btrfs-progs/convert/source-ext2.c
Qu Wenruo bc0995297f btrfs-progs: convert: fix inline extent size for symlink
[BUG]
Sometimes test case btrfs/012 fails randomly, with the failure to read a
symlink:

     QA output created by 012
     Checking converted btrfs against the original one:
    -OK
    +readlink: Structure needs cleaning
     Checking saved ext2 image against the original one:
     OK

Furthermore, this will trigger a kernel error message:

 BTRFS critical (device dm-2): regular/prealloc extent found for non-regular inode 133081

[CAUSE]
For that specific inode 133081, the tree dump looks like this:

        item 127 key (133081 INODE_ITEM 0) itemoff 40984 itemsize 160
                generation 1 transid 1 size 4095 nbytes 4096
                block group 0 mode 120777 links 1 uid 0 gid 0 rdev 0
                sequence 0 flags 0x0(none)
        item 128 key (133081 INODE_REF 133080) itemoff 40972 itemsize 12
                index 2 namelen 2 name: l3
        item 129 key (133081 EXTENT_DATA 0) itemoff 40919 itemsize 53
                generation 4 type 1 (regular)
                extent data disk byte 2147483648 nr 38080512
                extent data offset 37974016 nr 4096 ram 38080512
                extent compression 0 (none)

Note that, the symlink inode size is 4095 at the max size (PATH_MAX,
removing the terminating NUL).
But the nbytes is 4096, exactly matching the sector size of the btrfs.

Thus it results the creation of a regular extent, but for btrfs we do
not accept a symlink with a regular/preallocated extent, thus kernel
rejects such read and failed the readlink call.

The root cause is in the convert code, where for symlinks we always
create a data extent with its size + 1, causing the above problem.

I guess the original code is to handle the terminating NUL, but in btrfs
we never need to store the terminating NUL for inline extents nor
file names.

Thus this pitfall in btrfs-convert leads to the above invalid data
extent and fail the test case.

[FIX]
- Fix the ext2 and reiserfs symbolic link creation code
  To remove the terminating NUL.

- Add extra checks for the size of a symbolic link
  Btrfs has extra limits on the size of a symbolic link, as btrfs must
  store symbolic link targets as inlined extents.

  This means for 4K node sized btrfs, the size limit is smaller than the
  usual PATH_MAX - 1 (only around 4000 bytes instead of 4095).

  So for certain nodesize, some filesystems can not be converted to
  btrfs.
  (this should be rare, because the default nodesize is 16K already)

- Split the symbolic link and inline data extent size checks
  For symbolic links the real limit is PATH_MAX - 1 (removing the
  terminating NUL), but for inline data extents the limit is
  sectorsize - 1, which can be different from 4096 - 1 (e.g. 64K sector
  size).

Pull-request: #884
Signed-off-by: Qu Wenruo <wqu@suse.com>
2024-09-17 14:33:22 +02:00

1185 lines
32 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#if BTRFSCONVERT_EXT2
#include "kerncompat.h"
#include <sys/stat.h>
#include <linux/limits.h>
#include <errno.h>
#include <pthread.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "kernel-lib/sizes.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/file-item.h"
#include "common/extent-cache.h"
#include "common/messages.h"
#include "common/string-utils.h"
#include "convert/common.h"
#include "convert/source-fs.h"
#include "convert/source-ext2.h"
/*
* Open Ext2fs in readonly mode, read block allocation bitmap and
* inode bitmap into memory.
*/
static int ext2_open_fs(struct btrfs_convert_context *cctx, const char *name)
{
errcode_t ret;
ext2_filsys ext2_fs;
ext2_ino_t ino;
u32 ro_feature;
int open_flag = EXT2_FLAG_SOFTSUPP_FEATURES | EXT2_FLAG_64BITS;
ret = ext2fs_open(name, open_flag, 0, 0, unix_io_manager, &ext2_fs);
if (ret) {
if (ret != EXT2_ET_BAD_MAGIC)
error("ext2fs_open: %s", error_message(ret));
return -1;
}
if (ext2_fs->super->s_feature_incompat & EXT3_FEATURE_INCOMPAT_RECOVER) {
error("source filesystem requires recovery, run e2fsck first");
goto fail;
}
/*
* We need to know exactly the used space, some RO compat flags like
* BIGALLOC will affect how used space is present.
* So we need manually check any unsupported RO compat flags
*/
ro_feature = ext2_fs->super->s_feature_ro_compat;
if (ro_feature & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
error(
"unsupported RO features detected: %x, abort convert to avoid possible corruption",
ro_feature & ~EXT2_LIB_FEATURE_COMPAT_SUPP);
goto fail;
}
ret = ext2fs_read_inode_bitmap(ext2_fs);
if (ret) {
error("ext2fs_read_inode_bitmap: %s", error_message(ret));
goto fail;
}
ret = ext2fs_read_block_bitmap(ext2_fs);
if (ret) {
error("ext2fs_read_block_bitmap: %s", error_message(ret));
goto fail;
}
/*
* search each block group for a free inode. this set up
* uninit block/inode bitmaps appropriately.
*/
ino = 1;
while (ino <= ext2_fs->super->s_inodes_count) {
ext2_ino_t foo;
ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo);
ino += EXT2_INODES_PER_GROUP(ext2_fs->super);
}
if (!(ext2_fs->super->s_feature_incompat &
EXT2_FEATURE_INCOMPAT_FILETYPE)) {
error("filetype feature is missing");
goto fail;
}
cctx->fs_data = ext2_fs;
cctx->blocksize = ext2_fs->blocksize;
cctx->block_count = ext2fs_blocks_count(ext2_fs->super);
cctx->total_bytes = cctx->block_count * cctx->blocksize;
cctx->label = strndup((char *)ext2_fs->super->s_volume_name, 16);
cctx->first_data_block = ext2_fs->super->s_first_data_block;
cctx->inodes_count = ext2_fs->super->s_inodes_count;
cctx->free_inodes_count = ext2_fs->super->s_free_inodes_count;
memcpy(cctx->fs_uuid, ext2_fs->super->s_uuid, SOURCE_FS_UUID_SIZE);
return 0;
fail:
ext2fs_close(ext2_fs);
ext2fs_free(ext2_fs);
return -1;
}
static int __ext2_add_one_block(ext2_filsys fs, char *bitmap,
unsigned long group_nr, struct cache_tree *used)
{
unsigned long offset;
unsigned i;
int ret = 0;
offset = fs->super->s_first_data_block;
offset /= EXT2FS_CLUSTER_RATIO(fs);
offset += group_nr * EXT2_CLUSTERS_PER_GROUP(fs->super);
for (i = 0; i < EXT2_CLUSTERS_PER_GROUP(fs->super); i++) {
if ((i + offset) >= ext2fs_blocks_count(fs->super))
break;
if (ext2fs_test_bit(i, bitmap)) {
u64 start;
start = (i + offset) * EXT2FS_CLUSTER_RATIO(fs);
start *= fs->blocksize;
ret = add_merge_cache_extent(used, start,
fs->blocksize);
if (ret < 0)
break;
}
}
return ret;
}
/*
* Read all used ext2 space into cctx->used cache tree
*/
static int ext2_read_used_space(struct btrfs_convert_context *cctx)
{
ext2_filsys fs = (ext2_filsys)cctx->fs_data;
blk64_t blk_itr = EXT2FS_B2C(fs, fs->super->s_first_data_block);
struct cache_tree *used_tree = &cctx->used_space;
char *block_bitmap = NULL;
unsigned long i;
int block_nbytes;
int ret = 0;
block_nbytes = EXT2_CLUSTERS_PER_GROUP(fs->super) / 8;
if (!block_nbytes) {
error("EXT2_CLUSTERS_PER_GROUP too small: %llu",
(unsigned long long)(EXT2_CLUSTERS_PER_GROUP(fs->super)));
return -EINVAL;
}
block_bitmap = malloc(block_nbytes);
if (!block_bitmap)
return -ENOMEM;
for (i = 0; i < fs->group_desc_count; i++) {
ret = ext2fs_get_block_bitmap_range2(fs->block_map, blk_itr,
block_nbytes * 8, block_bitmap);
if (ret) {
error("fail to get bitmap from ext2, %s",
error_message(ret));
ret = -EINVAL;
break;
}
ret = __ext2_add_one_block(fs, block_bitmap, i, used_tree);
if (ret < 0) {
errno = -ret;
error("fail to build used space tree, %m");
break;
}
blk_itr += EXT2_CLUSTERS_PER_GROUP(fs->super);
}
free(block_bitmap);
return ret;
}
static void ext2_close_fs(struct btrfs_convert_context *cctx)
{
if (cctx->label) {
free(cctx->label);
cctx->label = NULL;
}
ext2fs_close(cctx->fs_data);
ext2fs_free(cctx->fs_data);
}
static u8 ext2_filetype_conversion_table[EXT2_FT_MAX] = {
[EXT2_FT_UNKNOWN] = BTRFS_FT_UNKNOWN,
[EXT2_FT_REG_FILE] = BTRFS_FT_REG_FILE,
[EXT2_FT_DIR] = BTRFS_FT_DIR,
[EXT2_FT_CHRDEV] = BTRFS_FT_CHRDEV,
[EXT2_FT_BLKDEV] = BTRFS_FT_BLKDEV,
[EXT2_FT_FIFO] = BTRFS_FT_FIFO,
[EXT2_FT_SOCK] = BTRFS_FT_SOCK,
[EXT2_FT_SYMLINK] = BTRFS_FT_SYMLINK,
};
static int ext2_dir_iterate_proc(ext2_ino_t dir, int entry,
struct ext2_dir_entry *dirent,
int offset, int blocksize,
char *buf,void *priv_data)
{
int ret;
int file_type;
u64 objectid;
char dotdot[] = "..";
struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data;
int name_len;
name_len = dirent->name_len & 0xFF;
objectid = dirent->inode + INO_OFFSET;
if (!strncmp(dirent->name, dotdot, name_len)) {
if (name_len == 2) {
if (idata->parent != 0) {
error("dotdot entry parent not zero: %llu",
idata->parent);
return BLOCK_ABORT;
}
idata->parent = objectid;
}
return 0;
}
if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO)
return 0;
file_type = dirent->name_len >> 8;
if (file_type >= EXT2_FT_MAX) {
error("invalid file type %d for %*s", file_type, name_len, dirent->name);
return BLOCK_ABORT;
}
ret = convert_insert_dirent(idata->trans, idata->root, dirent->name,
name_len, idata->objectid, objectid,
ext2_filetype_conversion_table[file_type],
idata->index_cnt, idata->inode);
if (ret < 0) {
idata->errcode = ret;
return BLOCK_ABORT;
}
idata->index_cnt++;
return 0;
}
static int ext2_create_dir_entries(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
struct btrfs_inode_item *btrfs_inode,
ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
{
int ret;
errcode_t err;
struct dir_iterate_data data = {
.trans = trans,
.root = root,
.inode = btrfs_inode,
.objectid = objectid,
.index_cnt = 2,
.parent = 0,
.errcode = 0,
};
err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL,
ext2_dir_iterate_proc, &data);
if (err)
goto error;
ret = data.errcode;
if (ret == 0 && data.parent == objectid) {
ret = btrfs_insert_inode_ref(trans, root, "..", 2,
objectid, objectid, 0);
}
return ret;
error:
error("ext2fs_dir_iterate2: %s", error_message(err));
return -1;
}
static int ext2_block_iterate_proc(ext2_filsys fs, blk_t *blocknr,
e2_blkcnt_t blockcnt, blk_t ref_block,
int ref_offset, void *priv_data)
{
int ret;
struct blk_iterate_data *idata;
idata = (struct blk_iterate_data *)priv_data;
ret = block_iterate_proc(*blocknr, blockcnt, idata);
if (ret) {
idata->errcode = ret;
return BLOCK_ABORT;
}
return 0;
}
static int iterate_one_file_extent(struct blk_iterate_data *data, u64 filepos,
u64 len, u64 disk_bytenr, bool prealloced)
{
const int sectorsize = data->trans->fs_info->sectorsize;
const int sectorbits = ilog2(sectorsize);
int ret;
UASSERT(len > 0);
for (int i = 0; i < len; i += sectorsize) {
/*
* Just treat preallocated extent as hole.
*
* As there is no way to utilize the preallocated space, since
* any file extent would also be shared by ext2 image.
*/
if (prealloced)
ret = block_iterate_proc(0, (filepos + i) >> sectorbits, data);
else
ret = block_iterate_proc((disk_bytenr + i) >> sectorbits,
(filepos + i) >> sectorbits, data);
if (ret < 0)
return ret;
}
return 0;
}
static int iterate_file_extents(struct blk_iterate_data *data, ext2_filsys ext2fs,
ext2_ino_t ext2_ino, u32 convert_flags)
{
ext2_extent_handle_t handle = NULL;
struct ext2fs_extent extent;
const int sectorsize = data->trans->fs_info->sectorsize;
const int sectorbits = ilog2(sectorsize);
int op = EXT2_EXTENT_ROOT;
errcode_t errcode;
int ret = 0;
errcode = ext2fs_extent_open(ext2fs, ext2_ino, &handle);
if (errcode) {
error("failed to open ext2 inode %u: %s", ext2_ino, error_message(errcode));
return -EIO;
}
while (1) {
u64 disk_bytenr;
u64 filepos;
u64 len;
errcode = ext2fs_extent_get(handle, op, &extent);
if (errcode == EXT2_ET_EXTENT_NO_NEXT)
break;
if (errcode) {
data->errcode = errcode;
ret = -EIO;
goto out;
}
op = EXT2_EXTENT_NEXT;
if (extent.e_flags & EXT2_EXTENT_FLAGS_SECOND_VISIT)
continue;
if (!(extent.e_flags & EXT2_EXTENT_FLAGS_LEAF))
continue;
filepos = extent.e_lblk << sectorbits;
len = extent.e_len << sectorbits;
disk_bytenr = extent.e_pblk << sectorbits;
ret = iterate_one_file_extent(data, filepos, len, disk_bytenr,
extent.e_flags & EXT2_EXTENT_FLAGS_UNINIT);
if (ret < 0)
goto out;
}
out:
ext2fs_extent_free(handle);
return ret;
}
/*
* traverse file's data blocks, record these data blocks as file extents.
*/
static int ext2_create_file_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
struct btrfs_inode_item *btrfs_inode,
ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
u32 convert_flags)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret;
char *buffer = NULL;
errcode_t err;
struct ext2_inode ext2_inode = { 0 };
u32 last_block;
u32 sectorsize = root->fs_info->sectorsize;
u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
bool meet_inline_size_limit;
struct blk_iterate_data data;
if (S_ISLNK(btrfs_stack_inode_mode(btrfs_inode))) {
meet_inline_size_limit = inode_size <= btrfs_symlink_max_size(fs_info);
if (!meet_inline_size_limit) {
error("symlink too large for ext2 inode %u, has %llu max %u",
ext2_ino, inode_size, btrfs_symlink_max_size(fs_info));
return -ENAMETOOLONG;
}
} else {
meet_inline_size_limit = inode_size <= btrfs_data_inline_max_size(fs_info);
}
init_blk_iterate_data(&data, trans, root, btrfs_inode, objectid,
convert_flags & CONVERT_FLAG_DATACSUM);
err = ext2fs_read_inode(ext2_fs, ext2_ino, &ext2_inode);
if (err) {
error("failed to read ext2 inode %u: %s", ext2_ino, error_message(err));
return -EIO;
}
/*
* For inodes without extent block maps, go with the older
* ext2fs_block_iterate2().
* Otherwise use ext2fs_extent_*() based solution, as that can provide
* UNINIT extent flags.
*/
if ((ext2_inode.i_flags & EXT4_EXTENTS_FL) == 0) {
err = ext2fs_block_iterate2(ext2_fs, ext2_ino,
BLOCK_FLAG_DATA_ONLY, NULL,
ext2_block_iterate_proc, &data);
if (err) {
error("ext2fs_block_iterate2: %s", error_message(err));
return -EIO;
}
} else {
ret = iterate_file_extents(&data, ext2_fs, ext2_ino, convert_flags);
if (ret < 0)
goto fail;
}
ret = data.errcode;
if (ret)
goto fail;
if ((convert_flags & CONVERT_FLAG_INLINE_DATA) && data.first_block == 0
&& data.num_blocks > 0 && meet_inline_size_limit) {
u64 num_bytes = data.num_blocks * sectorsize;
u64 disk_bytenr = data.disk_block * sectorsize;
u64 nbytes;
buffer = malloc(num_bytes);
if (!buffer)
return -ENOMEM;
ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer);
if (ret)
goto fail;
if (num_bytes > inode_size)
num_bytes = inode_size;
ret = btrfs_insert_inline_extent(trans, root, objectid,
0, buffer, num_bytes);
if (ret)
goto fail;
nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes;
btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes);
} else if (data.num_blocks > 0) {
ret = record_file_blocks(&data, data.first_block,
data.disk_block, data.num_blocks);
if (ret)
goto fail;
}
data.first_block += data.num_blocks;
last_block = (inode_size + sectorsize - 1) / sectorsize;
if (last_block > data.first_block) {
ret = record_file_blocks(&data, data.first_block, 0,
last_block - data.first_block);
}
fail:
free(buffer);
return ret;
}
static int ext2_create_symlink(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
struct btrfs_inode_item *btrfs_inode,
ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
struct ext2_inode *ext2_inode)
{
int ret;
char *pathname;
u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
if (ext2fs_inode_data_blocks2(ext2_fs, ext2_inode)) {
if (inode_size > btrfs_symlink_max_size(trans->fs_info)) {
error("symlink too large for ext2 inode %u, has %llu max %u",
ext2_ino, inode_size,
btrfs_symlink_max_size(trans->fs_info));
return -ENAMETOOLONG;
}
ret = ext2_create_file_extents(trans, root, objectid,
btrfs_inode, ext2_fs, ext2_ino,
CONVERT_FLAG_DATACSUM |
CONVERT_FLAG_INLINE_DATA);
return ret;
}
pathname = (char *)&(ext2_inode->i_block[0]);
BUG_ON(pathname[inode_size] != 0);
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
pathname, inode_size);
btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size);
return ret;
}
/*
* Following xattr/acl related codes are based on codes in
* fs/ext3/xattr.c and fs/ext3/acl.c
*/
#define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr))
#define EXT2_XATTR_BFIRST(ptr) \
((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1))
#define EXT2_XATTR_IHDR(inode) \
((struct ext2_ext_attr_header *) ((void *)(inode) + \
EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize))
#define EXT2_XATTR_IFIRST(inode) \
((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \
sizeof(EXT2_XATTR_IHDR(inode)->h_magic)))
static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry,
const void *end)
{
struct ext2_ext_attr_entry *next;
while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
next = EXT2_EXT_ATTR_NEXT(entry);
if ((void *)next >= end)
return -EIO;
entry = next;
}
return 0;
}
static int ext2_xattr_check_block(const char *buf, size_t size)
{
int error;
struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf);
if (header->h_magic != EXT2_EXT_ATTR_MAGIC ||
header->h_blocks != 1)
return -EIO;
error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size);
return error;
}
static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry,
size_t size)
{
size_t value_size = entry->e_value_size;
if (value_size > size || entry->e_value_offs + value_size > size)
return -EIO;
return 0;
}
static int ext2_acl_to_xattr(void *dst, const void *src,
size_t dst_size, size_t src_size)
{
int i, count;
const void *end = src + src_size;
acl_ea_header *ext_acl = (acl_ea_header *)dst;
acl_ea_entry *dst_entry = ext_acl->a_entries;
ext2_acl_entry *src_entry;
if (src_size < sizeof(ext2_acl_header))
goto fail;
if (((ext2_acl_header *)src)->a_version !=
cpu_to_le32(EXT2_ACL_VERSION))
goto fail;
src += sizeof(ext2_acl_header);
count = ext2_acl_count(src_size);
if (count <= 0)
goto fail;
if (dst_size < acl_ea_size(count)) {
error("not enough space to store ACLs");
goto fail;
}
ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION);
for (i = 0; i < count; i++, dst_entry++) {
src_entry = (ext2_acl_entry *)src;
if (src + sizeof(ext2_acl_entry_short) > end)
goto fail;
dst_entry->e_tag = src_entry->e_tag;
dst_entry->e_perm = src_entry->e_perm;
switch (le16_to_cpu(src_entry->e_tag)) {
case ACL_USER_OBJ:
case ACL_GROUP_OBJ:
case ACL_MASK:
case ACL_OTHER:
src += sizeof(ext2_acl_entry_short);
dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID);
break;
case ACL_USER:
case ACL_GROUP:
src += sizeof(ext2_acl_entry);
if (src > end)
goto fail;
dst_entry->e_id = src_entry->e_id;
break;
default:
goto fail;
}
}
if (src != end)
goto fail;
return 0;
fail:
return -EINVAL;
}
static char *xattr_prefix_table[] = {
[1] = "user.",
[2] = "system.posix_acl_access",
[3] = "system.posix_acl_default",
[4] = "trusted.",
[6] = "security.",
};
static int ext2_copy_single_xattr(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
struct ext2_ext_attr_entry *entry,
const void *data, u32 datalen)
{
int ret = 0;
int name_len;
int name_index;
void *databuf = NULL;
char namebuf[XATTR_NAME_MAX + 1];
name_index = entry->e_name_index;
if (name_index >= ARRAY_SIZE(xattr_prefix_table) ||
xattr_prefix_table[name_index] == NULL)
return -EOPNOTSUPP;
name_len = strlen(xattr_prefix_table[name_index]) +
entry->e_name_len;
if (name_len >= sizeof(namebuf))
return -ERANGE;
if (name_index == 2 || name_index == 3) {
size_t bufsize = acl_ea_size(ext2_acl_count(datalen));
databuf = malloc(bufsize);
if (!databuf)
return -ENOMEM;
ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen);
if (ret)
goto out;
data = databuf;
datalen = bufsize;
}
strncpy_null(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX + 1);
strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len);
if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root->fs_info) -
sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) {
error("skip large xattr on inode %llu name %.*s",
objectid - INO_OFFSET, name_len, namebuf);
goto out;
}
ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len,
data, datalen, objectid);
out:
free(databuf);
return ret;
}
static int ext2_copy_extended_attrs(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
struct btrfs_inode_item *btrfs_inode,
ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
{
int ret = 0;
int inline_ea = 0;
errcode_t err;
u32 datalen;
u32 block_size = ext2_fs->blocksize;
u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super);
struct ext2_inode_large *ext2_inode;
struct ext2_ext_attr_entry *entry;
void *data;
char *buffer = NULL;
char inode_buf[EXT2_GOOD_OLD_INODE_SIZE];
if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) {
ext2_inode = (struct ext2_inode_large *)inode_buf;
} else {
ext2_inode = (struct ext2_inode_large *)malloc(inode_size);
if (!ext2_inode)
return -ENOMEM;
}
err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode,
inode_size);
if (err) {
error("ext2fs_read_inode_full: %s", error_message(err));
ret = -1;
goto out;
}
if (ext2_ino > ext2_fs->super->s_first_ino &&
inode_size > EXT2_GOOD_OLD_INODE_SIZE) {
if (EXT2_GOOD_OLD_INODE_SIZE +
ext2_inode->i_extra_isize > inode_size) {
ret = -EIO;
goto out;
}
if (ext2_inode->i_extra_isize != 0 &&
EXT2_XATTR_IHDR(ext2_inode)->h_magic ==
EXT2_EXT_ATTR_MAGIC) {
inline_ea = 1;
}
}
if (inline_ea) {
int total;
void *end = (void *)ext2_inode + inode_size;
entry = EXT2_XATTR_IFIRST(ext2_inode);
total = end - (void *)entry;
ret = ext2_xattr_check_names(entry, end);
if (ret)
goto out;
while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
ret = ext2_xattr_check_entry(entry, total);
if (ret)
goto out;
data = (void *)EXT2_XATTR_IFIRST(ext2_inode) +
entry->e_value_offs;
datalen = entry->e_value_size;
ret = ext2_copy_single_xattr(trans, root, objectid,
entry, data, datalen);
if (ret)
goto out;
entry = EXT2_EXT_ATTR_NEXT(entry);
}
}
if (ext2_inode->i_file_acl == 0)
goto out;
buffer = malloc(block_size);
if (!buffer) {
ret = -ENOMEM;
goto out;
}
err = ext2fs_read_ext_attr2(ext2_fs, ext2_inode->i_file_acl, buffer);
if (err) {
error("ext2fs_read_ext_attr2: %s", error_message(err));
ret = -1;
goto out;
}
ret = ext2_xattr_check_block(buffer, block_size);
if (ret)
goto out;
entry = EXT2_XATTR_BFIRST(buffer);
while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
ret = ext2_xattr_check_entry(entry, block_size);
if (ret)
goto out;
data = buffer + entry->e_value_offs;
datalen = entry->e_value_size;
ret = ext2_copy_single_xattr(trans, root, objectid,
entry, data, datalen);
if (ret)
goto out;
entry = EXT2_EXT_ATTR_NEXT(entry);
}
out:
free(buffer);
if ((void *)ext2_inode != inode_buf)
free(ext2_inode);
return ret;
}
static inline dev_t old_decode_dev(u16 val)
{
return MKDEV((val >> 8) & 255, val & 255);
}
static void ext2_copy_inode_item(struct btrfs_inode_item *dst,
struct ext2_inode *src, u32 blocksize)
{
btrfs_set_stack_inode_generation(dst, 1);
btrfs_set_stack_inode_sequence(dst, 0);
btrfs_set_stack_inode_transid(dst, 1);
btrfs_set_stack_inode_size(dst, src->i_size);
btrfs_set_stack_inode_nbytes(dst, 0);
btrfs_set_stack_inode_block_group(dst, 0);
btrfs_set_stack_inode_nlink(dst, src->i_links_count);
btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16));
btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16));
btrfs_set_stack_inode_mode(dst, src->i_mode);
btrfs_set_stack_inode_rdev(dst, 0);
btrfs_set_stack_inode_flags(dst, 0);
btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime);
btrfs_set_stack_timespec_nsec(&dst->atime, 0);
btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime);
btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime);
btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
btrfs_set_stack_timespec_sec(&dst->otime, 0);
btrfs_set_stack_timespec_nsec(&dst->otime, 0);
if (S_ISDIR(src->i_mode)) {
btrfs_set_stack_inode_size(dst, 0);
btrfs_set_stack_inode_nlink(dst, 1);
}
if (S_ISREG(src->i_mode)) {
btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 |
(u64)src->i_size);
}
if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) &&
!S_ISLNK(src->i_mode)) {
if (src->i_block[0]) {
btrfs_set_stack_inode_rdev(dst,
old_decode_dev(src->i_block[0]));
} else {
btrfs_set_stack_inode_rdev(dst,
decode_dev(src->i_block[1]));
}
}
memset(&dst->reserved, 0, sizeof(dst->reserved));
}
#if HAVE_EXT4_EPOCH_MASK_DEFINE
/*
* Copied and modified from fs/ext4/ext4.h
*/
static inline void ext4_decode_extra_time(__le32 * tv_sec, __le32 * tv_nsec,
__le32 extra)
{
if (extra & cpu_to_le32(EXT4_EPOCH_MASK))
*tv_sec += (u64)(le32_to_cpu(extra) & EXT4_EPOCH_MASK) << 32;
*tv_nsec = (le32_to_cpu(extra) & EXT4_NSEC_MASK) >> EXT4_EPOCH_BITS;
}
/*
* In e2fsprogs < 1.47.1 it's inode_includes, from >= on it's with ext2fs_ prefix.
*/
#ifndef ext2fs_inode_includes
#define ext2fs_inode_includes(size, field) inode_includes(size, field)
#endif
#define EXT4_COPY_XTIME(xtime, dst, tv_sec, tv_nsec) \
do { \
tv_sec = src->i_ ## xtime ; \
if (ext2fs_inode_includes(inode_size, i_ ## xtime ## _extra)) { \
tv_sec = src->i_ ## xtime ; \
ext4_decode_extra_time(&tv_sec, &tv_nsec, src->i_ ## xtime ## _extra); \
btrfs_set_stack_timespec_sec(&dst->xtime , tv_sec); \
btrfs_set_stack_timespec_nsec(&dst->xtime , tv_nsec); \
} else { \
btrfs_set_stack_timespec_sec(&dst->xtime , tv_sec); \
btrfs_set_stack_timespec_nsec(&dst->xtime , 0); \
} \
} while (0);
/*
* Decode and copy i_[cma]time_extra and i_crtime{,_extra} field
*/
static int ext4_copy_inode_timespec_extra(struct btrfs_inode_item *dst,
ext2_ino_t ext2_ino, u32 s_inode_size,
ext2_filsys ext2_fs)
{
struct ext2_inode_large *src;
u32 inode_size, tv_sec, tv_nsec;
int ret, err;
ret = 0;
src = (struct ext2_inode_large *)malloc(s_inode_size);
if (!src)
return -ENOMEM;
err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)src,
s_inode_size);
if (err) {
error("ext2fs_read_inode_full: %s", error_message(err));
ret = -1;
goto out;
}
inode_size = EXT2_GOOD_OLD_INODE_SIZE + src->i_extra_isize;
EXT4_COPY_XTIME(atime, dst, tv_sec, tv_nsec);
EXT4_COPY_XTIME(mtime, dst, tv_sec, tv_nsec);
EXT4_COPY_XTIME(ctime, dst, tv_sec, tv_nsec);
tv_sec = src->i_crtime;
if (ext2fs_inode_includes(inode_size, i_crtime_extra)) {
tv_sec = src->i_crtime;
ext4_decode_extra_time(&tv_sec, &tv_nsec, src->i_crtime_extra);
btrfs_set_stack_timespec_sec(&dst->otime, tv_sec);
btrfs_set_stack_timespec_nsec(&dst->otime, tv_nsec);
} else {
btrfs_set_stack_timespec_sec(&dst->otime, tv_sec);
btrfs_set_stack_timespec_nsec(&dst->otime, 0);
}
out:
free(src);
return ret;
}
#else /* HAVE_EXT4_EPOCH_MASK_DEFINE */
static int ext4_copy_inode_timespec_extra(struct btrfs_inode_item *dst,
ext2_ino_t ext2_ino, u32 s_inode_size,
ext2_filsys ext2_fs)
{
static int warn = 0;
if (!warn) {
warning(
"extended inode (size %u) found but e2fsprogs don't support reading extra timespec",
s_inode_size);
warn = 1;
}
return 0;
}
#endif /* !HAVE_EXT4_EPOCH_MASK_DEFINE */
static int ext2_check_state(struct btrfs_convert_context *cctx)
{
ext2_filsys fs = cctx->fs_data;
if (!(fs->super->s_state & EXT2_VALID_FS))
return 1;
else if (fs->super->s_state & EXT2_ERROR_FS)
return 1;
else
return 0;
}
/* EXT2_*_FL to BTRFS_INODE_FLAG_* stringification helper */
#define COPY_ONE_EXT2_FLAG(flags, ext2_inode, name) ({ \
if (ext2_inode->i_flags & EXT2_##name##_FL) \
flags |= BTRFS_INODE_##name; \
})
/*
* Convert EXT2_*_FL to corresponding BTRFS_INODE_* flags
*
* Only a subset of EXT_*_FL is supported in btrfs.
*/
static void ext2_convert_inode_flags(struct btrfs_inode_item *dst,
struct ext2_inode *src)
{
u64 flags = btrfs_stack_inode_flags(dst);
COPY_ONE_EXT2_FLAG(flags, src, APPEND);
COPY_ONE_EXT2_FLAG(flags, src, SYNC);
COPY_ONE_EXT2_FLAG(flags, src, IMMUTABLE);
COPY_ONE_EXT2_FLAG(flags, src, NODUMP);
COPY_ONE_EXT2_FLAG(flags, src, NOATIME);
COPY_ONE_EXT2_FLAG(flags, src, DIRSYNC);
btrfs_set_stack_inode_flags(dst, flags);
}
/*
* copy a single inode. do all the required works, such as cloning
* inode item, creating file extents and creating directory entries.
*/
static int ext2_copy_single_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
struct ext2_inode *ext2_inode,
u32 convert_flags)
{
int ret;
int s_inode_size;
struct btrfs_inode_item btrfs_inode;
struct btrfs_key inode_key;
struct btrfs_path path = { 0 };
inode_key.objectid = objectid;
inode_key.type = BTRFS_INODE_ITEM_KEY;
inode_key.offset = 0;
if (ext2_inode->i_links_count == 0)
return 0;
ext2_copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize);
s_inode_size = EXT2_INODE_SIZE(ext2_fs->super);
if (s_inode_size > EXT2_GOOD_OLD_INODE_SIZE) {
ret = ext4_copy_inode_timespec_extra(&btrfs_inode, ext2_ino,
s_inode_size, ext2_fs);
if (ret)
return ret;
}
if (!(convert_flags & CONVERT_FLAG_DATACSUM)
&& S_ISREG(ext2_inode->i_mode)) {
u32 flags = btrfs_stack_inode_flags(&btrfs_inode) |
BTRFS_INODE_NODATASUM;
btrfs_set_stack_inode_flags(&btrfs_inode, flags);
}
ext2_convert_inode_flags(&btrfs_inode, ext2_inode);
/*
* The inode may already be created (with dummy contents), in that
* case we don't need to do anything yet.
* The inode item would be updated at the end anyway.
*/
ret = btrfs_lookup_inode(trans, root, &path, &inode_key, 1);
btrfs_release_path(&path);
if (ret > 0) {
/*
* No inode item yet, the inode item must be inserted before
* any file extents/dir items/xattrs, or we may trigger
* tree-checker. File extents/dir items/xattrs require the
* previous item to have the same key objectid.
*/
ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
if (ret < 0)
return ret;
}
switch (ext2_inode->i_mode & S_IFMT) {
case S_IFREG:
ret = ext2_create_file_extents(trans, root, objectid,
&btrfs_inode, ext2_fs, ext2_ino, convert_flags);
break;
case S_IFDIR:
ret = ext2_create_dir_entries(trans, root, objectid,
&btrfs_inode, ext2_fs, ext2_ino);
break;
case S_IFLNK:
ret = ext2_create_symlink(trans, root, objectid,
&btrfs_inode, ext2_fs, ext2_ino, ext2_inode);
break;
default:
ret = 0;
break;
}
if (ret)
return ret;
if (convert_flags & CONVERT_FLAG_XATTR) {
ret = ext2_copy_extended_attrs(trans, root, objectid,
&btrfs_inode, ext2_fs, ext2_ino);
if (ret)
return ret;
}
/*
* Update the inode item, as above insert never updates the inode's
* nbytes and size.
*/
ret = btrfs_lookup_inode(trans, root, &path, &inode_key, 1);
if (ret > 0)
ret = -ENOENT;
if (ret < 0)
return ret;
write_extent_buffer(path.nodes[0], &btrfs_inode,
btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
sizeof(btrfs_inode));
btrfs_release_path(&path);
return 0;
}
static bool ext2_is_special_inode(ext2_filsys ext2_fs, ext2_ino_t ino)
{
if (ino < EXT2_GOOD_OLD_FIRST_INO && ino != EXT2_ROOT_INO)
return 1;
#ifdef EXT4_FEATURE_COMPAT_ORPHAN_FILE
/*
* If we have COMPAT_ORPHAN_FILE feature, we have a special inode
* recording all the orphan files. We need to skip such special inode.
*/
if (ext2_fs->super->s_feature_compat & EXT4_FEATURE_COMPAT_ORPHAN_FILE &&
ino == ext2_fs->super->s_orphan_file_inum)
return 1;
#endif
return 0;
}
/*
* scan ext2's inode bitmap and copy all used inodes.
*/
static int ext2_copy_inodes(struct btrfs_convert_context *cctx,
struct btrfs_root *root,
u32 convert_flags, struct task_ctx *p)
{
ext2_filsys ext2_fs = cctx->fs_data;
int ret = 0;
errcode_t err;
ext2_inode_scan ext2_scan;
struct ext2_inode ext2_inode;
ext2_ino_t ext2_ino;
u64 objectid;
struct btrfs_trans_handle *trans;
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan);
if (err) {
error("ext2fs_open_inode_scan failed: %s", error_message(err));
btrfs_commit_transaction(trans, root);
return -EIO;
}
while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino,
&ext2_inode))) {
/* no more inodes */
if (ext2_ino == 0)
break;
if (ext2_is_special_inode(ext2_fs, ext2_ino))
continue;
objectid = ext2_ino + INO_OFFSET;
ret = ext2_copy_single_inode(trans, root,
objectid, ext2_fs, ext2_ino,
&ext2_inode, convert_flags);
pthread_mutex_lock(&p->mutex);
p->cur_copy_inodes++;
pthread_mutex_unlock(&p->mutex);
if (ret) {
error("failed to copy ext2 inode %llu: %d",
(unsigned long long)ext2_ino, ret);
goto out;
}
/*
* blocks_used is the number of new tree blocks allocated in
* current transaction.
* Use a small amount of it to workaround a bug where delayed
* ref may fail to locate tree blocks in extent tree.
*
* 2M is the threshold to kick chunk preallocator into work,
* For default (16K) nodesize it will be 128 tree blocks,
* large enough to contain over 300 inlined files or
* around 26k file extents. Which should be good enough.
*/
if (trans->blocks_used >= SZ_2M / root->fs_info->nodesize) {
ret = btrfs_commit_transaction(trans, root);
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
goto out;
}
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
trans = NULL;
goto out;
}
}
}
if (err) {
error("ext2fs_get_next_inode failed: %s", error_message(err));
ret = -EIO;
goto out;
}
out:
if (ret < 0) {
if (trans)
btrfs_abort_transaction(trans, ret);
} else {
ret = btrfs_commit_transaction(trans, root);
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
}
}
ext2fs_close_inode_scan(ext2_scan);
return ret;
}
const struct btrfs_convert_operations ext2_convert_ops = {
.name = "ext2",
.open_fs = ext2_open_fs,
.read_used_space = ext2_read_used_space,
.copy_inodes = ext2_copy_inodes,
.close_fs = ext2_close_fs,
.check_state = ext2_check_state,
};
#endif /* BTRFSCONVERT_EXT2 */