|
BUG_ON(ret);
|
|
ret = __commit_transaction(trans, root);
|
|
BUG_ON(ret);
|
|
ret = write_ctree_super(trans);
|
|
kfree(trans);
|
|
if (ret) {
|
|
err = ret;
|
|
goto skip_commit;
|
|
}
|
|
}
|
|
|
|
if (fs_info->finalize_on_close) {
|
|
ret = btrfs_wipe_temporary_sb(fs_info->fs_devices);
|
|
if (ret) {
|
|
error("zoned: failed to wipe temporary super blocks: %m");
|
|
goto skip_commit;
|
|
}
|
|
|
|
btrfs_set_super_magic(fs_info->super_copy, BTRFS_MAGIC);
|
|
root->fs_info->finalize_on_close = 0;
|
|
ret = write_all_supers(fs_info);
|
|
if (ret)
|
|
fprintf(stderr,
|
|
"failed to write new super block err %d\n", ret);
|
|
}
|
|
|
|
skip_commit:
|
|
btrfs_free_block_groups(fs_info);
|
|
|
|
free_fs_roots_tree(&fs_info->fs_root_tree);
|
|
|
|
btrfs_release_all_roots(fs_info);
|
|
ret = btrfs_close_devices(fs_info->fs_devices);
|
|
btrfs_cleanup_all_caches(fs_info);
|
|
btrfs_free_fs_info(fs_info);
|
|
if (!err)
|
|
err = ret;
|
|
return err;
|
|
}
|
|
|
|
int clean_tree_block(struct extent_buffer *eb)
|
|
{
|
|
return clear_extent_buffer_dirty(eb);
|
|
}
|
|
|
|
void btrfs_mark_buffer_dirty(struct extent_buffer *eb)
|
|
{
|
|
set_extent_buffer_dirty(eb);
|
|
}
|
|
|
|
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
|
|
{
|
|
int ret;
|
|
|
|
ret = extent_buffer_uptodate(buf);
|
|
if (!ret)
|
|
return ret;
|
|
|
|
ret = verify_parent_transid(buf, parent_transid,
|
|
buf->fs_info->allow_transid_mismatch);
|
|
return !ret;
|
|
}
|
|
|
|
int btrfs_set_buffer_uptodate(struct extent_buffer *eb)
|
|
{
|
|
return set_extent_buffer_uptodate(eb);
|
|
}
|
|
|
|
int btrfs_delete_and_free_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
int ret;
|
|
|
|
ret = btrfs_del_root(trans, tree_root, &root->root_key);
|
|
if (ret)
|
|
return ret;
|
|
|
|
list_del(&root->dirty_list);
|
|
ret = clean_tree_block(root->node);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_free_tree_block(trans, root, root->node, 0, 1);
|
|
if (ret)
|
|
return ret;
|
|
rb_erase(&root->rb_node, &fs_info->global_roots_tree);
|
|
free_extent_buffer(root->node);
|
|
free_extent_buffer(root->commit_root);
|
|
kfree(root);
|
|
return 0;
|
|
}
|
|
|
|
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *key)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root *root;
|
|
int ret = 0;
|
|
|
|
root = kzalloc(sizeof(*root), GFP_KERNEL);
|
|
if (!root)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
btrfs_setup_root(root, fs_info, key->objectid);
|
|
memcpy(&root->root_key, key, sizeof(struct btrfs_key));
|
|
|
|
leaf = btrfs_alloc_free_block(trans, root, fs_info->nodesize,
|
|
root->root_key.objectid, NULL, 0, 0, 0);
|
|
if (IS_ERR(leaf)) {
|
|
ret = PTR_ERR(leaf);
|
|
leaf = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_bytenr(leaf, leaf->start);
|
|
btrfs_set_header_generation(leaf, trans->transid);
|
|
btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(leaf, root->root_key.objectid);
|
|
root->node = leaf;
|
|
write_extent_buffer(leaf, fs_info->fs_devices->metadata_uuid,
|
|
btrfs_header_fsid(), BTRFS_FSID_SIZE);
|
|
write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
|
|
btrfs_header_chunk_tree_uuid(leaf),
|
|
BTRFS_UUID_SIZE);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
extent_buffer_get(root->node);
|
|
root->commit_root = root->node;
|
|
root->track_dirty = 1;
|
|
|
|
root->root_item.flags = 0;
|
|
root->root_item.byte_limit = 0;
|
|
btrfs_set_root_bytenr(&root->root_item, leaf->start);
|
|
btrfs_set_root_generation(&root->root_item, trans->transid);
|
|
btrfs_set_root_level(&root->root_item, 0);
|
|
btrfs_set_root_refs(&root->root_item, 1);
|
|
btrfs_set_root_used(&root->root_item, leaf->len);
|
|
btrfs_set_root_last_snapshot(&root->root_item, 0);
|
|
btrfs_set_root_dirid(&root->root_item, 0);
|
|
memset(root->root_item.uuid, 0, BTRFS_UUID_SIZE);
|
|
root->root_item.drop_level = 0;
|
|
|
|
ret = btrfs_insert_root(trans, tree_root, &root->root_key,
|
|
&root->root_item);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
return root;
|
|
|
|
fail:
|
|
if (leaf)
|
|
free_extent_buffer(leaf);
|
|
|
|
kfree(root);
|
|
return ERR_PTR(ret);
|
|
}
|