btrfs-progs/mkfs/common.c

1238 lines
36 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <limits.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <uuid/uuid.h>
#include <blkid/blkid.h>
#include "kernel-shared/ctree.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/zoned.h"
#include "common/fsfeatures.h"
#include "common/internal.h"
#include "common/messages.h"
#include "common/path-utils.h"
#include "common/device-utils.h"
#include "common/open-utils.h"
#include "mkfs/common.h"
static u64 reference_root_table[] = {
[MKFS_ROOT_TREE] = BTRFS_ROOT_TREE_OBJECTID,
[MKFS_EXTENT_TREE] = BTRFS_EXTENT_TREE_OBJECTID,
[MKFS_CHUNK_TREE] = BTRFS_CHUNK_TREE_OBJECTID,
[MKFS_DEV_TREE] = BTRFS_DEV_TREE_OBJECTID,
[MKFS_FS_TREE] = BTRFS_FS_TREE_OBJECTID,
[MKFS_CSUM_TREE] = BTRFS_CSUM_TREE_OBJECTID,
[MKFS_FREE_SPACE_TREE] = BTRFS_FREE_SPACE_TREE_OBJECTID,
[MKFS_BLOCK_GROUP_TREE] = BTRFS_BLOCK_GROUP_TREE_OBJECTID,
};
static int btrfs_write_empty_tree(int fd, struct btrfs_mkfs_config *cfg,
struct extent_buffer *buf, u64 objectid,
u64 block)
{
int ret;
memset(buf->data + sizeof(struct btrfs_header), 0,
cfg->nodesize - sizeof(struct btrfs_header));
btrfs_set_header_bytenr(buf, block);
btrfs_set_header_owner(buf, objectid);
btrfs_set_header_nritems(buf, 0);
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize, block, cfg->zone_size);
if (ret != cfg->nodesize)
return ret < 0 ? -errno : -EIO;
return 0;
}
static int btrfs_create_tree_root(int fd, struct btrfs_mkfs_config *cfg,
struct extent_buffer *buf,
const enum btrfs_mkfs_block *blocks,
int blocks_nr)
{
struct btrfs_root_item root_item;
struct btrfs_inode_item *inode_item;
struct btrfs_disk_key disk_key;
u32 nritems = 0;
u32 itemoff;
int ret = 0;
int blk;
int i;
u8 uuid[BTRFS_UUID_SIZE];
bool block_group_tree = !!(cfg->features.compat_ro_flags &
BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE);
memset(buf->data + sizeof(struct btrfs_header), 0,
cfg->nodesize - sizeof(struct btrfs_header));
memset(&root_item, 0, sizeof(root_item));
memset(&disk_key, 0, sizeof(disk_key));
/* create the items for the root tree */
inode_item = &root_item.inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item, cfg->nodesize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
btrfs_set_root_refs(&root_item, 1);
btrfs_set_root_used(&root_item, cfg->nodesize);
btrfs_set_root_generation(&root_item, 1);
btrfs_set_disk_key_type(&disk_key, BTRFS_ROOT_ITEM_KEY);
btrfs_set_disk_key_offset(&disk_key, 0);
itemoff = cfg->leaf_data_size - sizeof(root_item);
for (i = 0; i < blocks_nr; i++) {
blk = blocks[i];
if (blk == MKFS_ROOT_TREE || blk == MKFS_CHUNK_TREE)
continue;
if (!block_group_tree && blk == MKFS_BLOCK_GROUP_TREE)
continue;
btrfs_set_root_bytenr(&root_item, cfg->blocks[blk]);
btrfs_set_disk_key_objectid(&disk_key,
reference_root_table[blk]);
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, sizeof(root_item));
if (blk == MKFS_FS_TREE) {
time_t now = time(NULL);
uuid_generate(uuid);
memcpy(root_item.uuid, uuid, BTRFS_UUID_SIZE);
btrfs_set_stack_timespec_sec(&root_item.otime, now);
btrfs_set_stack_timespec_sec(&root_item.ctime, now);
} else {
memset(uuid, 0, BTRFS_UUID_SIZE);
memcpy(root_item.uuid, uuid, BTRFS_UUID_SIZE);
btrfs_set_stack_timespec_sec(&root_item.otime, 0);
btrfs_set_stack_timespec_sec(&root_item.ctime, 0);
}
write_extent_buffer(buf, &root_item,
btrfs_item_ptr_offset(buf, nritems),
sizeof(root_item));
nritems++;
itemoff -= sizeof(root_item);
}
btrfs_set_header_nritems(buf, nritems);
/* generate checksum */
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
/* write back root tree */
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
cfg->blocks[MKFS_ROOT_TREE], cfg->zone_size);
if (ret != cfg->nodesize)
return (ret < 0 ? -errno : -EIO);
return ret;
}
static int create_free_space_tree(int fd, struct btrfs_mkfs_config *cfg,
struct extent_buffer *buf, u64 group_start,
u64 group_size, u64 free_start)
{
struct btrfs_free_space_info *info;
struct btrfs_disk_key disk_key;
int itemoff = cfg->leaf_data_size;
int nritems = 0;
int ret;
memset(buf->data + sizeof(struct btrfs_header), 0,
cfg->nodesize - sizeof(struct btrfs_header));
itemoff -= sizeof(*info);
btrfs_set_disk_key_objectid(&disk_key, group_start);
btrfs_set_disk_key_offset(&disk_key, group_size);
btrfs_set_disk_key_type(&disk_key, BTRFS_FREE_SPACE_INFO_KEY);
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, sizeof(*info));
info = btrfs_item_ptr(buf, nritems, struct btrfs_free_space_info);
btrfs_set_free_space_extent_count(buf, info, 1);
btrfs_set_free_space_flags(buf, info, 0);
nritems++;
btrfs_set_disk_key_objectid(&disk_key, free_start);
btrfs_set_disk_key_offset(&disk_key, group_start + group_size - free_start);
btrfs_set_disk_key_type(&disk_key, BTRFS_FREE_SPACE_EXTENT_KEY);
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, 0);
nritems++;
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_FREE_SPACE_TREE]);
btrfs_set_header_owner(buf, BTRFS_FREE_SPACE_TREE_OBJECTID);
btrfs_set_header_nritems(buf, nritems);
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
cfg->blocks[MKFS_FREE_SPACE_TREE], cfg->zone_size);
if (ret != cfg->nodesize)
return ret < 0 ? -errno : -EIO;
return 0;
}
static void write_block_group_item(struct extent_buffer *buf, u32 nr,
u64 objectid, u64 offset, u64 used,
u64 chunk_objectid, u32 itemoff)
{
struct btrfs_block_group_item *bg_item;
struct btrfs_disk_key disk_key;
btrfs_set_disk_key_objectid(&disk_key, objectid);
btrfs_set_disk_key_offset(&disk_key, offset);
btrfs_set_disk_key_type(&disk_key, BTRFS_BLOCK_GROUP_ITEM_KEY);
btrfs_set_item_key(buf, &disk_key, nr);
btrfs_set_item_offset(buf, nr, itemoff);
btrfs_set_item_size(buf, nr, sizeof(*bg_item));
bg_item = btrfs_item_ptr(buf, nr, struct btrfs_block_group_item);
btrfs_set_block_group_used(buf, bg_item, used);
btrfs_set_block_group_flags(buf, bg_item, BTRFS_BLOCK_GROUP_SYSTEM);
btrfs_set_block_group_chunk_objectid(buf, bg_item, chunk_objectid);
}
static int create_block_group_tree(int fd, struct btrfs_mkfs_config *cfg,
struct extent_buffer *buf,
u64 bg_offset, u64 bg_size, u64 bg_used)
{
int ret;
u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
/*
* For extent-tree-v2, chunk_objectid of block group item is reused
* to indicate which extent-tree the block group is in.
*
* Thus for the initial image, we should set the chunk_objectid to 0,
* as all initial bgs are in the extent tree with global id 0.
*/
if (cfg->features.incompat_flags & BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
chunk_objectid = 0;
memset(buf->data + sizeof(struct btrfs_header), 0,
cfg->nodesize - sizeof(struct btrfs_header));
write_block_group_item(buf, 0, bg_offset, bg_size, bg_used,
chunk_objectid, cfg->leaf_data_size -
sizeof(struct btrfs_block_group_item));
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_BLOCK_GROUP_TREE]);
btrfs_set_header_owner(buf, BTRFS_BLOCK_GROUP_TREE_OBJECTID);
btrfs_set_header_nritems(buf, 1);
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
cfg->blocks[MKFS_BLOCK_GROUP_TREE], cfg->zone_size);
if (ret != cfg->nodesize)
return ret < 0 ? -errno : -EIO;
return 0;
}
static u64 zoned_system_group_offset(u64 zone_size)
{
const int zone_shift = ilog2(zone_size);
u32 zone_num = BTRFS_NR_SB_LOG_ZONES;
u64 start = (u64)zone_num * zone_size;
u32 sb_zones[BTRFS_SUPER_MIRROR_MAX];
int i;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++)
sb_zones[i] = sb_zone_number(zone_shift, i);
for (;;) {
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
if (zone_num == sb_zones[i] ||
!(btrfs_sb_offset(i) + BTRFS_SUPER_INFO_SIZE <= start ||
start + zone_size <= btrfs_sb_offset(i)))
goto next;
}
return start;
next:
zone_num++;
start += zone_size;
}
__builtin_unreachable();
}
/*
* Add @block into the @blocks array.
*
* The @blocks should already be in ascending order and no duplicate.
*/
static void mkfs_blocks_add(enum btrfs_mkfs_block *blocks, int *blocks_nr,
enum btrfs_mkfs_block to_add)
{
int i;
for (i = 0; i < *blocks_nr; i++) {
/* The target is already in the array. */
if (blocks[i] == to_add)
return;
/*
* We find the first one past @to_add, move the array one slot
* right, insert a new one.
*/
if (blocks[i] > to_add) {
memmove(blocks + i + 1, blocks + i, *blocks_nr - i);
blocks[i] = to_add;
(*blocks_nr)++;
return;
}
/* Current one still smaller than @to_add, go to next slot. */
}
/* All slots iterated and not match, insert into the last slot. */
blocks[i] = to_add;
(*blocks_nr)++;
return;
}
/*
* Remove @block from the @blocks array.
*
* The @blocks should already be in ascending order and no duplicate.
*/
static void mkfs_blocks_remove(enum btrfs_mkfs_block *blocks, int *blocks_nr,
enum btrfs_mkfs_block to_remove)
{
int i;
for (i = 0; i < *blocks_nr; i++) {
/* Found the target, move the array one slot left. */
if (blocks[i] == to_remove) {
memmove(blocks + i, blocks + i + 1, *blocks_nr - i - 1);
(*blocks_nr)--;
}
}
/* Nothing found, exit directly. */
return;
}
/*
* @fs_uuid - if NULL, generates a UUID, returns back the new filesystem UUID
*
* The superblock signature is not valid, denotes a partially created
* filesystem, needs to be finalized.
*
* The temporary fs will have the following chunk layout:
* Device extent:
* 0 1M 5M ......
* | Reserved | dev extent for SYS chunk |
*
* And chunk mapping will be:
* Chunk mapping:
* 0 1M 5M
* | | System chunk, 1:1 mapped |
*
* That's to say, there will only be *ONE* system chunk, mapped to
* [1M, 5M) physical offset.
* And the only chunk is also in logical address [1M, 5M), containing
* all essential tree blocks.
*/
int make_btrfs(int fd, struct btrfs_mkfs_config *cfg)
{
struct btrfs_super_block super;
struct extent_buffer *buf;
struct btrfs_disk_key disk_key;
struct btrfs_extent_item *extent_item;
struct btrfs_chunk *chunk;
struct btrfs_dev_item *dev_item;
struct btrfs_dev_extent *dev_extent;
enum btrfs_mkfs_block blocks[MKFS_BLOCK_COUNT];
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
u8 *ptr;
int i;
int ret;
int blocks_nr;
int blk;
u32 itemoff;
u32 nritems = 0;
u64 first_free;
u64 ref_root;
u32 array_size;
u32 item_size;
u64 total_used = 0;
int skinny_metadata = !!(cfg->features.incompat_flags &
BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA);
u64 num_bytes;
u64 system_group_offset = BTRFS_BLOCK_RESERVED_1M_FOR_SUPER;
u64 system_group_size = BTRFS_MKFS_SYSTEM_GROUP_SIZE;
bool add_block_group = true;
bool free_space_tree = !!(cfg->features.compat_ro_flags &
BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE);
bool block_group_tree = !!(cfg->features.compat_ro_flags &
BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE);
bool extent_tree_v2 = !!(cfg->features.incompat_flags &
BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2);
memcpy(blocks, default_blocks,
sizeof(enum btrfs_mkfs_block) * ARRAY_SIZE(default_blocks));
blocks_nr = ARRAY_SIZE(default_blocks);
/*
* Add one new block for block group tree.
* And for block group tree, we don't need to add block group item
* into extent tree, the item will be handled in block group tree
* initialization.
*/
if (block_group_tree) {
mkfs_blocks_add(blocks, &blocks_nr, MKFS_BLOCK_GROUP_TREE);
add_block_group = false;
}
/* Don't include the free space tree in the blocks to process. */
if (!free_space_tree)
mkfs_blocks_remove(blocks, &blocks_nr, MKFS_FREE_SPACE_TREE);
if ((cfg->features.incompat_flags & BTRFS_FEATURE_INCOMPAT_ZONED)) {
system_group_offset = zoned_system_group_offset(cfg->zone_size);
system_group_size = cfg->zone_size;
}
buf = malloc(sizeof(*buf) + max(cfg->sectorsize, cfg->nodesize));
if (!buf)
return -ENOMEM;
first_free = BTRFS_SUPER_INFO_OFFSET + cfg->sectorsize * 2 - 1;
first_free &= ~((u64)cfg->sectorsize - 1);
memset(&super, 0, sizeof(super));
num_bytes = (cfg->num_bytes / cfg->sectorsize) * cfg->sectorsize;
if (!*cfg->fs_uuid) {
uuid_generate(super.fsid);
uuid_unparse(super.fsid, cfg->fs_uuid);
} else {
uuid_parse(cfg->fs_uuid, super.fsid);
}
if (!*cfg->dev_uuid) {
uuid_generate(super.dev_item.uuid);
uuid_unparse(super.dev_item.uuid, cfg->dev_uuid);
} else {
uuid_parse(cfg->dev_uuid, super.dev_item.uuid);
}
uuid_generate(chunk_tree_uuid);
for (i = 0; i < blocks_nr; i++) {
blk = blocks[i];
cfg->blocks[blk] = system_group_offset + cfg->nodesize * i;
total_used += cfg->nodesize;
}
btrfs_set_super_bytenr(&super, BTRFS_SUPER_INFO_OFFSET);
btrfs_set_super_num_devices(&super, 1);
btrfs_set_super_magic(&super, BTRFS_MAGIC_TEMPORARY);
btrfs_set_super_generation(&super, 1);
btrfs_set_super_root(&super, cfg->blocks[MKFS_ROOT_TREE]);
btrfs_set_super_chunk_root(&super, cfg->blocks[MKFS_CHUNK_TREE]);
btrfs_set_super_total_bytes(&super, num_bytes);
btrfs_set_super_bytes_used(&super, total_used);
btrfs_set_super_sectorsize(&super, cfg->sectorsize);
super.__unused_leafsize = cpu_to_le32(cfg->nodesize);
btrfs_set_super_nodesize(&super, cfg->nodesize);
btrfs_set_super_stripesize(&super, cfg->stripesize);
btrfs_set_super_csum_type(&super, cfg->csum_type);
btrfs_set_super_chunk_root_generation(&super, 1);
if (cfg->features.incompat_flags & BTRFS_FEATURE_INCOMPAT_ZONED)
btrfs_set_super_cache_generation(&super, 0);
else
btrfs_set_super_cache_generation(&super, -1);
btrfs_set_super_incompat_flags(&super, cfg->features.incompat_flags);
if (free_space_tree)
btrfs_set_super_cache_generation(&super, 0);
btrfs_set_super_compat_ro_flags(&super, cfg->features.compat_ro_flags);
if (extent_tree_v2)
btrfs_set_super_nr_global_roots(&super, 1);
if (cfg->label)
__strncpy_null(super.label, cfg->label, BTRFS_LABEL_SIZE - 1);
/* create the tree of root objects */
memset(buf->data, 0, cfg->nodesize);
buf->len = cfg->nodesize;
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_ROOT_TREE]);
btrfs_set_header_generation(buf, 1);
btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
btrfs_set_header_owner(buf, BTRFS_ROOT_TREE_OBJECTID);
write_extent_buffer(buf, super.fsid, btrfs_header_fsid(),
BTRFS_FSID_SIZE);
write_extent_buffer(buf, chunk_tree_uuid,
btrfs_header_chunk_tree_uuid(buf),
BTRFS_UUID_SIZE);
ret = btrfs_create_tree_root(fd, cfg, buf, blocks, blocks_nr);
if (ret < 0)
goto out;
/* create the items for the extent tree */
memset(buf->data + sizeof(struct btrfs_header), 0,
cfg->nodesize - sizeof(struct btrfs_header));
nritems = 0;
itemoff = cfg->leaf_data_size;
for (i = 0; i < blocks_nr; i++) {
blk = blocks[i];
/* Add the block group item for our temporary chunk. */
if (cfg->blocks[blk] > system_group_offset && add_block_group) {
itemoff -= sizeof(struct btrfs_block_group_item);
write_block_group_item(buf, nritems,
system_group_offset,
system_group_size, total_used,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
itemoff);
add_block_group = false;
nritems++;
}
item_size = sizeof(struct btrfs_extent_item);
if (!skinny_metadata)
item_size += sizeof(struct btrfs_tree_block_info);
if (cfg->blocks[blk] < first_free) {
error("block[%d] below first free: %llu < %llu",
i, cfg->blocks[blk], first_free);
ret = -EINVAL;
goto out;
}
if (i > 0 && cfg->blocks[blk] < cfg->blocks[blocks[i - 1]]) {
error("blocks %d and %d in reverse order: %llu < %llu",
blk, blocks[i - 1],
cfg->blocks[blk], cfg->blocks[blocks[i - 1]]);
ret = -EINVAL;
goto out;
}
/* create extent item */
itemoff -= item_size;
btrfs_set_disk_key_objectid(&disk_key, cfg->blocks[blk]);
if (skinny_metadata) {
btrfs_set_disk_key_type(&disk_key,
BTRFS_METADATA_ITEM_KEY);
btrfs_set_disk_key_offset(&disk_key, 0);
} else {
btrfs_set_disk_key_type(&disk_key,
BTRFS_EXTENT_ITEM_KEY);
btrfs_set_disk_key_offset(&disk_key, cfg->nodesize);
}
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, item_size);
extent_item = btrfs_item_ptr(buf, nritems,
struct btrfs_extent_item);
btrfs_set_extent_refs(buf, extent_item, 1);
btrfs_set_extent_generation(buf, extent_item, 1);
btrfs_set_extent_flags(buf, extent_item,
BTRFS_EXTENT_FLAG_TREE_BLOCK);
nritems++;
/* create extent ref */
ref_root = reference_root_table[blk];
btrfs_set_disk_key_objectid(&disk_key, cfg->blocks[blk]);
btrfs_set_disk_key_offset(&disk_key, ref_root);
btrfs_set_disk_key_type(&disk_key, BTRFS_TREE_BLOCK_REF_KEY);
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, 0);
nritems++;
}
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_EXTENT_TREE]);
btrfs_set_header_owner(buf, BTRFS_EXTENT_TREE_OBJECTID);
btrfs_set_header_nritems(buf, nritems);
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
cfg->blocks[MKFS_EXTENT_TREE], cfg->zone_size);
if (ret != cfg->nodesize) {
ret = (ret < 0 ? -errno : -EIO);
goto out;
}
/* create the chunk tree */
memset(buf->data + sizeof(struct btrfs_header), 0,
cfg->nodesize - sizeof(struct btrfs_header));
nritems = 0;
item_size = sizeof(*dev_item);
itemoff = cfg->leaf_data_size - item_size;
/* first device 1 (there is no device 0) */
btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID);
btrfs_set_disk_key_offset(&disk_key, 1);
btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY);
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, item_size);
dev_item = btrfs_item_ptr(buf, nritems, struct btrfs_dev_item);
btrfs_set_device_id(buf, dev_item, 1);
btrfs_set_device_generation(buf, dev_item, 0);
btrfs_set_device_total_bytes(buf, dev_item, num_bytes);
btrfs_set_device_bytes_used(buf, dev_item, system_group_size);
btrfs_set_device_io_align(buf, dev_item, cfg->sectorsize);
btrfs_set_device_io_width(buf, dev_item, cfg->sectorsize);
btrfs_set_device_sector_size(buf, dev_item, cfg->sectorsize);
btrfs_set_device_type(buf, dev_item, 0);
write_extent_buffer(buf, super.dev_item.uuid,
(unsigned long)btrfs_device_uuid(dev_item),
BTRFS_UUID_SIZE);
write_extent_buffer(buf, super.fsid,
(unsigned long)btrfs_device_fsid(dev_item),
BTRFS_UUID_SIZE);
read_extent_buffer(buf, &super.dev_item, (unsigned long)dev_item,
sizeof(*dev_item));
nritems++;
item_size = btrfs_chunk_item_size(1);
itemoff = itemoff - item_size;
/* then we have chunk 0 */
btrfs_set_disk_key_objectid(&disk_key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_disk_key_offset(&disk_key, system_group_offset);
btrfs_set_disk_key_type(&disk_key, BTRFS_CHUNK_ITEM_KEY);
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, item_size);
chunk = btrfs_item_ptr(buf, nritems, struct btrfs_chunk);
btrfs_set_chunk_length(buf, chunk, system_group_size);
btrfs_set_chunk_owner(buf, chunk, BTRFS_EXTENT_TREE_OBJECTID);
btrfs_set_chunk_stripe_len(buf, chunk, BTRFS_STRIPE_LEN);
btrfs_set_chunk_type(buf, chunk, BTRFS_BLOCK_GROUP_SYSTEM);
btrfs_set_chunk_io_align(buf, chunk, cfg->sectorsize);
btrfs_set_chunk_io_width(buf, chunk, cfg->sectorsize);
btrfs_set_chunk_sector_size(buf, chunk, cfg->sectorsize);
btrfs_set_chunk_num_stripes(buf, chunk, 1);
btrfs_set_stripe_devid_nr(buf, chunk, 0, 1);
btrfs_set_stripe_offset_nr(buf, chunk, 0,
system_group_offset);
nritems++;
write_extent_buffer(buf, super.dev_item.uuid,
(unsigned long)btrfs_stripe_dev_uuid(&chunk->stripe),
BTRFS_UUID_SIZE);
/* copy the key for the chunk to the system array */
ptr = super.sys_chunk_array;
array_size = sizeof(disk_key);
memcpy(ptr, &disk_key, sizeof(disk_key));
ptr += sizeof(disk_key);
/* copy the chunk to the system array */
read_extent_buffer(buf, ptr, (unsigned long)chunk, item_size);
array_size += item_size;
ptr += item_size;
btrfs_set_super_sys_array_size(&super, array_size);
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_CHUNK_TREE]);
btrfs_set_header_owner(buf, BTRFS_CHUNK_TREE_OBJECTID);
btrfs_set_header_nritems(buf, nritems);
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
cfg->blocks[MKFS_CHUNK_TREE], cfg->zone_size);
if (ret != cfg->nodesize) {
ret = (ret < 0 ? -errno : -EIO);
goto out;
}
/* create the device tree */
memset(buf->data + sizeof(struct btrfs_header), 0,
cfg->nodesize - sizeof(struct btrfs_header));
nritems = 0;
itemoff = cfg->leaf_data_size - sizeof(struct btrfs_dev_extent);
btrfs_set_disk_key_objectid(&disk_key, 1);
btrfs_set_disk_key_offset(&disk_key, system_group_offset);
btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_EXTENT_KEY);
btrfs_set_item_key(buf, &disk_key, nritems);
btrfs_set_item_offset(buf, nritems, itemoff);
btrfs_set_item_size(buf, nritems, sizeof(struct btrfs_dev_extent));
dev_extent = btrfs_item_ptr(buf, nritems, struct btrfs_dev_extent);
btrfs_set_dev_extent_chunk_tree(buf, dev_extent,
BTRFS_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_objectid(buf, dev_extent,
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_offset(buf, dev_extent,
system_group_offset);
write_extent_buffer(buf, chunk_tree_uuid,
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent),
BTRFS_UUID_SIZE);
btrfs_set_dev_extent_length(buf, dev_extent, system_group_size);
nritems++;
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_DEV_TREE]);
btrfs_set_header_owner(buf, BTRFS_DEV_TREE_OBJECTID);
btrfs_set_header_nritems(buf, nritems);
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
cfg->blocks[MKFS_DEV_TREE], cfg->zone_size);
if (ret != cfg->nodesize) {
ret = (ret < 0 ? -errno : -EIO);
goto out;
}
/* create the FS root */
ret = btrfs_write_empty_tree(fd, cfg, buf, BTRFS_FS_TREE_OBJECTID,
cfg->blocks[MKFS_FS_TREE]);
if (ret)
goto out;
/* finally create the csum root */
ret = btrfs_write_empty_tree(fd, cfg, buf, BTRFS_CSUM_TREE_OBJECTID,
cfg->blocks[MKFS_CSUM_TREE]);
if (ret)
goto out;
if (free_space_tree) {
ret = create_free_space_tree(fd, cfg, buf, system_group_offset,
system_group_size,
system_group_offset + total_used);
if (ret)
goto out;
}
if (block_group_tree) {
ret = create_block_group_tree(fd, cfg, buf,
system_group_offset,
system_group_size, total_used);
if (ret)
goto out;
}
/* and write out the super block */
memset(buf->data, 0, BTRFS_SUPER_INFO_SIZE);
memcpy(buf->data, &super, sizeof(super));
buf->len = BTRFS_SUPER_INFO_SIZE;
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
cfg->csum_type);
ret = sbwrite(fd, buf->data, BTRFS_SUPER_INFO_OFFSET);
if (ret != BTRFS_SUPER_INFO_SIZE) {
ret = (ret < 0 ? -errno : -EIO);
goto out;
}
ret = fsync(fd);
if (ret)
goto out;
ret = 0;
out:
free(buf);
return ret;
}
int btrfs_make_root_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid)
{
int ret;
struct btrfs_inode_item inode_item;
time_t now = time(NULL);
memset(&inode_item, 0, sizeof(inode_item));
btrfs_set_stack_inode_generation(&inode_item, trans->transid);
btrfs_set_stack_inode_size(&inode_item, 0);
btrfs_set_stack_inode_nlink(&inode_item, 1);
btrfs_set_stack_inode_nbytes(&inode_item, root->fs_info->nodesize);
btrfs_set_stack_inode_mode(&inode_item, S_IFDIR | 0755);
btrfs_set_stack_timespec_sec(&inode_item.atime, now);
btrfs_set_stack_timespec_nsec(&inode_item.atime, 0);
btrfs_set_stack_timespec_sec(&inode_item.ctime, now);
btrfs_set_stack_timespec_nsec(&inode_item.ctime, 0);
btrfs_set_stack_timespec_sec(&inode_item.mtime, now);
btrfs_set_stack_timespec_nsec(&inode_item.mtime, 0);
btrfs_set_stack_timespec_sec(&inode_item.otime, now);
btrfs_set_stack_timespec_nsec(&inode_item.otime, 0);
if (root->fs_info->tree_root == root)
btrfs_set_super_root_dir(root->fs_info->super_copy, objectid);
ret = btrfs_insert_inode(trans, root, objectid, &inode_item);
if (ret)
goto error;
ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0);
if (ret)
goto error;
btrfs_set_root_dirid(&root->root_item, objectid);
ret = 0;
error:
return ret;
}
/*
* Btrfs minimum size calculation is complicated, it should include at least:
* 1. system group size
* 2. minimum global block reserve
* 3. metadata used at mkfs
* 4. space reservation to create uuid for first mount.
* Also, raid factor should also be taken into consideration.
* To avoid the overkill calculation, (system group + global block rsv) * 2
* for *EACH* device should be good enough.
*/
static u64 btrfs_min_global_blk_rsv_size(u32 nodesize)
{
return (u64)nodesize << 10;
}
u64 btrfs_min_dev_size(u32 nodesize, bool mixed, u64 zone_size, u64 meta_profile,
u64 data_profile)
{
u64 reserved = 0;
u64 meta_size;
u64 data_size;
u64 dev_stripes;
if (zone_size) {
/* 2 zones for the primary superblock. */
reserved += 2 * zone_size;
/*
* 1 zone each for the initial SINGLE system, SINGLE metadata,
* and SINGLE data block group.
*/
reserved += 3 * zone_size;
/*
* On non-SINGLE profile, we need to add real system and
* metadata block group. And, we also need to add a space for a
* tree-log block group.
*
* SINGLE profile can reuse the initial block groups and only
* need to add a tree-log block group
*/
dev_stripes = ((meta_profile & BTRFS_BLOCK_GROUP_DUP) ? 2 : 1);
if (meta_profile & BTRFS_BLOCK_GROUP_PROFILE_MASK)
meta_size = 3 * dev_stripes * zone_size;
else
meta_size = dev_stripes * zone_size;
reserved += meta_size;
/*
* On non-SINGLE profile, we need to add real data block group.
* And, we also need to add a space for a data relocation block
* group.
*
* SINGLE profile can reuse the initial block groups and only
* need to add a data relocation block group.
*/
dev_stripes = (data_profile & BTRFS_BLOCK_GROUP_DUP) ? 2 : 1;
if (data_profile & BTRFS_BLOCK_GROUP_PROFILE_MASK)
data_size = 2 * dev_stripes * zone_size;
else
data_size = dev_stripes * zone_size;
reserved += data_size;
return reserved;
}
if (mixed)
return 2 * (BTRFS_MKFS_SYSTEM_GROUP_SIZE +
btrfs_min_global_blk_rsv_size(nodesize));
/*
* Minimal size calculation is complex due to several factors:
* 0) Reserved 1M range.
*
* 1) Temporary chunk reuse
* If specified chunk profile is SINGLE, we can reuse
* temporary chunks, no need to allocate new chunks.
*
* 2) Different minimal chunk size for different profiles:
* For initial sys chunk, chunk size is fixed to 4M.
* For single profile, minimal chunk size is 8M for all.
* For other profiles, minimal chunk and stripe size ranges from 8M
* to 64M.
*
* To calculate it a little easier, here we assume we don't reuse any
* temporary chunk, and calculate the size completely by ourselves.
*
* Temporary chunks sizes are always fixed:
* One initial sys chunk, one SINGLE meta, and one SINGLE data.
* The latter two are all 8M, according to @calc_size of
* btrfs_alloc_chunk().
*/
reserved += BTRFS_BLOCK_RESERVED_1M_FOR_SUPER +
BTRFS_MKFS_SYSTEM_GROUP_SIZE + SZ_8M * 2;
/*
* For real chunks, we need to select different sizes:
* For SINGLE, it's still fixed to 8M (@calc_size).
* For other profiles, refer to max(@min_stripe_size, @calc_size).
*
* And use the stripe size to calculate its physical used space.
*/
dev_stripes = ((meta_profile & BTRFS_BLOCK_GROUP_DUP) ? 2 : 1);
if (meta_profile & BTRFS_BLOCK_GROUP_PROFILE_MASK)
meta_size = dev_stripes * (SZ_8M + SZ_32M);
else
meta_size = dev_stripes * (SZ_8M + SZ_8M);
reserved += meta_size;
dev_stripes = ((data_profile & BTRFS_BLOCK_GROUP_DUP) ? 2 : 1);
if (data_profile & BTRFS_BLOCK_GROUP_PROFILE_MASK)
data_size = dev_stripes * SZ_64M;
else
data_size = dev_stripes * SZ_8M;
reserved += data_size;
return reserved;
}
#define isoctal(c) (((c) & ~7) == '0')
static inline void translate(char *f, char *t)
{
while (*f != '\0') {
if (*f == '\\' &&
isoctal(f[1]) && isoctal(f[2]) && isoctal(f[3])) {
*t++ = 64*(f[1] & 7) + 8*(f[2] & 7) + (f[3] & 7);
f += 4;
} else
*t++ = *f++;
}
*t = '\0';
return;
}
/*
* Checks if the swap device.
* Returns 1 if swap device, < 0 on error or 0 if not swap device.
*/
static int is_swap_device(const char *file)
{
FILE *f;
struct stat st_buf;
dev_t dev;
ino_t ino = 0;
char tmp[PATH_MAX];
char buf[PATH_MAX];
char *cp;
int ret = 0;
if (stat(file, &st_buf) < 0)
return -errno;
if (S_ISBLK(st_buf.st_mode))
dev = st_buf.st_rdev;
else if (S_ISREG(st_buf.st_mode)) {
dev = st_buf.st_dev;
ino = st_buf.st_ino;
} else
return 0;
if ((f = fopen("/proc/swaps", "r")) == NULL)
return 0;
/* skip the first line */
if (fgets(tmp, sizeof(tmp), f) == NULL)
goto out;
while (fgets(tmp, sizeof(tmp), f) != NULL) {
if ((cp = strchr(tmp, ' ')) != NULL)
*cp = '\0';
if ((cp = strchr(tmp, '\t')) != NULL)
*cp = '\0';
translate(tmp, buf);
if (stat(buf, &st_buf) != 0)
continue;
if (S_ISBLK(st_buf.st_mode)) {
if (dev == st_buf.st_rdev) {
ret = 1;
break;
}
} else if (S_ISREG(st_buf.st_mode)) {
if (dev == st_buf.st_dev && ino == st_buf.st_ino) {
ret = 1;
break;
}
}
}
out:
fclose(f);
return ret;
}
/*
* Check for signature at the offset 0 that would be present in case of zoned
* device. Workaround for old blkid that do not recognize the format to avoid
* accidental overwrites.
*/
static int check_btrfs_signature_zoned(const char *device)
{
int fd;
int ret;
struct btrfs_super_block sb;
fd = open(device, O_RDONLY);
if (fd < 0)
return -1;
ret = pread(fd, &sb, BTRFS_SUPER_INFO_SIZE, 0);
if (ret < 0) {
ret = -1;
goto out;
}
if (btrfs_super_magic(&sb) == BTRFS_MAGIC)
ret = 1;
else
ret = 0;
out:
close(fd);
return ret;
}
/*
* Check for existing filesystem or partition table on device.
* Returns:
* 1 for existing fs or partition
* 0 for nothing found
* -1 for internal error
*/
static int check_overwrite(const char *device)
{
const char *type;
blkid_probe pr = NULL;
int ret;
blkid_loff_t size;
if (!device || !*device)
return 0;
ret = -1; /* will reset on success of all setup calls */
pr = blkid_new_probe_from_filename(device);
if (!pr)
goto out;
size = blkid_probe_get_size(pr);
if (size < 0)
goto out;
/* nothing to overwrite on a 0-length device */
if (size == 0) {
ret = 0;
goto out;
}
ret = blkid_probe_enable_partitions(pr, 1);
if (ret < 0)
goto out;
ret = blkid_do_fullprobe(pr);
if (ret < 0)
goto out;
/*
* Blkid returns 1 for nothing found and 0 when it finds a signature,
* but we want the exact opposite, so reverse the return value here.
*
* In addition print some useful diagnostics about what actually is
* on the device.
*/
if (ret) {
ret = 0;
goto out;
}
if (!blkid_probe_lookup_value(pr, "TYPE", &type, NULL)) {
error("%s appears to contain an existing filesystem (%s)", device, type);
} else if (!blkid_probe_lookup_value(pr, "PTTYPE", &type, NULL)) {
error("%s appears to contain a partition table (%s)", device, type);
} else {
error("%s appears to contain something weird according to blkid", device);
}
ret = 1;
out:
if (pr)
blkid_free_probe(pr);
if (ret == -1)
error("probe of %s failed, cannot detect existing filesystem", device);
/* Either nothing found or there was an error is a reason to double check */
if (ret == 0 || ret == -1) {
ret = check_btrfs_signature_zoned(device);
if (ret > 0) {
warning(
"%s contains zoned btrfs signature but was not detected by blkid, please update",
device);
ret = 1;
} else if (ret < 0) {
warning(
"cannot read superblock on %s, please check manually\n",
device);
ret = -1;
}
}
return ret;
}
/*
* Check if a device is suitable for btrfs
* returns:
* 1: something is wrong, an error is printed
* 0: all is fine
*/
bool test_dev_for_mkfs(const char *file, int force_overwrite)
{
int ret, fd;
struct stat st;
ret = is_swap_device(file);
if (ret < 0) {
errno = -ret;
error("checking status of %s: %m", file);
return true;
}
if (ret == 1) {
error("%s is a swap device", file);
return true;
}
ret = test_status_for_mkfs(file, force_overwrite);
if (ret)
return true;
/*
* Check if the device is busy. Open it in read-only mode to avoid triggering
* udev events.
*/
fd = open(file, O_RDONLY | O_EXCL);
if (fd < 0) {
error("unable to open %s: %m", file);
return true;
}
if (fstat(fd, &st)) {
error("unable to stat %s: %m", file);
close(fd);
return true;
}
if (!S_ISBLK(st.st_mode)) {
error("%s is not a block device", file);
close(fd);
return true;
}
close(fd);
return false;
}
/*
* check if the file (device) is formatted or mounted
*/
bool test_status_for_mkfs(const char *file, bool force_overwrite)
{
int ret;
if (!force_overwrite) {
if (check_overwrite(file)) {
error("use the -f option to force overwrite of %s",
file);
return true;
}
}
ret = check_mounted(file);
if (ret < 0) {
errno = -ret;
if (force_overwrite) {
warning("forced overwrite but cannot check mount status of %s: %m",
file);
return false;
}
error("cannot check mount status of %s: %m", file);
return true;
}
if (ret == 1) {
error("%s is mounted", file);
return true;
}
return false;
}
int is_vol_small(const char *file)
{
int fd = -1;
int e;
struct stat st;
u64 size;
fd = open(file, O_RDONLY);
if (fd < 0)
return -errno;
if (fstat(fd, &st) < 0) {
e = -errno;
close(fd);
return e;
}
size = device_get_partition_size_fd_stat(fd, &st);
if (size == 0) {
close(fd);
return -1;
}
if (size < BTRFS_MKFS_SMALL_VOLUME_SIZE) {
close(fd);
return 1;
} else {
close(fd);
return 0;
}
}
int test_minimum_size(const char *file, u64 min_dev_size)
{
int fd;
struct stat statbuf;
fd = open(file, O_RDONLY);
if (fd < 0)
return -errno;
if (stat(file, &statbuf) < 0) {
close(fd);
return -errno;
}
if (device_get_partition_size_fd_stat(fd, &statbuf) < min_dev_size) {
close(fd);
return 1;
}
close(fd);
return 0;
}