3392 lines
89 KiB
C
3392 lines
89 KiB
C
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include "kernel-lib/bitops.h"
|
|
#include "kernel-lib/sizes.h"
|
|
#include "kernel-shared/ctree.h"
|
|
#include "kernel-shared/disk-io.h"
|
|
#include "kernel-shared/transaction.h"
|
|
#include "kernel-shared/print-tree.h"
|
|
#include "kernel-shared/tree-checker.h"
|
|
#include "kernel-shared/volumes.h"
|
|
#include "crypto/crc32c.h"
|
|
#include "common/internal.h"
|
|
#include "common/messages.h"
|
|
#include "common/utils.h"
|
|
#include "check/repair.h"
|
|
|
|
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int level);
|
|
static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
const struct btrfs_key *ins_key, struct btrfs_path *path,
|
|
int data_size, int extend);
|
|
static int push_node_left(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *dst,
|
|
struct extent_buffer *src, int empty);
|
|
static int balance_node_right(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *dst_buf,
|
|
struct extent_buffer *src_buf);
|
|
|
|
static const struct btrfs_csums {
|
|
u16 size;
|
|
const char name[10];
|
|
const char driver[12];
|
|
} btrfs_csums[] = {
|
|
[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
|
|
[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
|
|
[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
|
|
[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
|
|
.driver = "blake2b-256" },
|
|
};
|
|
|
|
/*
|
|
* The leaf data grows from end-to-front in the node. this returns the address
|
|
* of the start of the last item, which is the stop of the leaf data stack.
|
|
*/
|
|
static unsigned int leaf_data_end(const struct extent_buffer *leaf)
|
|
{
|
|
u32 nr = btrfs_header_nritems(leaf);
|
|
|
|
if (nr == 0)
|
|
return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
|
|
return btrfs_item_offset(leaf, nr - 1);
|
|
}
|
|
|
|
/*
|
|
* Move data in a @leaf (using memmove, safe for overlapping ranges).
|
|
*
|
|
* @leaf: leaf that we're doing a memmove on
|
|
* @dst_offset: item data offset we're moving to
|
|
* @src_offset: item data offset were' moving from
|
|
* @len: length of the data we're moving
|
|
*
|
|
* Wrapper around memmove_extent_buffer() that takes into account the header on
|
|
* the leaf. The btrfs_item offset's start directly after the header, so we
|
|
* have to adjust any offsets to account for the header in the leaf. This
|
|
* handles that math to simplify the callers.
|
|
*/
|
|
static inline void memmove_leaf_data(const struct extent_buffer *leaf,
|
|
unsigned long dst_offset,
|
|
unsigned long src_offset,
|
|
unsigned long len)
|
|
{
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
|
|
btrfs_item_nr_offset(leaf, 0) + src_offset, len);
|
|
}
|
|
|
|
/*
|
|
* Copy item data from @src into @dst at the given @offset.
|
|
*
|
|
* @dst: destination leaf that we're copying into
|
|
* @src: source leaf that we're copying from
|
|
* @dst_offset: item data offset we're copying to
|
|
* @src_offset: item data offset were' copying from
|
|
* @len: length of the data we're copying
|
|
*
|
|
* Wrapper around copy_extent_buffer() that takes into account the header on
|
|
* the leaf. The btrfs_item offset's start directly after the header, so we
|
|
* have to adjust any offsets to account for the header in the leaf. This
|
|
* handles that math to simplify the callers.
|
|
*/
|
|
static inline void copy_leaf_data(const struct extent_buffer *dst,
|
|
const struct extent_buffer *src,
|
|
unsigned long dst_offset,
|
|
unsigned long src_offset, unsigned long len)
|
|
{
|
|
copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
|
|
btrfs_item_nr_offset(src, 0) + src_offset, len);
|
|
}
|
|
|
|
/*
|
|
* Move items in a @leaf (using memmove).
|
|
*
|
|
* @dst: destination leaf for the items
|
|
* @dst_item: the item nr we're copying into
|
|
* @src_item: the item nr we're copying from
|
|
* @nr_items: the number of items to copy
|
|
*
|
|
* Wrapper around memmove_extent_buffer() that does the math to get the
|
|
* appropriate offsets into the leaf from the item numbers.
|
|
*/
|
|
static inline void memmove_leaf_items(const struct extent_buffer *leaf,
|
|
int dst_item, int src_item, int nr_items)
|
|
{
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
|
|
btrfs_item_nr_offset(leaf, src_item),
|
|
nr_items * sizeof(struct btrfs_item));
|
|
}
|
|
|
|
/*
|
|
* Copy items from @src into @dst at the given @offset.
|
|
*
|
|
* @dst: destination leaf for the items
|
|
* @src: source leaf for the items
|
|
* @dst_item: the item nr we're copying into
|
|
* @src_item: the item nr we're copying from
|
|
* @nr_items: the number of items to copy
|
|
*
|
|
* Wrapper around copy_extent_buffer() that does the math to get the
|
|
* appropriate offsets into the leaf from the item numbers.
|
|
*/
|
|
static inline void copy_leaf_items(const struct extent_buffer *dst,
|
|
const struct extent_buffer *src,
|
|
int dst_item, int src_item, int nr_items)
|
|
{
|
|
copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
|
|
btrfs_item_nr_offset(src, src_item),
|
|
nr_items * sizeof(struct btrfs_item));
|
|
}
|
|
|
|
int btrfs_super_csum_size(const struct btrfs_super_block *sb)
|
|
{
|
|
const u16 csum_type = btrfs_super_csum_type(sb);
|
|
|
|
/* csum type is validated at mount time */
|
|
return btrfs_csums[csum_type].size;
|
|
}
|
|
|
|
const char *btrfs_super_csum_name(u16 csum_type)
|
|
{
|
|
/* csum type is validated at mount time */
|
|
return btrfs_csums[csum_type].name;
|
|
}
|
|
|
|
/*
|
|
* Return driver name if defined, otherwise the name that's also a valid driver
|
|
* name
|
|
*/
|
|
const char *btrfs_super_csum_driver(u16 csum_type)
|
|
{
|
|
/* csum type is validated at mount time */
|
|
return btrfs_csums[csum_type].driver[0] ?
|
|
btrfs_csums[csum_type].driver :
|
|
btrfs_csums[csum_type].name;
|
|
}
|
|
|
|
size_t __attribute_const__ btrfs_get_num_csums(void)
|
|
{
|
|
return ARRAY_SIZE(btrfs_csums);
|
|
}
|
|
|
|
u16 btrfs_csum_type_size(u16 csum_type)
|
|
{
|
|
return btrfs_csums[csum_type].size;
|
|
}
|
|
|
|
u64 btrfs_name_hash(const char *name, int len)
|
|
{
|
|
return crc32c((u32)~1, name, len);
|
|
}
|
|
|
|
/*
|
|
* Figure the key offset of an extended inode ref
|
|
*/
|
|
u64 btrfs_extref_hash(u64 parent_objectid, const char *name, int len)
|
|
{
|
|
return (u64)crc32c(parent_objectid, name, len);
|
|
}
|
|
|
|
inline void btrfs_init_path(struct btrfs_path *p)
|
|
{
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
struct btrfs_path *btrfs_alloc_path(void)
|
|
{
|
|
might_sleep();
|
|
|
|
return kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
|
|
}
|
|
|
|
/* this also releases the path */
|
|
void btrfs_free_path(struct btrfs_path *p)
|
|
{
|
|
if (!p)
|
|
return;
|
|
btrfs_release_path(p);
|
|
kfree(p);
|
|
}
|
|
|
|
/*
|
|
* path release drops references on the extent buffers in the path
|
|
* and it drops any locks held by this path
|
|
*
|
|
* It is safe to call this on paths that no locks or extent buffers held.
|
|
*/
|
|
noinline void btrfs_release_path(struct btrfs_path *p)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
|
|
p->slots[i] = 0;
|
|
if (!p->nodes[i])
|
|
continue;
|
|
if (p->locks[i]) {
|
|
btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
|
|
p->locks[i] = 0;
|
|
}
|
|
free_extent_buffer(p->nodes[i]);
|
|
p->nodes[i] = NULL;
|
|
}
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
|
|
/*
|
|
* We want the transaction abort to print stack trace only for errors where the
|
|
* cause could be a bug, eg. due to ENOSPC, and not for common errors that are
|
|
* caused by external factors.
|
|
*/
|
|
bool __cold abort_should_print_stack(int errno)
|
|
{
|
|
switch (errno) {
|
|
case -EIO:
|
|
case -EROFS:
|
|
case -ENOMEM:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void add_root_to_dirty_list(struct btrfs_root *root)
|
|
{
|
|
if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) &&
|
|
list_empty(&root->dirty_list)) {
|
|
list_add(&root->dirty_list,
|
|
&root->fs_info->dirty_cowonly_roots);
|
|
}
|
|
}
|
|
|
|
static void root_add_used(struct btrfs_root *root, u32 size)
|
|
{
|
|
btrfs_set_root_used(&root->root_item,
|
|
btrfs_root_used(&root->root_item) + size);
|
|
}
|
|
|
|
static void root_sub_used(struct btrfs_root *root, u32 size)
|
|
{
|
|
btrfs_set_root_used(&root->root_item,
|
|
btrfs_root_used(&root->root_item) - size);
|
|
}
|
|
|
|
int btrfs_copy_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf,
|
|
struct extent_buffer **cow_ret, u64 new_root_objectid)
|
|
{
|
|
struct extent_buffer *cow;
|
|
int ret = 0;
|
|
int level;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
|
|
if (!new_root)
|
|
return -ENOMEM;
|
|
|
|
memcpy(new_root, root, sizeof(*new_root));
|
|
new_root->root_key.objectid = new_root_objectid;
|
|
|
|
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
|
|
trans->transid != root->fs_info->running_transaction->transid);
|
|
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
|
|
trans->transid != root->last_trans);
|
|
|
|
level = btrfs_header_level(buf);
|
|
if (level == 0)
|
|
btrfs_item_key(buf, &disk_key, 0);
|
|
else
|
|
btrfs_node_key(buf, &disk_key, 0);
|
|
|
|
cow = btrfs_alloc_tree_block(trans, new_root, buf->len,
|
|
new_root_objectid, &disk_key,
|
|
level, buf->start, 0,
|
|
BTRFS_NESTING_NORMAL);
|
|
if (IS_ERR(cow)) {
|
|
kfree(new_root);
|
|
return PTR_ERR(cow);
|
|
}
|
|
|
|
copy_extent_buffer_full(cow, buf);
|
|
btrfs_set_header_bytenr(cow, cow->start);
|
|
btrfs_set_header_generation(cow, trans->transid);
|
|
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
|
|
BTRFS_HEADER_FLAG_RELOC);
|
|
if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
|
|
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
|
|
else
|
|
btrfs_set_header_owner(cow, new_root_objectid);
|
|
|
|
write_extent_buffer_fsid(cow, root->fs_info->fs_devices->metadata_uuid);
|
|
|
|
WARN_ON(btrfs_header_generation(buf) > trans->transid);
|
|
ret = btrfs_inc_ref(trans, new_root, cow, 0);
|
|
kfree(new_root);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
btrfs_mark_buffer_dirty(cow);
|
|
*cow_ret = cow;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create a new tree root, with root objectid set to @objectid.
|
|
*
|
|
* NOTE: Doesn't support tree with non-zero offset, like data reloc tree.
|
|
*/
|
|
int btrfs_create_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 objectid)
|
|
{
|
|
struct extent_buffer *node;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_key location;
|
|
struct btrfs_root_item root_item = { 0 };
|
|
int ret;
|
|
|
|
new_root = malloc(sizeof(*new_root));
|
|
if (!new_root)
|
|
return -ENOMEM;
|
|
|
|
btrfs_setup_root(new_root, fs_info, objectid);
|
|
if (!is_fstree(objectid))
|
|
set_bit(BTRFS_ROOT_TRACK_DIRTY, &new_root->state);
|
|
add_root_to_dirty_list(new_root);
|
|
|
|
new_root->objectid = objectid;
|
|
new_root->root_key.objectid = objectid;
|
|
new_root->root_key.type = BTRFS_ROOT_ITEM_KEY;
|
|
new_root->root_key.offset = 0;
|
|
|
|
node = btrfs_alloc_tree_block(trans, new_root, fs_info->nodesize,
|
|
objectid, &disk_key, 0, 0, 0,
|
|
BTRFS_NESTING_NORMAL);
|
|
if (IS_ERR(node)) {
|
|
ret = PTR_ERR(node);
|
|
error("failed to create root node for tree %llu: %d (%m)",
|
|
objectid, ret);
|
|
return ret;
|
|
}
|
|
new_root->node = node;
|
|
|
|
memset_extent_buffer(node, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_bytenr(node, node->start);
|
|
btrfs_set_header_generation(node, trans->transid);
|
|
btrfs_set_header_backref_rev(node, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(node, objectid);
|
|
write_extent_buffer_fsid(node, fs_info->fs_devices->metadata_uuid);
|
|
write_extent_buffer_chunk_tree_uuid(node, fs_info->chunk_tree_uuid);
|
|
btrfs_set_header_nritems(node, 0);
|
|
btrfs_set_header_level(node, 0);
|
|
ret = btrfs_inc_ref(trans, new_root, node, 0);
|
|
if (ret < 0)
|
|
goto free;
|
|
|
|
/*
|
|
* Special tree roots may need to modify pointers in @fs_info
|
|
* Only quota is supported yet.
|
|
*/
|
|
switch (objectid) {
|
|
case BTRFS_QUOTA_TREE_OBJECTID:
|
|
if (fs_info->quota_root) {
|
|
error("quota root already exists");
|
|
ret = -EEXIST;
|
|
goto free;
|
|
}
|
|
fs_info->quota_root = new_root;
|
|
fs_info->quota_enabled = 1;
|
|
break;
|
|
case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
|
|
if (fs_info->block_group_root) {
|
|
error("bg root already exists");
|
|
ret = -EEXIST;
|
|
goto free;
|
|
}
|
|
fs_info->block_group_root = new_root;
|
|
break;
|
|
|
|
/*
|
|
* Essential trees can't be created by this function, yet.
|
|
* As we expect such skeleton exists, or a lot of functions like
|
|
* btrfs_alloc_tree_block() doesn't work at all
|
|
*/
|
|
case BTRFS_ROOT_TREE_OBJECTID:
|
|
case BTRFS_EXTENT_TREE_OBJECTID:
|
|
case BTRFS_CHUNK_TREE_OBJECTID:
|
|
case BTRFS_FS_TREE_OBJECTID:
|
|
ret = -EEXIST;
|
|
goto free;
|
|
default:
|
|
/* Subvolume trees don't need special handling */
|
|
if (is_fstree(objectid))
|
|
break;
|
|
/* Other special trees are not supported yet */
|
|
ret = -ENOTTY;
|
|
goto free;
|
|
}
|
|
btrfs_mark_buffer_dirty(node);
|
|
btrfs_set_root_bytenr(&root_item, btrfs_header_bytenr(node));
|
|
btrfs_set_root_level(&root_item, 0);
|
|
btrfs_set_root_generation(&root_item, trans->transid);
|
|
btrfs_set_root_dirid(&root_item, 0);
|
|
btrfs_set_root_refs(&root_item, 1);
|
|
btrfs_set_root_used(&root_item, fs_info->nodesize);
|
|
location.objectid = objectid;
|
|
location.type = BTRFS_ROOT_ITEM_KEY;
|
|
location.offset = 0;
|
|
|
|
ret = btrfs_insert_root(trans, fs_info->tree_root, &location, &root_item);
|
|
if (ret < 0)
|
|
goto free;
|
|
return ret;
|
|
|
|
free:
|
|
free_extent_buffer(node);
|
|
free(new_root);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* check if the tree block can be shared by multiple trees
|
|
*/
|
|
static int btrfs_block_can_be_shared(struct btrfs_root *root,
|
|
struct extent_buffer *buf)
|
|
{
|
|
/*
|
|
* Tree blocks not in shareable trees and tree roots are never shared.
|
|
* If a block was allocated after the last snapshot and the block was
|
|
* not allocated by tree relocation, we know the block is not shared.
|
|
*/
|
|
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
|
|
buf != root->node && buf != root->commit_root &&
|
|
(btrfs_header_generation(buf) <=
|
|
btrfs_root_last_snapshot(&root->root_item) ||
|
|
btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf,
|
|
struct extent_buffer *cow)
|
|
{
|
|
u64 refs;
|
|
u64 owner;
|
|
u64 flags;
|
|
u64 new_flags = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* Backrefs update rules:
|
|
*
|
|
* Always use full backrefs for extent pointers in tree block
|
|
* allocated by tree relocation.
|
|
*
|
|
* If a shared tree block is no longer referenced by its owner
|
|
* tree (btrfs_header_owner(buf) == root->root_key.objectid),
|
|
* use full backrefs for extent pointers in tree block.
|
|
*
|
|
* If a tree block is been relocating
|
|
* (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
|
|
* use full backrefs for extent pointers in tree block.
|
|
* The reason for this is some operations (such as drop tree)
|
|
* are only allowed for blocks use full backrefs.
|
|
*/
|
|
|
|
if (btrfs_block_can_be_shared(root, buf)) {
|
|
ret = btrfs_lookup_extent_info(trans, trans->fs_info,
|
|
buf->start,
|
|
btrfs_header_level(buf), 1,
|
|
&refs, &flags);
|
|
BUG_ON(ret);
|
|
BUG_ON(refs == 0);
|
|
} else {
|
|
refs = 1;
|
|
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
|
|
btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
|
|
flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
else
|
|
flags = 0;
|
|
}
|
|
|
|
owner = btrfs_header_owner(buf);
|
|
BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
|
|
owner == BTRFS_TREE_RELOC_OBJECTID);
|
|
|
|
if (refs > 1) {
|
|
if ((owner == root->root_key.objectid ||
|
|
root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
|
|
!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
|
|
ret = btrfs_inc_ref(trans, root, buf, 1);
|
|
BUG_ON(ret);
|
|
|
|
if (root->root_key.objectid ==
|
|
BTRFS_TREE_RELOC_OBJECTID) {
|
|
ret = btrfs_dec_ref(trans, root, buf, 0);
|
|
BUG_ON(ret);
|
|
ret = btrfs_inc_ref(trans, root, cow, 1);
|
|
BUG_ON(ret);
|
|
}
|
|
new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
} else {
|
|
|
|
if (root->root_key.objectid ==
|
|
BTRFS_TREE_RELOC_OBJECTID)
|
|
ret = btrfs_inc_ref(trans, root, cow, 1);
|
|
else
|
|
ret = btrfs_inc_ref(trans, root, cow, 0);
|
|
BUG_ON(ret);
|
|
}
|
|
if (new_flags != 0) {
|
|
ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
|
|
BUG_ON(ret);
|
|
}
|
|
} else {
|
|
if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
|
|
if (root->root_key.objectid ==
|
|
BTRFS_TREE_RELOC_OBJECTID)
|
|
ret = btrfs_inc_ref(trans, root, cow, 1);
|
|
else
|
|
ret = btrfs_inc_ref(trans, root, cow, 0);
|
|
BUG_ON(ret);
|
|
ret = btrfs_dec_ref(trans, root, buf, 1);
|
|
BUG_ON(ret);
|
|
}
|
|
btrfs_clear_buffer_dirty(buf);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* does the dirty work in cow of a single block. The parent block (if
|
|
* supplied) is updated to point to the new cow copy. The new buffer is marked
|
|
* dirty and returned locked. If you modify the block it needs to be marked
|
|
* dirty again.
|
|
*
|
|
* search_start -- an allocation hint for the new block
|
|
*
|
|
* empty_size -- a hint that you plan on doing more cow. This is the size in
|
|
* bytes the allocator should try to find free next to the block it returns.
|
|
* This is just a hint and may be ignored by the allocator.
|
|
*/
|
|
static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf,
|
|
struct extent_buffer *parent, int parent_slot,
|
|
struct extent_buffer **cow_ret,
|
|
u64 search_start, u64 empty_size)
|
|
{
|
|
struct extent_buffer *cow;
|
|
struct btrfs_disk_key disk_key;
|
|
int level;
|
|
|
|
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
|
|
trans->transid != root->fs_info->running_transaction->transid);
|
|
WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
|
|
trans->transid != root->last_trans);
|
|
|
|
level = btrfs_header_level(buf);
|
|
|
|
if (level == 0)
|
|
btrfs_item_key(buf, &disk_key, 0);
|
|
else
|
|
btrfs_node_key(buf, &disk_key, 0);
|
|
|
|
cow = btrfs_alloc_tree_block(trans, root, buf->len,
|
|
root->root_key.objectid, &disk_key,
|
|
level, search_start, empty_size,
|
|
BTRFS_NESTING_NORMAL);
|
|
if (IS_ERR(cow))
|
|
return PTR_ERR(cow);
|
|
|
|
copy_extent_buffer_full(cow, buf);
|
|
btrfs_set_header_bytenr(cow, cow->start);
|
|
btrfs_set_header_generation(cow, trans->transid);
|
|
btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
|
|
BTRFS_HEADER_FLAG_RELOC);
|
|
if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
|
|
btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
|
|
else
|
|
btrfs_set_header_owner(cow, root->root_key.objectid);
|
|
|
|
write_extent_buffer_fsid(cow, root->fs_info->fs_devices->metadata_uuid);
|
|
|
|
WARN_ON(!(buf->flags & EXTENT_BUFFER_BAD_TRANSID) &&
|
|
btrfs_header_generation(buf) > trans->transid);
|
|
|
|
update_ref_for_cow(trans, root, buf, cow);
|
|
|
|
if (buf == root->node) {
|
|
root->node = cow;
|
|
extent_buffer_get(cow);
|
|
|
|
btrfs_free_extent(trans, buf->start, buf->len, 0,
|
|
root->root_key.objectid, level, 0);
|
|
free_extent_buffer(buf);
|
|
add_root_to_dirty_list(root);
|
|
} else {
|
|
btrfs_set_node_blockptr(parent, parent_slot,
|
|
cow->start);
|
|
WARN_ON(trans->transid == 0);
|
|
btrfs_set_node_ptr_generation(parent, parent_slot,
|
|
trans->transid);
|
|
btrfs_mark_buffer_dirty(parent);
|
|
WARN_ON(btrfs_header_generation(parent) != trans->transid);
|
|
|
|
btrfs_free_extent(trans, buf->start, buf->len, 0,
|
|
root->root_key.objectid, level, 0);
|
|
}
|
|
if (!list_empty(&buf->recow)) {
|
|
list_del_init(&buf->recow);
|
|
free_extent_buffer(buf);
|
|
}
|
|
free_extent_buffer(buf);
|
|
btrfs_mark_buffer_dirty(cow);
|
|
*cow_ret = cow;
|
|
return 0;
|
|
}
|
|
|
|
static inline int should_cow_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf)
|
|
{
|
|
if (btrfs_header_generation(buf) == trans->transid &&
|
|
!btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
|
|
!(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
|
|
btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int btrfs_cow_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, struct extent_buffer *buf,
|
|
struct extent_buffer *parent, int parent_slot,
|
|
struct extent_buffer **cow_ret)
|
|
{
|
|
u64 search_start;
|
|
int ret;
|
|
/*
|
|
if (trans->transaction != root->fs_info->running_transaction) {
|
|
printk(KERN_CRIT "trans %llu running %llu\n", trans->transid,
|
|
root->fs_info->running_transaction->transid);
|
|
WARN_ON(1);
|
|
}
|
|
*/
|
|
if (trans->transid != root->fs_info->generation) {
|
|
printk(KERN_CRIT "trans %llu running %llu\n",
|
|
(unsigned long long)trans->transid,
|
|
(unsigned long long)root->fs_info->generation);
|
|
WARN_ON(1);
|
|
}
|
|
if (!should_cow_block(trans, root, buf)) {
|
|
*cow_ret = buf;
|
|
return 0;
|
|
}
|
|
|
|
search_start = buf->start & ~((u64)SZ_1G - 1);
|
|
ret = __btrfs_cow_block(trans, root, buf, parent,
|
|
parent_slot, cow_ret, search_start, 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function for defrag to decide if two blocks pointed to by a
|
|
* node are actually close by
|
|
*/
|
|
static __attribute__((unused)) int close_blocks(u64 blocknr, u64 other, u32 blocksize)
|
|
{
|
|
if (blocknr < other && other - (blocknr + blocksize) < 32768)
|
|
return 1;
|
|
if (blocknr > other && blocknr - (other + blocksize) < 32768)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* same as comp_keys only with two btrfs_key's
|
|
*/
|
|
int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
|
|
{
|
|
if (k1->objectid > k2->objectid)
|
|
return 1;
|
|
if (k1->objectid < k2->objectid)
|
|
return -1;
|
|
if (k1->type > k2->type)
|
|
return 1;
|
|
if (k1->type < k2->type)
|
|
return -1;
|
|
if (k1->offset > k2->offset)
|
|
return 1;
|
|
if (k1->offset < k2->offset)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* compare two keys in a memcmp fashion
|
|
*/
|
|
static int btrfs_comp_keys(struct btrfs_disk_key *disk,
|
|
const struct btrfs_key *k2)
|
|
{
|
|
struct btrfs_key k1;
|
|
|
|
btrfs_disk_key_to_cpu(&k1, disk);
|
|
return btrfs_comp_cpu_keys(&k1, k2);
|
|
}
|
|
|
|
static int noinline check_block(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path, int level)
|
|
{
|
|
enum btrfs_tree_block_status ret;
|
|
|
|
if (path->skip_check_block)
|
|
return 0;
|
|
if (level == 0)
|
|
ret = __btrfs_check_leaf(path->nodes[0]);
|
|
else
|
|
ret = __btrfs_check_node(path->nodes[level]);
|
|
if (ret == BTRFS_TREE_BLOCK_CLEAN)
|
|
return 0;
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* search for key in the extent_buffer. The items start at offset p,
|
|
* and they are item_size apart. There are 'max' items in p.
|
|
*
|
|
* the slot in the array is returned via slot, and it points to
|
|
* the place where you would insert key if it is not found in
|
|
* the array.
|
|
*
|
|
* slot may point to max if the key is bigger than all of the keys
|
|
*/
|
|
static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
|
|
int item_size, const struct btrfs_key *key,
|
|
int max, int *slot)
|
|
{
|
|
int low = 0;
|
|
int high = max;
|
|
int mid;
|
|
int ret;
|
|
unsigned long offset;
|
|
struct btrfs_disk_key *tmp;
|
|
|
|
while(low < high) {
|
|
mid = (low + high) / 2;
|
|
offset = p + mid * item_size;
|
|
|
|
tmp = (struct btrfs_disk_key *)(eb->data + offset);
|
|
ret = btrfs_comp_keys(tmp, key);
|
|
|
|
if (ret < 0)
|
|
low = mid + 1;
|
|
else if (ret > 0)
|
|
high = mid;
|
|
else {
|
|
*slot = mid;
|
|
return 0;
|
|
}
|
|
}
|
|
*slot = low;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* simple bin_search frontend that does the right thing for
|
|
* leaves vs nodes
|
|
*/
|
|
int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
|
|
int *slot)
|
|
{
|
|
if (btrfs_header_level(eb) == 0)
|
|
return generic_bin_search(eb,
|
|
offsetof(struct btrfs_leaf, items),
|
|
sizeof(struct btrfs_item),
|
|
key, btrfs_header_nritems(eb),
|
|
slot);
|
|
else
|
|
return generic_bin_search(eb,
|
|
offsetof(struct btrfs_node, ptrs),
|
|
sizeof(struct btrfs_key_ptr),
|
|
key, btrfs_header_nritems(eb),
|
|
slot);
|
|
}
|
|
|
|
struct extent_buffer *read_node_slot(struct btrfs_fs_info *fs_info,
|
|
struct extent_buffer *parent, int slot)
|
|
{
|
|
struct extent_buffer *ret;
|
|
int level = btrfs_header_level(parent);
|
|
|
|
if (slot < 0)
|
|
return NULL;
|
|
if (slot >= btrfs_header_nritems(parent))
|
|
return NULL;
|
|
|
|
if (level == 0)
|
|
return NULL;
|
|
|
|
ret = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
|
|
btrfs_header_owner(parent),
|
|
btrfs_node_ptr_generation(parent, slot),
|
|
level - 1, NULL);
|
|
if (!extent_buffer_uptodate(ret))
|
|
return ERR_PTR(-EIO);
|
|
|
|
if (btrfs_header_level(ret) != level - 1) {
|
|
error(
|
|
"child eb corrupted: parent bytenr=%llu item=%d parent level=%d child bytenr=%llu child level=%d",
|
|
btrfs_header_bytenr(parent), slot, btrfs_header_level(parent),
|
|
btrfs_header_bytenr(ret), btrfs_header_level(ret));
|
|
free_extent_buffer(ret);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* node level balancing, used to make sure nodes are in proper order for
|
|
* item deletion. We balance from the top down, so we have to make sure
|
|
* that a deletion won't leave an node completely empty later on.
|
|
*/
|
|
static noinline int balance_level(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, int level)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_buffer *right = NULL;
|
|
struct extent_buffer *mid;
|
|
struct extent_buffer *left = NULL;
|
|
struct extent_buffer *parent = NULL;
|
|
int ret = 0;
|
|
int wret;
|
|
int pslot;
|
|
int orig_slot = path->slots[level];
|
|
u64 orig_ptr;
|
|
|
|
if (level == 0)
|
|
return 0;
|
|
|
|
mid = path->nodes[level];
|
|
WARN_ON(btrfs_header_generation(mid) != trans->transid);
|
|
|
|
orig_ptr = btrfs_node_blockptr(mid, orig_slot);
|
|
|
|
if (level < BTRFS_MAX_LEVEL - 1) {
|
|
parent = path->nodes[level + 1];
|
|
pslot = path->slots[level + 1];
|
|
}
|
|
|
|
/*
|
|
* deal with the case where there is only one pointer in the root
|
|
* by promoting the node below to a root
|
|
*/
|
|
if (!parent) {
|
|
struct extent_buffer *child;
|
|
|
|
if (btrfs_header_nritems(mid) != 1)
|
|
return 0;
|
|
|
|
/* promote the child to a root */
|
|
child = read_node_slot(fs_info, mid, 0);
|
|
BUG_ON(!extent_buffer_uptodate(child));
|
|
ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
|
|
BUG_ON(ret);
|
|
|
|
root->node = child;
|
|
add_root_to_dirty_list(root);
|
|
path->nodes[level] = NULL;
|
|
btrfs_clear_buffer_dirty(mid);
|
|
/* once for the path */
|
|
free_extent_buffer(mid);
|
|
|
|
root_sub_used(root, mid->len);
|
|
|
|
ret = btrfs_free_extent(trans, mid->start, mid->len, 0,
|
|
root->root_key.objectid, level, 0);
|
|
/* once for the root ptr */
|
|
free_extent_buffer(mid);
|
|
return ret;
|
|
}
|
|
if (btrfs_header_nritems(mid) >
|
|
BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
|
|
return 0;
|
|
|
|
left = read_node_slot(fs_info, parent, pslot - 1);
|
|
if (extent_buffer_uptodate(left)) {
|
|
wret = btrfs_cow_block(trans, root, left,
|
|
parent, pslot - 1, &left);
|
|
if (wret) {
|
|
ret = wret;
|
|
goto enospc;
|
|
}
|
|
}
|
|
right = read_node_slot(fs_info, parent, pslot + 1);
|
|
if (extent_buffer_uptodate(right)) {
|
|
wret = btrfs_cow_block(trans, root, right,
|
|
parent, pslot + 1, &right);
|
|
if (wret) {
|
|
ret = wret;
|
|
goto enospc;
|
|
}
|
|
}
|
|
|
|
/* first, try to make some room in the middle buffer */
|
|
if (left) {
|
|
orig_slot += btrfs_header_nritems(left);
|
|
wret = push_node_left(trans, left, mid, 1);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
}
|
|
|
|
/*
|
|
* then try to empty the right most buffer into the middle
|
|
*/
|
|
if (right) {
|
|
wret = push_node_left(trans, mid, right, 1);
|
|
if (wret < 0 && wret != -ENOSPC)
|
|
ret = wret;
|
|
if (btrfs_header_nritems(right) == 0) {
|
|
u64 bytenr = right->start;
|
|
u32 blocksize = right->len;
|
|
|
|
btrfs_clear_buffer_dirty(right);
|
|
free_extent_buffer(right);
|
|
right = NULL;
|
|
wret = btrfs_del_ptr(root, path, level + 1, pslot + 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
root_sub_used(root, blocksize);
|
|
wret = btrfs_free_extent(trans, bytenr, blocksize, 0,
|
|
root->root_key.objectid, level,
|
|
0);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
struct btrfs_disk_key right_key;
|
|
btrfs_node_key(right, &right_key, 0);
|
|
btrfs_set_node_key(parent, &right_key, pslot + 1);
|
|
btrfs_mark_buffer_dirty(parent);
|
|
}
|
|
}
|
|
if (btrfs_header_nritems(mid) == 1) {
|
|
/*
|
|
* we're not allowed to leave a node with one item in the
|
|
* tree during a delete. A deletion from lower in the tree
|
|
* could try to delete the only pointer in this node.
|
|
* So, pull some keys from the left.
|
|
* There has to be a left pointer at this point because
|
|
* otherwise we would have pulled some pointers from the
|
|
* right
|
|
*/
|
|
BUG_ON(!left);
|
|
wret = balance_node_right(trans, mid, left);
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
goto enospc;
|
|
}
|
|
if (wret == 1) {
|
|
wret = push_node_left(trans, left, mid, 1);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
}
|
|
BUG_ON(wret == 1);
|
|
}
|
|
if (btrfs_header_nritems(mid) == 0) {
|
|
/* we've managed to empty the middle node, drop it */
|
|
u64 bytenr = mid->start;
|
|
u32 blocksize = mid->len;
|
|
btrfs_clear_buffer_dirty(mid);
|
|
free_extent_buffer(mid);
|
|
mid = NULL;
|
|
wret = btrfs_del_ptr(root, path, level + 1, pslot);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
root_sub_used(root, blocksize);
|
|
wret = btrfs_free_extent(trans, bytenr, blocksize, 0,
|
|
root->root_key.objectid, level, 0);
|
|
if (wret)
|
|
ret = wret;
|
|
} else {
|
|
/* update the parent key to reflect our changes */
|
|
struct btrfs_disk_key mid_key;
|
|
btrfs_node_key(mid, &mid_key, 0);
|
|
btrfs_set_node_key(parent, &mid_key, pslot);
|
|
btrfs_mark_buffer_dirty(parent);
|
|
}
|
|
|
|
/* update the path */
|
|
if (left) {
|
|
if (btrfs_header_nritems(left) > orig_slot) {
|
|
extent_buffer_get(left);
|
|
path->nodes[level] = left;
|
|
path->slots[level + 1] -= 1;
|
|
path->slots[level] = orig_slot;
|
|
if (mid)
|
|
free_extent_buffer(mid);
|
|
} else {
|
|
orig_slot -= btrfs_header_nritems(left);
|
|
path->slots[level] = orig_slot;
|
|
}
|
|
}
|
|
/* double check we haven't messed things up */
|
|
check_block(root->fs_info, path, level);
|
|
if (orig_ptr !=
|
|
btrfs_node_blockptr(path->nodes[level], path->slots[level]))
|
|
BUG();
|
|
enospc:
|
|
if (right)
|
|
free_extent_buffer(right);
|
|
if (left)
|
|
free_extent_buffer(left);
|
|
return ret;
|
|
}
|
|
|
|
/* Node balancing for insertion. Here we only split or push nodes around
|
|
* when they are completely full. This is also done top down, so we
|
|
* have to be pessimistic.
|
|
*/
|
|
static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, int level)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_buffer *right = NULL;
|
|
struct extent_buffer *mid;
|
|
struct extent_buffer *left = NULL;
|
|
struct extent_buffer *parent = NULL;
|
|
int ret = 0;
|
|
int wret;
|
|
int pslot;
|
|
int orig_slot = path->slots[level];
|
|
|
|
if (level == 0)
|
|
return 1;
|
|
|
|
mid = path->nodes[level];
|
|
WARN_ON(btrfs_header_generation(mid) != trans->transid);
|
|
|
|
if (level < BTRFS_MAX_LEVEL - 1) {
|
|
parent = path->nodes[level + 1];
|
|
pslot = path->slots[level + 1];
|
|
}
|
|
|
|
if (!parent)
|
|
return 1;
|
|
|
|
left = read_node_slot(fs_info, parent, pslot - 1);
|
|
|
|
/* first, try to make some room in the middle buffer */
|
|
if (extent_buffer_uptodate(left)) {
|
|
u32 left_nr;
|
|
left_nr = btrfs_header_nritems(left);
|
|
if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
|
|
wret = 1;
|
|
} else {
|
|
ret = btrfs_cow_block(trans, root, left, parent,
|
|
pslot - 1, &left);
|
|
if (ret)
|
|
wret = 1;
|
|
else {
|
|
wret = push_node_left(trans, left, mid, 0);
|
|
}
|
|
}
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (wret == 0) {
|
|
struct btrfs_disk_key disk_key;
|
|
orig_slot += left_nr;
|
|
btrfs_node_key(mid, &disk_key, 0);
|
|
btrfs_set_node_key(parent, &disk_key, pslot);
|
|
btrfs_mark_buffer_dirty(parent);
|
|
if (btrfs_header_nritems(left) > orig_slot) {
|
|
path->nodes[level] = left;
|
|
path->slots[level + 1] -= 1;
|
|
path->slots[level] = orig_slot;
|
|
free_extent_buffer(mid);
|
|
} else {
|
|
orig_slot -=
|
|
btrfs_header_nritems(left);
|
|
path->slots[level] = orig_slot;
|
|
free_extent_buffer(left);
|
|
}
|
|
return 0;
|
|
}
|
|
free_extent_buffer(left);
|
|
}
|
|
right= read_node_slot(fs_info, parent, pslot + 1);
|
|
|
|
/*
|
|
* then try to empty the right most buffer into the middle
|
|
*/
|
|
if (extent_buffer_uptodate(right)) {
|
|
u32 right_nr;
|
|
right_nr = btrfs_header_nritems(right);
|
|
if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root->fs_info) - 1) {
|
|
wret = 1;
|
|
} else {
|
|
ret = btrfs_cow_block(trans, root, right,
|
|
parent, pslot + 1,
|
|
&right);
|
|
if (ret)
|
|
wret = 1;
|
|
else {
|
|
wret = balance_node_right(trans, right, mid);
|
|
}
|
|
}
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (wret == 0) {
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
btrfs_node_key(right, &disk_key, 0);
|
|
btrfs_set_node_key(parent, &disk_key, pslot + 1);
|
|
btrfs_mark_buffer_dirty(parent);
|
|
|
|
if (btrfs_header_nritems(mid) <= orig_slot) {
|
|
path->nodes[level] = right;
|
|
path->slots[level + 1] += 1;
|
|
path->slots[level] = orig_slot -
|
|
btrfs_header_nritems(mid);
|
|
free_extent_buffer(mid);
|
|
} else {
|
|
free_extent_buffer(right);
|
|
}
|
|
return 0;
|
|
}
|
|
free_extent_buffer(right);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* readahead one full node of leaves, finding things that are close
|
|
* to the block in 'slot', and triggering ra on them.
|
|
*/
|
|
static void reada_for_search(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
int level, int slot, u64 objectid)
|
|
{
|
|
struct extent_buffer *node;
|
|
struct btrfs_disk_key disk_key;
|
|
u32 nritems;
|
|
u64 search;
|
|
u64 lowest_read;
|
|
u64 highest_read;
|
|
u64 nread = 0;
|
|
int direction = path->reada;
|
|
struct extent_buffer *eb;
|
|
u32 nr;
|
|
u32 nscan = 0;
|
|
|
|
if (level != 1)
|
|
return;
|
|
|
|
if (!path->nodes[level])
|
|
return;
|
|
|
|
node = path->nodes[level];
|
|
search = btrfs_node_blockptr(node, slot);
|
|
eb = btrfs_find_tree_block(fs_info, search, fs_info->nodesize);
|
|
if (eb) {
|
|
free_extent_buffer(eb);
|
|
return;
|
|
}
|
|
|
|
highest_read = search;
|
|
lowest_read = search;
|
|
|
|
nritems = btrfs_header_nritems(node);
|
|
nr = slot;
|
|
while(1) {
|
|
if (direction < 0) {
|
|
if (nr == 0)
|
|
break;
|
|
nr--;
|
|
} else if (direction > 0) {
|
|
nr++;
|
|
if (nr >= nritems)
|
|
break;
|
|
}
|
|
if (path->reada < 0 && objectid) {
|
|
btrfs_node_key(node, &disk_key, nr);
|
|
if (btrfs_disk_key_objectid(&disk_key) != objectid)
|
|
break;
|
|
}
|
|
search = btrfs_node_blockptr(node, nr);
|
|
if ((search >= lowest_read && search <= highest_read) ||
|
|
(search < lowest_read && lowest_read - search <= 32768) ||
|
|
(search > highest_read && search - highest_read <= 32768)) {
|
|
readahead_tree_block(fs_info, search,
|
|
btrfs_node_ptr_generation(node, nr));
|
|
nread += fs_info->nodesize;
|
|
}
|
|
nscan++;
|
|
if (path->reada < 2 && (nread > SZ_256K || nscan > 32))
|
|
break;
|
|
if(nread > SZ_1M || nscan > 128)
|
|
break;
|
|
|
|
if (search < lowest_read)
|
|
lowest_read = search;
|
|
if (search > highest_read)
|
|
highest_read = search;
|
|
}
|
|
}
|
|
|
|
int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
|
|
u64 iobjectid, u64 ioff, u8 key_type,
|
|
struct btrfs_key *found_key)
|
|
{
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
struct btrfs_path *path;
|
|
|
|
key.type = key_type;
|
|
key.objectid = iobjectid;
|
|
key.offset = ioff;
|
|
|
|
if (found_path == NULL) {
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
} else
|
|
path = found_path;
|
|
|
|
ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
|
|
if ((ret < 0) || (found_key == NULL))
|
|
goto out;
|
|
|
|
eb = path->nodes[0];
|
|
if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
|
|
ret = btrfs_next_leaf(fs_root, path);
|
|
if (ret)
|
|
goto out;
|
|
eb = path->nodes[0];
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
|
|
if (found_key->type != key.type ||
|
|
found_key->objectid != key.objectid) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
if (path != found_path)
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* look for key in the tree. path is filled in with nodes along the way
|
|
* if key is found, we return zero and you can find the item in the leaf
|
|
* level of the path (level 0)
|
|
*
|
|
* If the key isn't found, the path points to the slot where it should
|
|
* be inserted, and 1 is returned. If there are other errors during the
|
|
* search a negative error number is returned.
|
|
*
|
|
* if ins_len > 0, nodes and leaves will be split as we walk down the
|
|
* tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
|
|
* possible)
|
|
*/
|
|
int btrfs_search_slot(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, const struct btrfs_key *key,
|
|
struct btrfs_path *p, int ins_len, int cow)
|
|
{
|
|
struct extent_buffer *b;
|
|
int slot;
|
|
int ret;
|
|
int level;
|
|
int should_reada = p->reada;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u8 lowest_level = 0;
|
|
|
|
lowest_level = p->lowest_level;
|
|
WARN_ON(lowest_level && ins_len > 0);
|
|
WARN_ON(p->nodes[0] != NULL);
|
|
again:
|
|
b = root->node;
|
|
extent_buffer_get(b);
|
|
while (b) {
|
|
level = btrfs_header_level(b);
|
|
if (cow) {
|
|
int wret;
|
|
wret = btrfs_cow_block(trans, root, b,
|
|
p->nodes[level + 1],
|
|
p->slots[level + 1],
|
|
&b);
|
|
if (wret) {
|
|
free_extent_buffer(b);
|
|
return wret;
|
|
}
|
|
}
|
|
BUG_ON(!cow && ins_len);
|
|
if (level != btrfs_header_level(b))
|
|
WARN_ON(1);
|
|
level = btrfs_header_level(b);
|
|
p->nodes[level] = b;
|
|
ret = check_block(fs_info, p, level);
|
|
if (ret)
|
|
return -1;
|
|
ret = btrfs_bin_search(b, key, &slot);
|
|
if (level != 0) {
|
|
if (ret && slot > 0)
|
|
slot -= 1;
|
|
p->slots[level] = slot;
|
|
if ((p->search_for_split || ins_len > 0) &&
|
|
btrfs_header_nritems(b) >=
|
|
BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
|
|
int sret = split_node(trans, root, p, level);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
slot = p->slots[level];
|
|
} else if (ins_len < 0) {
|
|
int sret = balance_level(trans, root, p,
|
|
level);
|
|
if (sret)
|
|
return sret;
|
|
b = p->nodes[level];
|
|
if (!b) {
|
|
btrfs_release_path(p);
|
|
goto again;
|
|
}
|
|
slot = p->slots[level];
|
|
BUG_ON(btrfs_header_nritems(b) == 1);
|
|
}
|
|
/* this is only true while dropping a snapshot */
|
|
if (level == lowest_level)
|
|
break;
|
|
|
|
if (should_reada)
|
|
reada_for_search(fs_info, p, level, slot,
|
|
key->objectid);
|
|
|
|
b = read_node_slot(fs_info, b, slot);
|
|
if (!extent_buffer_uptodate(b))
|
|
return -EIO;
|
|
} else {
|
|
p->slots[level] = slot;
|
|
if (ins_len > 0 &&
|
|
ins_len > btrfs_leaf_free_space(b)) {
|
|
int sret = split_leaf(trans, root, key,
|
|
p, ins_len, ret == 0);
|
|
BUG_ON(sret > 0);
|
|
if (sret)
|
|
return sret;
|
|
}
|
|
return ret;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Helper to use instead of search slot if no exact match is needed but
|
|
* instead the next or previous item should be returned.
|
|
* When find_higher is true, the next higher item is returned, the next lower
|
|
* otherwise.
|
|
* When return_any and find_higher are both true, and no higher item is found,
|
|
* return the next lower instead.
|
|
* When return_any is true and find_higher is false, and no lower item is found,
|
|
* return the next higher instead.
|
|
* It returns 0 if any item is found, 1 if none is found (tree empty), and
|
|
* < 0 on error
|
|
*/
|
|
int btrfs_search_slot_for_read(struct btrfs_root *root,
|
|
const struct btrfs_key *key,
|
|
struct btrfs_path *p, int find_higher,
|
|
int return_any)
|
|
{
|
|
int ret;
|
|
struct extent_buffer *leaf;
|
|
|
|
again:
|
|
ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
|
|
if (ret <= 0)
|
|
return ret;
|
|
/*
|
|
* A return value of 1 means the path is at the position where the item
|
|
* should be inserted. Normally this is the next bigger item, but in
|
|
* case the previous item is the last in a leaf, path points to the
|
|
* first free slot in the previous leaf, i.e. at an invalid item.
|
|
*/
|
|
leaf = p->nodes[0];
|
|
|
|
if (find_higher) {
|
|
if (p->slots[0] >= btrfs_header_nritems(leaf)) {
|
|
ret = btrfs_next_leaf(root, p);
|
|
if (ret <= 0)
|
|
return ret;
|
|
if (!return_any)
|
|
return 1;
|
|
/*
|
|
* No higher item found, return the next lower instead
|
|
*/
|
|
return_any = 0;
|
|
find_higher = 0;
|
|
btrfs_release_path(p);
|
|
goto again;
|
|
}
|
|
} else {
|
|
if (p->slots[0] == 0) {
|
|
ret = btrfs_prev_leaf(root, p);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (!ret) {
|
|
leaf = p->nodes[0];
|
|
if (p->slots[0] == btrfs_header_nritems(leaf))
|
|
p->slots[0]--;
|
|
return 0;
|
|
}
|
|
if (!return_any)
|
|
return 1;
|
|
/*
|
|
* No lower item found, return the next higher instead
|
|
*/
|
|
return_any = 0;
|
|
find_higher = 1;
|
|
btrfs_release_path(p);
|
|
goto again;
|
|
} else {
|
|
--p->slots[0];
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* adjust the pointers going up the tree, starting at level
|
|
* making sure the right key of each node is points to 'key'.
|
|
* This is used after shifting pointers to the left, so it stops
|
|
* fixing up pointers when a given leaf/node is not in slot 0 of the
|
|
* higher levels
|
|
*/
|
|
void btrfs_fixup_low_keys( struct btrfs_path *path, struct btrfs_disk_key *key,
|
|
int level)
|
|
{
|
|
int i;
|
|
struct extent_buffer *t;
|
|
|
|
for (i = level; i < BTRFS_MAX_LEVEL; i++) {
|
|
int tslot = path->slots[i];
|
|
if (!path->nodes[i])
|
|
break;
|
|
t = path->nodes[i];
|
|
btrfs_set_node_key(t, key, tslot);
|
|
btrfs_mark_buffer_dirty(path->nodes[i]);
|
|
if (tslot != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* update item key.
|
|
*
|
|
* This function isn't completely safe. It's the caller's responsibility
|
|
* that the new key won't break the order
|
|
*/
|
|
int btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
|
|
struct btrfs_key *new_key)
|
|
{
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (slot > 0) {
|
|
btrfs_item_key(eb, &disk_key, slot - 1);
|
|
if (btrfs_comp_keys(&disk_key, new_key) >= 0)
|
|
return -1;
|
|
}
|
|
if (slot < btrfs_header_nritems(eb) - 1) {
|
|
btrfs_item_key(eb, &disk_key, slot + 1);
|
|
if (btrfs_comp_keys(&disk_key, new_key) <= 0)
|
|
return -1;
|
|
}
|
|
|
|
btrfs_cpu_key_to_disk(&disk_key, new_key);
|
|
btrfs_set_item_key(eb, &disk_key, slot);
|
|
btrfs_mark_buffer_dirty(eb);
|
|
if (slot == 0)
|
|
btrfs_fixup_low_keys(path, &disk_key, 1);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* update an item key without the safety checks. This is meant to be called by
|
|
* fsck only.
|
|
*/
|
|
void btrfs_set_item_key_unsafe(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *new_key)
|
|
{
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_cpu_key_to_disk(&disk_key, new_key);
|
|
btrfs_set_item_key(eb, &disk_key, slot);
|
|
btrfs_mark_buffer_dirty(eb);
|
|
if (slot == 0)
|
|
btrfs_fixup_low_keys(path, &disk_key, 1);
|
|
}
|
|
|
|
/*
|
|
* try to push data from one node into the next node left in the
|
|
* tree.
|
|
*
|
|
* returns 0 if some ptrs were pushed left, < 0 if there was some horrible
|
|
* error, and > 0 if there was no room in the left hand block.
|
|
*/
|
|
static int push_node_left(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *dst,
|
|
struct extent_buffer *src, int empty)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
int push_items = 0;
|
|
int src_nritems;
|
|
int dst_nritems;
|
|
int ret = 0;
|
|
|
|
src_nritems = btrfs_header_nritems(src);
|
|
dst_nritems = btrfs_header_nritems(dst);
|
|
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
|
|
WARN_ON(btrfs_header_generation(src) != trans->transid);
|
|
WARN_ON(btrfs_header_generation(dst) != trans->transid);
|
|
|
|
if (!empty && src_nritems <= 8)
|
|
return 1;
|
|
|
|
if (push_items <= 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (empty) {
|
|
push_items = min(src_nritems, push_items);
|
|
if (push_items < src_nritems) {
|
|
/* leave at least 8 pointers in the node if
|
|
* we aren't going to empty it
|
|
*/
|
|
if (src_nritems - push_items < 8) {
|
|
if (push_items <= 8)
|
|
return 1;
|
|
push_items -= 8;
|
|
}
|
|
}
|
|
} else
|
|
push_items = min(src_nritems - 8, push_items);
|
|
|
|
copy_extent_buffer(dst, src,
|
|
btrfs_node_key_ptr_offset(dst, dst_nritems),
|
|
btrfs_node_key_ptr_offset(src, 0),
|
|
push_items * sizeof(struct btrfs_key_ptr));
|
|
|
|
if (push_items < src_nritems) {
|
|
memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
|
|
btrfs_node_key_ptr_offset(src, push_items),
|
|
(src_nritems - push_items) *
|
|
sizeof(struct btrfs_key_ptr));
|
|
}
|
|
btrfs_set_header_nritems(src, src_nritems - push_items);
|
|
btrfs_set_header_nritems(dst, dst_nritems + push_items);
|
|
btrfs_mark_buffer_dirty(src);
|
|
btrfs_mark_buffer_dirty(dst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* try to push data from one node into the next node right in the
|
|
* tree.
|
|
*
|
|
* returns 0 if some ptrs were pushed, < 0 if there was some horrible
|
|
* error, and > 0 if there was no room in the right hand block.
|
|
*
|
|
* this will only push up to 1/2 the contents of the left node over
|
|
*/
|
|
static int balance_node_right(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *dst,
|
|
struct extent_buffer *src)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
int push_items = 0;
|
|
int max_push;
|
|
int src_nritems;
|
|
int dst_nritems;
|
|
int ret = 0;
|
|
|
|
WARN_ON(btrfs_header_generation(src) != trans->transid);
|
|
WARN_ON(btrfs_header_generation(dst) != trans->transid);
|
|
|
|
src_nritems = btrfs_header_nritems(src);
|
|
dst_nritems = btrfs_header_nritems(dst);
|
|
push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
|
|
if (push_items <= 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (src_nritems < 4) {
|
|
return 1;
|
|
}
|
|
|
|
max_push = src_nritems / 2 + 1;
|
|
/* don't try to empty the node */
|
|
if (max_push >= src_nritems) {
|
|
return 1;
|
|
}
|
|
|
|
if (max_push < push_items)
|
|
push_items = max_push;
|
|
|
|
memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
|
|
btrfs_node_key_ptr_offset(dst, 0),
|
|
(dst_nritems) *
|
|
sizeof(struct btrfs_key_ptr));
|
|
|
|
copy_extent_buffer(dst, src,
|
|
btrfs_node_key_ptr_offset(dst, 0),
|
|
btrfs_node_key_ptr_offset(src, src_nritems - push_items),
|
|
push_items * sizeof(struct btrfs_key_ptr));
|
|
|
|
btrfs_set_header_nritems(src, src_nritems - push_items);
|
|
btrfs_set_header_nritems(dst, dst_nritems + push_items);
|
|
|
|
btrfs_mark_buffer_dirty(src);
|
|
btrfs_mark_buffer_dirty(dst);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function to insert a new root level in the tree.
|
|
* A new node is allocated, and a single item is inserted to
|
|
* point to the existing root
|
|
*
|
|
* returns zero on success or < 0 on failure.
|
|
*/
|
|
static int noinline insert_new_root(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path, int level)
|
|
{
|
|
u64 lower_gen;
|
|
struct extent_buffer *lower;
|
|
struct extent_buffer *c;
|
|
struct extent_buffer *old;
|
|
struct btrfs_disk_key lower_key;
|
|
|
|
BUG_ON(path->nodes[level]);
|
|
BUG_ON(path->nodes[level-1] != root->node);
|
|
|
|
lower = path->nodes[level-1];
|
|
if (level == 1)
|
|
btrfs_item_key(lower, &lower_key, 0);
|
|
else
|
|
btrfs_node_key(lower, &lower_key, 0);
|
|
|
|
c = btrfs_alloc_tree_block(trans, root, root->fs_info->nodesize,
|
|
root->root_key.objectid, &lower_key,
|
|
level, root->node->start, 0,
|
|
BTRFS_NESTING_NORMAL);
|
|
|
|
if (IS_ERR(c))
|
|
return PTR_ERR(c);
|
|
|
|
memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_nritems(c, 1);
|
|
btrfs_set_header_level(c, level);
|
|
btrfs_set_header_bytenr(c, c->start);
|
|
btrfs_set_header_generation(c, trans->transid);
|
|
btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(c, root->root_key.objectid);
|
|
|
|
root_add_used(root, root->fs_info->nodesize);
|
|
|
|
write_extent_buffer_fsid(c, root->fs_info->fs_devices->metadata_uuid);
|
|
write_extent_buffer_chunk_tree_uuid(c, root->fs_info->chunk_tree_uuid);
|
|
btrfs_set_node_key(c, &lower_key, 0);
|
|
btrfs_set_node_blockptr(c, 0, lower->start);
|
|
lower_gen = btrfs_header_generation(lower);
|
|
WARN_ON(lower_gen != trans->transid);
|
|
|
|
btrfs_set_node_ptr_generation(c, 0, lower_gen);
|
|
|
|
btrfs_mark_buffer_dirty(c);
|
|
|
|
old = root->node;
|
|
root->node = c;
|
|
|
|
/* the super has an extra ref to root->node */
|
|
free_extent_buffer(old);
|
|
|
|
add_root_to_dirty_list(root);
|
|
extent_buffer_get(c);
|
|
path->nodes[level] = c;
|
|
path->slots[level] = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* worker function to insert a single pointer in a node.
|
|
* the node should have enough room for the pointer already
|
|
*
|
|
* slot and level indicate where you want the key to go, and
|
|
* blocknr is the block the key points to.
|
|
*
|
|
* returns zero on success and < 0 on any error
|
|
*/
|
|
static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, struct btrfs_disk_key
|
|
*key, u64 bytenr, int slot, int level)
|
|
{
|
|
struct extent_buffer *lower;
|
|
int nritems;
|
|
|
|
BUG_ON(!path->nodes[level]);
|
|
lower = path->nodes[level];
|
|
nritems = btrfs_header_nritems(lower);
|
|
if (slot > nritems)
|
|
BUG();
|
|
if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root->fs_info))
|
|
BUG();
|
|
if (slot < nritems) {
|
|
/* shift the items */
|
|
memmove_extent_buffer(lower,
|
|
btrfs_node_key_ptr_offset(lower, slot + 1),
|
|
btrfs_node_key_ptr_offset(lower, slot),
|
|
(nritems - slot) * sizeof(struct btrfs_key_ptr));
|
|
}
|
|
btrfs_set_node_key(lower, key, slot);
|
|
btrfs_set_node_blockptr(lower, slot, bytenr);
|
|
WARN_ON(trans->transid == 0);
|
|
btrfs_set_node_ptr_generation(lower, slot, trans->transid);
|
|
btrfs_set_header_nritems(lower, nritems + 1);
|
|
btrfs_mark_buffer_dirty(lower);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* split the node at the specified level in path in two.
|
|
* The path is corrected to point to the appropriate node after the split
|
|
*
|
|
* Before splitting this tries to make some room in the node by pushing
|
|
* left and right, if either one works, it returns right away.
|
|
*
|
|
* returns 0 on success and < 0 on failure
|
|
*/
|
|
static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int level)
|
|
{
|
|
struct extent_buffer *c;
|
|
struct extent_buffer *split;
|
|
struct btrfs_disk_key disk_key;
|
|
int mid;
|
|
int ret;
|
|
int wret;
|
|
u32 c_nritems;
|
|
|
|
c = path->nodes[level];
|
|
WARN_ON(btrfs_header_generation(c) != trans->transid);
|
|
if (c == root->node) {
|
|
/* trying to split the root, lets make a new one */
|
|
ret = insert_new_root(trans, root, path, level + 1);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
ret = push_nodes_for_insert(trans, root, path, level);
|
|
c = path->nodes[level];
|
|
if (!ret && btrfs_header_nritems(c) <
|
|
BTRFS_NODEPTRS_PER_BLOCK(root->fs_info) - 3)
|
|
return 0;
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
c_nritems = btrfs_header_nritems(c);
|
|
mid = (c_nritems + 1) / 2;
|
|
btrfs_node_key(c, &disk_key, mid);
|
|
|
|
split = btrfs_alloc_tree_block(trans, root, root->fs_info->nodesize,
|
|
root->root_key.objectid,
|
|
&disk_key, level, c->start, 0,
|
|
BTRFS_NESTING_NORMAL);
|
|
if (IS_ERR(split))
|
|
return PTR_ERR(split);
|
|
|
|
memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_level(split, btrfs_header_level(c));
|
|
btrfs_set_header_bytenr(split, split->start);
|
|
btrfs_set_header_generation(split, trans->transid);
|
|
btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(split, root->root_key.objectid);
|
|
write_extent_buffer_fsid(split, root->fs_info->fs_devices->metadata_uuid);
|
|
write_extent_buffer_chunk_tree_uuid(split, root->fs_info->chunk_tree_uuid);
|
|
|
|
root_add_used(root, root->fs_info->nodesize);
|
|
|
|
copy_extent_buffer(split, c,
|
|
btrfs_node_key_ptr_offset(split, 0),
|
|
btrfs_node_key_ptr_offset(c, mid),
|
|
(c_nritems - mid) * sizeof(struct btrfs_key_ptr));
|
|
btrfs_set_header_nritems(split, c_nritems - mid);
|
|
btrfs_set_header_nritems(c, mid);
|
|
ret = 0;
|
|
|
|
btrfs_mark_buffer_dirty(c);
|
|
btrfs_mark_buffer_dirty(split);
|
|
|
|
wret = insert_ptr(trans, root, path, &disk_key, split->start,
|
|
path->slots[level + 1] + 1,
|
|
level + 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
if (path->slots[level] >= mid) {
|
|
path->slots[level] -= mid;
|
|
free_extent_buffer(c);
|
|
path->nodes[level] = split;
|
|
path->slots[level + 1] += 1;
|
|
} else {
|
|
free_extent_buffer(split);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* how many bytes are required to store the items in a leaf. start
|
|
* and nr indicate which items in the leaf to check. This totals up the
|
|
* space used both by the item structs and the item data
|
|
*/
|
|
static int leaf_space_used(struct extent_buffer *l, int start, int nr)
|
|
{
|
|
int data_len;
|
|
int nritems = btrfs_header_nritems(l);
|
|
int end = min(nritems, start + nr) - 1;
|
|
|
|
if (!nr)
|
|
return 0;
|
|
data_len = btrfs_item_data_end(l, start);
|
|
data_len = data_len - btrfs_item_offset(l, end);
|
|
data_len += sizeof(struct btrfs_item) * nr;
|
|
WARN_ON(data_len < 0);
|
|
return data_len;
|
|
}
|
|
|
|
/*
|
|
* The space between the end of the leaf items and
|
|
* the start of the leaf data. IOW, how much room
|
|
* the leaf has left for both items and data
|
|
*/
|
|
int btrfs_leaf_free_space(struct extent_buffer *leaf)
|
|
{
|
|
int nritems = btrfs_header_nritems(leaf);
|
|
u32 leaf_data_size;
|
|
int ret;
|
|
|
|
BUG_ON(!leaf->fs_info);
|
|
BUG_ON(leaf->fs_info->nodesize != leaf->len);
|
|
leaf_data_size = BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
|
|
ret = leaf_data_size - leaf_space_used(leaf, 0 ,nritems);
|
|
if (ret < 0) {
|
|
printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
|
|
ret, leaf_data_size, leaf_space_used(leaf, 0, nritems),
|
|
nritems);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* push some data in the path leaf to the right, trying to free up at
|
|
* least data_size bytes. returns zero if the push worked, nonzero otherwise
|
|
*
|
|
* returns 1 if the push failed because the other node didn't have enough
|
|
* room, 0 if everything worked out and < 0 if there were major errors.
|
|
*/
|
|
static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int data_size,
|
|
int empty)
|
|
{
|
|
struct extent_buffer *left = path->nodes[0];
|
|
struct extent_buffer *right;
|
|
struct extent_buffer *upper;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int slot;
|
|
u32 i;
|
|
int free_space;
|
|
int push_space = 0;
|
|
int push_items = 0;
|
|
u32 left_nritems;
|
|
u32 nr;
|
|
u32 right_nritems;
|
|
u32 data_end;
|
|
u32 this_item_size;
|
|
int ret;
|
|
|
|
slot = path->slots[1];
|
|
if (!path->nodes[1]) {
|
|
return 1;
|
|
}
|
|
upper = path->nodes[1];
|
|
if (slot >= btrfs_header_nritems(upper) - 1)
|
|
return 1;
|
|
|
|
right = read_node_slot(fs_info, upper, slot + 1);
|
|
if (!extent_buffer_uptodate(right)) {
|
|
if (IS_ERR(right))
|
|
return PTR_ERR(right);
|
|
return -EIO;
|
|
}
|
|
free_space = btrfs_leaf_free_space(right);
|
|
if (free_space < data_size) {
|
|
free_extent_buffer(right);
|
|
return 1;
|
|
}
|
|
|
|
/* cow and double check */
|
|
ret = btrfs_cow_block(trans, root, right, upper,
|
|
slot + 1, &right);
|
|
if (ret) {
|
|
free_extent_buffer(right);
|
|
return 1;
|
|
}
|
|
free_space = btrfs_leaf_free_space(right);
|
|
if (free_space < data_size) {
|
|
free_extent_buffer(right);
|
|
return 1;
|
|
}
|
|
|
|
left_nritems = btrfs_header_nritems(left);
|
|
if (left_nritems == 0) {
|
|
free_extent_buffer(right);
|
|
return 1;
|
|
}
|
|
|
|
if (empty)
|
|
nr = 0;
|
|
else
|
|
nr = 1;
|
|
|
|
i = left_nritems - 1;
|
|
while (i >= nr) {
|
|
if (path->slots[0] == i)
|
|
push_space += data_size + sizeof(struct btrfs_item);
|
|
|
|
this_item_size = btrfs_item_size(left, i);
|
|
if (this_item_size + sizeof(struct btrfs_item) + push_space > free_space)
|
|
break;
|
|
push_items++;
|
|
push_space += this_item_size + sizeof(struct btrfs_item);
|
|
if (i == 0)
|
|
break;
|
|
i--;
|
|
}
|
|
|
|
if (push_items == 0) {
|
|
free_extent_buffer(right);
|
|
return 1;
|
|
}
|
|
|
|
if (!empty && push_items == left_nritems)
|
|
WARN_ON(1);
|
|
|
|
/* push left to right */
|
|
right_nritems = btrfs_header_nritems(right);
|
|
|
|
push_space = btrfs_item_data_end(left, left_nritems - push_items);
|
|
push_space -= leaf_data_end(left);
|
|
|
|
/* make room in the right data area */
|
|
data_end = leaf_data_end(right);
|
|
memmove_extent_buffer(right,
|
|
btrfs_item_nr_offset(right, 0) + data_end - push_space,
|
|
btrfs_item_nr_offset(right, 0) + data_end,
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info) - data_end);
|
|
|
|
/* copy from the left data area */
|
|
copy_extent_buffer(right, left, btrfs_item_nr_offset(right, 0) +
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info) - push_space,
|
|
btrfs_item_nr_offset(left, 0) + leaf_data_end(left), push_space);
|
|
|
|
memmove_extent_buffer(right, btrfs_item_nr_offset(right, push_items),
|
|
btrfs_item_nr_offset(right, 0),
|
|
right_nritems * sizeof(struct btrfs_item));
|
|
|
|
/* copy the items from left to right */
|
|
copy_extent_buffer(right, left, btrfs_item_nr_offset(right, 0),
|
|
btrfs_item_nr_offset(left, left_nritems - push_items),
|
|
push_items * sizeof(struct btrfs_item));
|
|
|
|
/* update the item pointers */
|
|
right_nritems += push_items;
|
|
btrfs_set_header_nritems(right, right_nritems);
|
|
push_space = BTRFS_LEAF_DATA_SIZE(root->fs_info);
|
|
for (i = 0; i < right_nritems; i++) {
|
|
push_space -= btrfs_item_size(right, i);
|
|
btrfs_set_item_offset(right, i, push_space);
|
|
}
|
|
|
|
left_nritems -= push_items;
|
|
btrfs_set_header_nritems(left, left_nritems);
|
|
|
|
if (left_nritems)
|
|
btrfs_mark_buffer_dirty(left);
|
|
btrfs_mark_buffer_dirty(right);
|
|
|
|
btrfs_item_key(right, &disk_key, 0);
|
|
btrfs_set_node_key(upper, &disk_key, slot + 1);
|
|
btrfs_mark_buffer_dirty(upper);
|
|
|
|
/* then fixup the leaf pointer in the path */
|
|
if (path->slots[0] >= left_nritems) {
|
|
path->slots[0] -= left_nritems;
|
|
free_extent_buffer(path->nodes[0]);
|
|
path->nodes[0] = right;
|
|
path->slots[1] += 1;
|
|
} else {
|
|
free_extent_buffer(right);
|
|
}
|
|
return 0;
|
|
}
|
|
/*
|
|
* push some data in the path leaf to the left, trying to free up at
|
|
* least data_size bytes. returns zero if the push worked, nonzero otherwise
|
|
*/
|
|
static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_path *path, int data_size,
|
|
int empty)
|
|
{
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *right = path->nodes[0];
|
|
struct extent_buffer *left;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int slot;
|
|
int i;
|
|
int free_space;
|
|
int push_space = 0;
|
|
int push_items = 0;
|
|
u32 old_left_nritems;
|
|
u32 right_nritems;
|
|
u32 nr;
|
|
int ret = 0;
|
|
u32 this_item_size;
|
|
u32 old_left_item_size;
|
|
|
|
slot = path->slots[1];
|
|
if (slot == 0)
|
|
return 1;
|
|
if (!path->nodes[1])
|
|
return 1;
|
|
|
|
right_nritems = btrfs_header_nritems(right);
|
|
if (right_nritems == 0) {
|
|
return 1;
|
|
}
|
|
|
|
left = read_node_slot(fs_info, path->nodes[1], slot - 1);
|
|
free_space = btrfs_leaf_free_space(left);
|
|
if (free_space < data_size) {
|
|
free_extent_buffer(left);
|
|
return 1;
|
|
}
|
|
|
|
/* cow and double check */
|
|
ret = btrfs_cow_block(trans, root, left,
|
|
path->nodes[1], slot - 1, &left);
|
|
if (ret) {
|
|
/* we hit -ENOSPC, but it isn't fatal here */
|
|
free_extent_buffer(left);
|
|
return 1;
|
|
}
|
|
|
|
free_space = btrfs_leaf_free_space(left);
|
|
if (free_space < data_size) {
|
|
free_extent_buffer(left);
|
|
return 1;
|
|
}
|
|
|
|
if (empty)
|
|
nr = right_nritems;
|
|
else
|
|
nr = right_nritems - 1;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
if (path->slots[0] == i)
|
|
push_space += data_size + sizeof(struct btrfs_item);
|
|
|
|
this_item_size = btrfs_item_size(right, i);
|
|
if (this_item_size + sizeof(struct btrfs_item) + push_space > free_space)
|
|
break;
|
|
|
|
push_items++;
|
|
push_space += this_item_size + sizeof(struct btrfs_item);
|
|
}
|
|
|
|
if (push_items == 0) {
|
|
free_extent_buffer(left);
|
|
return 1;
|
|
}
|
|
if (!empty && push_items == btrfs_header_nritems(right))
|
|
WARN_ON(1);
|
|
|
|
/* push data from right to left */
|
|
copy_extent_buffer(left, right,
|
|
btrfs_item_nr_offset(left, btrfs_header_nritems(left)),
|
|
btrfs_item_nr_offset(right, 0),
|
|
push_items * sizeof(struct btrfs_item));
|
|
|
|
push_space = BTRFS_LEAF_DATA_SIZE(root->fs_info) -
|
|
btrfs_item_offset(right, push_items -1);
|
|
|
|
copy_extent_buffer(left, right, btrfs_item_nr_offset(left, 0) +
|
|
leaf_data_end(left) - push_space,
|
|
btrfs_item_nr_offset(right, 0) +
|
|
btrfs_item_offset(right, push_items - 1),
|
|
push_space);
|
|
old_left_nritems = btrfs_header_nritems(left);
|
|
BUG_ON(old_left_nritems == 0);
|
|
|
|
old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
|
|
for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
|
|
u32 ioff;
|
|
|
|
ioff = btrfs_item_offset(left, i);
|
|
btrfs_set_item_offset(left, i,
|
|
ioff - (BTRFS_LEAF_DATA_SIZE(root->fs_info) -
|
|
old_left_item_size));
|
|
}
|
|
btrfs_set_header_nritems(left, old_left_nritems + push_items);
|
|
|
|
/* fixup right node */
|
|
if (push_items > right_nritems) {
|
|
printk("push items %d nr %u\n", push_items, right_nritems);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
if (push_items < right_nritems) {
|
|
push_space = btrfs_item_offset(right, push_items - 1) -
|
|
leaf_data_end(right);
|
|
memmove_extent_buffer(right, btrfs_item_nr_offset(right, 0) +
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info) -
|
|
push_space,
|
|
btrfs_item_nr_offset(right, 0) +
|
|
leaf_data_end(right), push_space);
|
|
|
|
memmove_extent_buffer(right, btrfs_item_nr_offset(right, 0),
|
|
btrfs_item_nr_offset(right, push_items),
|
|
(btrfs_header_nritems(right) - push_items) *
|
|
sizeof(struct btrfs_item));
|
|
}
|
|
right_nritems -= push_items;
|
|
btrfs_set_header_nritems(right, right_nritems);
|
|
push_space = BTRFS_LEAF_DATA_SIZE(root->fs_info);
|
|
for (i = 0; i < right_nritems; i++) {
|
|
push_space = push_space - btrfs_item_size(right, i);
|
|
btrfs_set_item_offset(right, i, push_space);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(left);
|
|
if (right_nritems)
|
|
btrfs_mark_buffer_dirty(right);
|
|
|
|
btrfs_item_key(right, &disk_key, 0);
|
|
btrfs_fixup_low_keys(path, &disk_key, 1);
|
|
|
|
/* then fixup the leaf pointer in the path */
|
|
if (path->slots[0] < push_items) {
|
|
path->slots[0] += old_left_nritems;
|
|
free_extent_buffer(path->nodes[0]);
|
|
path->nodes[0] = left;
|
|
path->slots[1] -= 1;
|
|
} else {
|
|
free_extent_buffer(left);
|
|
path->slots[0] -= push_items;
|
|
}
|
|
BUG_ON(path->slots[0] < 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* split the path's leaf in two, making sure there is at least data_size
|
|
* available for the resulting leaf level of the path.
|
|
*
|
|
* returns 0 if all went well and < 0 on failure.
|
|
*/
|
|
static noinline int copy_for_split(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *l,
|
|
struct extent_buffer *right,
|
|
int slot, int mid, int nritems)
|
|
{
|
|
int data_copy_size;
|
|
int rt_data_off;
|
|
int i;
|
|
int ret = 0;
|
|
int wret;
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
nritems = nritems - mid;
|
|
btrfs_set_header_nritems(right, nritems);
|
|
data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
|
|
|
|
copy_extent_buffer(right, l, btrfs_item_nr_offset(right, 0),
|
|
btrfs_item_nr_offset(l, mid),
|
|
nritems * sizeof(struct btrfs_item));
|
|
|
|
copy_extent_buffer(right, l,
|
|
btrfs_item_nr_offset(right, 0) +
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info) - data_copy_size,
|
|
btrfs_item_nr_offset(l, 0) + leaf_data_end(l), data_copy_size);
|
|
|
|
rt_data_off = BTRFS_LEAF_DATA_SIZE(root->fs_info) -
|
|
btrfs_item_data_end(l, mid);
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
u32 ioff = btrfs_item_offset(right, i);
|
|
btrfs_set_item_offset(right, i, ioff + rt_data_off);
|
|
}
|
|
|
|
btrfs_set_header_nritems(l, mid);
|
|
ret = 0;
|
|
btrfs_item_key(right, &disk_key, 0);
|
|
wret = insert_ptr(trans, root, path, &disk_key, right->start,
|
|
path->slots[1] + 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
btrfs_mark_buffer_dirty(right);
|
|
btrfs_mark_buffer_dirty(l);
|
|
BUG_ON(path->slots[0] != slot);
|
|
|
|
if (mid <= slot) {
|
|
free_extent_buffer(path->nodes[0]);
|
|
path->nodes[0] = right;
|
|
path->slots[0] -= mid;
|
|
path->slots[1] += 1;
|
|
} else {
|
|
free_extent_buffer(right);
|
|
}
|
|
|
|
BUG_ON(path->slots[0] < 0);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* split the path's leaf in two, making sure there is at least data_size
|
|
* available for the resulting leaf level of the path.
|
|
*
|
|
* returns 0 if all went well and < 0 on failure.
|
|
*/
|
|
static noinline int split_leaf(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
const struct btrfs_key *ins_key,
|
|
struct btrfs_path *path, int data_size,
|
|
int extend)
|
|
{
|
|
struct btrfs_disk_key disk_key;
|
|
struct extent_buffer *l;
|
|
u32 nritems;
|
|
int mid;
|
|
int slot;
|
|
struct extent_buffer *right;
|
|
int ret = 0;
|
|
int wret;
|
|
int split;
|
|
int num_doubles = 0;
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
if (extend && data_size + btrfs_item_size(l, slot) +
|
|
sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root->fs_info))
|
|
return -EOVERFLOW;
|
|
|
|
/* first try to make some room by pushing left and right */
|
|
if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
|
|
wret = push_leaf_right(trans, root, path, data_size, 0);
|
|
if (wret < 0)
|
|
return wret;
|
|
if (wret) {
|
|
wret = push_leaf_left(trans, root, path, data_size, 0);
|
|
if (wret < 0)
|
|
return wret;
|
|
}
|
|
l = path->nodes[0];
|
|
|
|
/* did the pushes work? */
|
|
if (btrfs_leaf_free_space(l) >= data_size)
|
|
return 0;
|
|
}
|
|
|
|
if (!path->nodes[1]) {
|
|
ret = insert_new_root(trans, root, path, 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
again:
|
|
split = 1;
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
nritems = btrfs_header_nritems(l);
|
|
mid = (nritems + 1) / 2;
|
|
|
|
if (mid <= slot) {
|
|
if (nritems == 1 ||
|
|
leaf_space_used(l, mid, nritems - mid) + data_size >
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
|
|
if (slot >= nritems) {
|
|
split = 0;
|
|
} else {
|
|
mid = slot;
|
|
if (mid != nritems &&
|
|
leaf_space_used(l, mid, nritems - mid) +
|
|
data_size >
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
|
|
split = 2;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (leaf_space_used(l, 0, mid) + data_size >
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
|
|
if (!extend && data_size && slot == 0) {
|
|
split = 0;
|
|
} else if ((extend || !data_size) && slot == 0) {
|
|
mid = 1;
|
|
} else {
|
|
mid = slot;
|
|
if (mid != nritems &&
|
|
leaf_space_used(l, mid, nritems - mid) +
|
|
data_size >
|
|
BTRFS_LEAF_DATA_SIZE(root->fs_info)) {
|
|
split = 2 ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (split == 0)
|
|
btrfs_cpu_key_to_disk(&disk_key, ins_key);
|
|
else
|
|
btrfs_item_key(l, &disk_key, mid);
|
|
|
|
right = btrfs_alloc_tree_block(trans, root, root->fs_info->nodesize,
|
|
root->root_key.objectid,
|
|
&disk_key, 0, l->start, 0,
|
|
BTRFS_NESTING_NORMAL);
|
|
if (IS_ERR(right)) {
|
|
BUG_ON(1);
|
|
return PTR_ERR(right);
|
|
}
|
|
|
|
memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_bytenr(right, right->start);
|
|
btrfs_set_header_generation(right, trans->transid);
|
|
btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(right, root->root_key.objectid);
|
|
btrfs_set_header_level(right, 0);
|
|
write_extent_buffer_fsid(right, root->fs_info->fs_devices->metadata_uuid);
|
|
write_extent_buffer_chunk_tree_uuid(right, root->fs_info->chunk_tree_uuid);
|
|
|
|
root_add_used(root, root->fs_info->nodesize);
|
|
|
|
if (split == 0) {
|
|
if (mid <= slot) {
|
|
btrfs_set_header_nritems(right, 0);
|
|
wret = insert_ptr(trans, root, path,
|
|
&disk_key, right->start,
|
|
path->slots[1] + 1, 1);
|
|
if (wret)
|
|
ret = wret;
|
|
|
|
free_extent_buffer(path->nodes[0]);
|
|
path->nodes[0] = right;
|
|
path->slots[0] = 0;
|
|
path->slots[1] += 1;
|
|
} else {
|
|
btrfs_set_header_nritems(right, 0);
|
|
wret = insert_ptr(trans, root, path,
|
|
&disk_key,
|
|
right->start,
|
|
path->slots[1], 1);
|
|
if (wret)
|
|
ret = wret;
|
|
free_extent_buffer(path->nodes[0]);
|
|
path->nodes[0] = right;
|
|
path->slots[0] = 0;
|
|
if (path->slots[1] == 0)
|
|
btrfs_fixup_low_keys(path, &disk_key, 1);
|
|
}
|
|
btrfs_mark_buffer_dirty(right);
|
|
return ret;
|
|
}
|
|
|
|
ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
|
|
BUG_ON(ret);
|
|
|
|
if (split == 2) {
|
|
BUG_ON(num_doubles != 0);
|
|
num_doubles++;
|
|
goto again;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function splits a single item into two items,
|
|
* giving 'new_key' to the new item and splitting the
|
|
* old one at split_offset (from the start of the item).
|
|
*
|
|
* The path may be released by this operation. After
|
|
* the split, the path is pointing to the old item. The
|
|
* new item is going to be in the same node as the old one.
|
|
*
|
|
* Note, the item being split must be smaller enough to live alone on
|
|
* a tree block with room for one extra struct btrfs_item
|
|
*
|
|
* This allows us to split the item in place, keeping a lock on the
|
|
* leaf the entire time.
|
|
*/
|
|
int btrfs_split_item(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *new_key,
|
|
unsigned long split_offset)
|
|
{
|
|
u32 item_size;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key orig_key;
|
|
int ret = 0;
|
|
int slot;
|
|
u32 nritems;
|
|
u32 orig_offset;
|
|
struct btrfs_disk_key disk_key;
|
|
char *buf;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
|
|
if (btrfs_leaf_free_space(leaf) >=
|
|
sizeof(struct btrfs_item))
|
|
goto split;
|
|
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
btrfs_release_path(path);
|
|
|
|
path->search_for_split = 1;
|
|
|
|
ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
|
|
path->search_for_split = 0;
|
|
|
|
/* if our item isn't there or got smaller, return now */
|
|
if (ret != 0 || item_size != btrfs_item_size(path->nodes[0],
|
|
path->slots[0])) {
|
|
return -EAGAIN;
|
|
}
|
|
|
|
ret = split_leaf(trans, root, &orig_key, path, 0, 0);
|
|
BUG_ON(ret);
|
|
|
|
BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
|
|
leaf = path->nodes[0];
|
|
|
|
split:
|
|
orig_offset = btrfs_item_offset(leaf, path->slots[0]);
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
|
|
|
|
buf = kmalloc(item_size, GFP_NOFS);
|
|
BUG_ON(!buf);
|
|
read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
|
|
path->slots[0]), item_size);
|
|
slot = path->slots[0] + 1;
|
|
leaf = path->nodes[0];
|
|
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
if (slot < nritems) {
|
|
/* shift the items */
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, slot + 1),
|
|
btrfs_item_nr_offset(leaf, slot),
|
|
(nritems - slot) * sizeof(struct btrfs_item));
|
|
|
|
}
|
|
|
|
btrfs_cpu_key_to_disk(&disk_key, new_key);
|
|
btrfs_set_item_key(leaf, &disk_key, slot);
|
|
|
|
btrfs_set_item_offset(leaf, slot, orig_offset);
|
|
btrfs_set_item_size(leaf, slot, item_size - split_offset);
|
|
|
|
btrfs_set_item_offset(leaf, path->slots[0],
|
|
orig_offset + item_size - split_offset);
|
|
btrfs_set_item_size(leaf, path->slots[0], split_offset);
|
|
|
|
btrfs_set_header_nritems(leaf, nritems + 1);
|
|
|
|
/* write the data for the start of the original item */
|
|
write_extent_buffer(leaf, buf,
|
|
btrfs_item_ptr_offset(leaf, path->slots[0]),
|
|
split_offset);
|
|
|
|
/* write the data for the new item */
|
|
write_extent_buffer(leaf, buf + split_offset,
|
|
btrfs_item_ptr_offset(leaf, slot),
|
|
item_size - split_offset);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = 0;
|
|
if (btrfs_leaf_free_space(leaf) < 0) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
BUG();
|
|
}
|
|
kfree(buf);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
unsigned int data_end;
|
|
unsigned int old_data_start;
|
|
unsigned int old_size;
|
|
unsigned int size_diff;
|
|
int i;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
old_size = btrfs_item_size(leaf, slot);
|
|
if (old_size == new_size)
|
|
return 0;
|
|
|
|
nritems = btrfs_header_nritems(leaf);
|
|
data_end = leaf_data_end(leaf);
|
|
|
|
old_data_start = btrfs_item_offset(leaf, slot);
|
|
|
|
size_diff = old_size - new_size;
|
|
|
|
BUG_ON(slot < 0);
|
|
BUG_ON(slot >= nritems);
|
|
|
|
/*
|
|
* item0..itemN ... dataN.offset..dataN.size .. data0.size
|
|
*/
|
|
/* first correct the data pointers */
|
|
for (i = slot; i < nritems; i++) {
|
|
u32 ioff;
|
|
ioff = btrfs_item_offset(leaf, i);
|
|
btrfs_set_item_offset(leaf, i, ioff + size_diff);
|
|
}
|
|
|
|
/* shift the data */
|
|
if (from_end) {
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end + size_diff, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end, old_data_start + new_size - data_end);
|
|
} else {
|
|
struct btrfs_disk_key disk_key;
|
|
u64 offset;
|
|
|
|
btrfs_item_key(leaf, &disk_key, slot);
|
|
|
|
if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
|
|
unsigned long ptr;
|
|
struct btrfs_file_extent_item *fi;
|
|
|
|
fi = btrfs_item_ptr(leaf, slot,
|
|
struct btrfs_file_extent_item);
|
|
fi = (struct btrfs_file_extent_item *)(
|
|
(unsigned long)fi - size_diff);
|
|
|
|
if (btrfs_file_extent_type(leaf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE) {
|
|
ptr = btrfs_item_ptr_offset(leaf, slot);
|
|
memmove_extent_buffer(leaf, ptr,
|
|
(unsigned long)fi,
|
|
offsetof(struct btrfs_file_extent_item,
|
|
disk_bytenr));
|
|
}
|
|
}
|
|
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end + size_diff, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end, old_data_start - data_end);
|
|
|
|
offset = btrfs_disk_key_offset(&disk_key);
|
|
btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
|
|
btrfs_set_item_key(leaf, &disk_key, slot);
|
|
if (slot == 0)
|
|
btrfs_fixup_low_keys(path, &disk_key, 1);
|
|
}
|
|
|
|
btrfs_set_item_size(leaf, slot, new_size);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = 0;
|
|
if (btrfs_leaf_free_space(leaf) < 0) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
|
|
u32 data_size)
|
|
{
|
|
int ret = 0;
|
|
int slot;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
unsigned int data_end;
|
|
unsigned int old_data;
|
|
unsigned int old_size;
|
|
int i;
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
nritems = btrfs_header_nritems(leaf);
|
|
data_end = leaf_data_end(leaf);
|
|
|
|
if (btrfs_leaf_free_space(leaf) < data_size) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
BUG();
|
|
}
|
|
slot = path->slots[0];
|
|
old_data = btrfs_item_data_end(leaf, slot);
|
|
|
|
BUG_ON(slot < 0);
|
|
if (slot >= nritems) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
printk("slot %d too large, nritems %u\n", slot, nritems);
|
|
BUG_ON(1);
|
|
}
|
|
|
|
/*
|
|
* item0..itemN ... dataN.offset..dataN.size .. data0.size
|
|
*/
|
|
/* first correct the data pointers */
|
|
for (i = slot; i < nritems; i++) {
|
|
u32 ioff;
|
|
ioff = btrfs_item_offset(leaf, i);
|
|
btrfs_set_item_offset(leaf, i, ioff - data_size);
|
|
}
|
|
|
|
/* shift the data */
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end - data_size, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end, old_data - data_end);
|
|
|
|
data_end = old_data;
|
|
old_size = btrfs_item_size(leaf, slot);
|
|
btrfs_set_item_size(leaf, slot, old_size + data_size);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = 0;
|
|
if (btrfs_leaf_free_space(leaf) < 0) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given a key and some data, insert an item into the tree.
|
|
* This does all the path init required, making room in the tree if needed.
|
|
*/
|
|
int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_key *cpu_key, u32 *data_size,
|
|
int nr)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
int ret = 0;
|
|
int slot;
|
|
int i;
|
|
u32 nritems;
|
|
u32 total_size = 0;
|
|
u32 total_data = 0;
|
|
unsigned int data_end;
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
total_data += data_size[i];
|
|
}
|
|
|
|
/* create a root if there isn't one */
|
|
if (!root->node)
|
|
BUG();
|
|
|
|
total_size = total_data + nr * sizeof(struct btrfs_item);
|
|
ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
|
|
if (ret == 0) {
|
|
return -EEXIST;
|
|
}
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
leaf = path->nodes[0];
|
|
|
|
nritems = btrfs_header_nritems(leaf);
|
|
data_end = leaf_data_end(leaf);
|
|
|
|
if (btrfs_leaf_free_space(leaf) < total_size) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
printk("not enough freespace need %u have %d\n",
|
|
total_size, btrfs_leaf_free_space(leaf));
|
|
BUG();
|
|
}
|
|
|
|
slot = path->slots[0];
|
|
BUG_ON(slot < 0);
|
|
|
|
if (slot < nritems) {
|
|
unsigned int old_data = btrfs_item_data_end(leaf, slot);
|
|
|
|
if (old_data < data_end) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
printk("slot %d old_data %u data_end %u\n",
|
|
slot, old_data, data_end);
|
|
BUG_ON(1);
|
|
}
|
|
/*
|
|
* item0..itemN ... dataN.offset..dataN.size .. data0.size
|
|
*/
|
|
/* first correct the data pointers */
|
|
for (i = slot; i < nritems; i++) {
|
|
u32 ioff;
|
|
|
|
ioff = btrfs_item_offset(leaf, i);
|
|
btrfs_set_item_offset(leaf, i, ioff - total_data);
|
|
}
|
|
|
|
/* shift the items */
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, slot + nr),
|
|
btrfs_item_nr_offset(leaf, slot),
|
|
(nritems - slot) * sizeof(struct btrfs_item));
|
|
|
|
/* shift the data */
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end - total_data, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end, old_data - data_end);
|
|
data_end = old_data;
|
|
}
|
|
|
|
/* setup the item for the new data */
|
|
for (i = 0; i < nr; i++) {
|
|
btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
|
|
btrfs_set_item_key(leaf, &disk_key, slot + i);
|
|
btrfs_set_item_offset(leaf, slot + i, data_end - data_size[i]);
|
|
data_end -= data_size[i];
|
|
btrfs_set_item_size(leaf, slot + i, data_size[i]);
|
|
}
|
|
btrfs_set_header_nritems(leaf, nritems + nr);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
ret = 0;
|
|
if (slot == 0) {
|
|
btrfs_cpu_key_to_disk(&disk_key, cpu_key);
|
|
btrfs_fixup_low_keys(path, &disk_key, 1);
|
|
}
|
|
|
|
if (btrfs_leaf_free_space(leaf) < 0) {
|
|
btrfs_print_leaf(leaf, BTRFS_PRINT_TREE_DEFAULT);
|
|
BUG();
|
|
}
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given a key and some data, insert an item into the tree.
|
|
* This does all the path init required, making room in the tree if needed.
|
|
*/
|
|
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
|
|
*root, struct btrfs_key *cpu_key, void *data, u32
|
|
data_size)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
unsigned long ptr;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
|
|
if (!ret) {
|
|
leaf = path->nodes[0];
|
|
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
|
|
write_extent_buffer(leaf, data, ptr, data_size);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* delete the pointer from a given node.
|
|
*
|
|
* If the delete empties a node, the node is removed from the tree,
|
|
* continuing all the way the root if required. The root is converted into
|
|
* a leaf if all the nodes are emptied.
|
|
*/
|
|
int btrfs_del_ptr(struct btrfs_root *root, struct btrfs_path *path,
|
|
int level, int slot)
|
|
{
|
|
struct extent_buffer *parent = path->nodes[level];
|
|
u32 nritems;
|
|
int ret = 0;
|
|
|
|
nritems = btrfs_header_nritems(parent);
|
|
if (slot < nritems - 1) {
|
|
/* shift the items */
|
|
memmove_extent_buffer(parent,
|
|
btrfs_node_key_ptr_offset(parent, slot),
|
|
btrfs_node_key_ptr_offset(parent, slot + 1),
|
|
sizeof(struct btrfs_key_ptr) *
|
|
(nritems - slot - 1));
|
|
}
|
|
nritems--;
|
|
btrfs_set_header_nritems(parent, nritems);
|
|
if (nritems == 0 && parent == root->node) {
|
|
BUG_ON(btrfs_header_level(root->node) != 1);
|
|
/* just turn the root into a leaf and break */
|
|
btrfs_set_header_level(root->node, 0);
|
|
} else if (slot == 0) {
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
btrfs_node_key(parent, &disk_key, 0);
|
|
btrfs_fixup_low_keys(path, &disk_key, level + 1);
|
|
}
|
|
btrfs_mark_buffer_dirty(parent);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* a helper function to delete the leaf pointed to by path->slots[1] and
|
|
* path->nodes[1].
|
|
*
|
|
* This deletes the pointer in path->nodes[1] and frees the leaf
|
|
* block extent. zero is returned if it all worked out, < 0 otherwise.
|
|
*
|
|
* The path must have already been setup for deleting the leaf, including
|
|
* all the proper balancing. path->nodes[1] must be locked.
|
|
*/
|
|
static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct extent_buffer *leaf)
|
|
{
|
|
int ret;
|
|
|
|
WARN_ON(btrfs_header_generation(leaf) != trans->transid);
|
|
ret = btrfs_del_ptr(root, path, 1, path->slots[1]);
|
|
if (ret)
|
|
return ret;
|
|
|
|
root_sub_used(root, leaf->len);
|
|
|
|
ret = btrfs_free_extent(trans, leaf->start, leaf->len, 0,
|
|
root->root_key.objectid, 0, 0);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* delete the item at the leaf level in path. If that empties
|
|
* the leaf, remove it from the tree
|
|
*/
|
|
int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct btrfs_path *path, int slot, int nr)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
int last_off;
|
|
int dsize = 0;
|
|
int ret = 0;
|
|
int wret;
|
|
int i;
|
|
u32 nritems;
|
|
|
|
leaf = path->nodes[0];
|
|
last_off = btrfs_item_offset(leaf, slot + nr - 1);
|
|
|
|
for (i = 0; i < nr; i++)
|
|
dsize += btrfs_item_size(leaf, slot + i);
|
|
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
if (slot + nr != nritems) {
|
|
int data_end = leaf_data_end(leaf);
|
|
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) +
|
|
data_end + dsize,
|
|
btrfs_item_nr_offset(leaf, 0) + data_end,
|
|
last_off - data_end);
|
|
|
|
for (i = slot + nr; i < nritems; i++) {
|
|
u32 ioff;
|
|
|
|
ioff = btrfs_item_offset(leaf, i);
|
|
btrfs_set_item_offset(leaf, i, ioff + dsize);
|
|
}
|
|
|
|
memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, slot),
|
|
btrfs_item_nr_offset(leaf, slot + nr),
|
|
sizeof(struct btrfs_item) *
|
|
(nritems - slot - nr));
|
|
}
|
|
btrfs_set_header_nritems(leaf, nritems - nr);
|
|
nritems -= nr;
|
|
|
|
/* delete the leaf if we've emptied it */
|
|
if (nritems == 0) {
|
|
if (leaf == root->node) {
|
|
btrfs_set_header_level(leaf, 0);
|
|
} else {
|
|
btrfs_clear_buffer_dirty(leaf);
|
|
wret = btrfs_del_leaf(trans, root, path, leaf);
|
|
BUG_ON(ret);
|
|
if (wret)
|
|
ret = wret;
|
|
}
|
|
} else {
|
|
int used = leaf_space_used(leaf, 0, nritems);
|
|
if (slot == 0) {
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
btrfs_item_key(leaf, &disk_key, 0);
|
|
btrfs_fixup_low_keys(path, &disk_key, 1);
|
|
}
|
|
|
|
/* delete the leaf if it is mostly empty */
|
|
if (used < BTRFS_LEAF_DATA_SIZE(root->fs_info) / 4) {
|
|
/* push_leaf_left fixes the path.
|
|
* make sure the path still points to our leaf
|
|
* for possible call to del_ptr below
|
|
*/
|
|
slot = path->slots[1];
|
|
extent_buffer_get(leaf);
|
|
|
|
wret = push_leaf_left(trans, root, path, 1, 1);
|
|
if (wret < 0 && wret != -ENOSPC)
|
|
ret = wret;
|
|
|
|
if (path->nodes[0] == leaf &&
|
|
btrfs_header_nritems(leaf)) {
|
|
wret = push_leaf_right(trans, root, path, 1, 1);
|
|
if (wret < 0 && wret != -ENOSPC)
|
|
ret = wret;
|
|
}
|
|
|
|
if (btrfs_header_nritems(leaf) == 0) {
|
|
btrfs_clear_buffer_dirty(leaf);
|
|
path->slots[1] = slot;
|
|
ret = btrfs_del_leaf(trans, root, path, leaf);
|
|
BUG_ON(ret);
|
|
free_extent_buffer(leaf);
|
|
|
|
} else {
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
free_extent_buffer(leaf);
|
|
}
|
|
} else {
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* walk up the tree as far as required to find the previous leaf.
|
|
* returns 0 if it found something or 1 if there are no lesser leaves.
|
|
* returns < 0 on io errors.
|
|
*/
|
|
int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
|
|
{
|
|
int slot;
|
|
int level = 1;
|
|
struct extent_buffer *c;
|
|
struct extent_buffer *next = NULL;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
|
|
while(level < BTRFS_MAX_LEVEL) {
|
|
if (!path->nodes[level])
|
|
return 1;
|
|
|
|
slot = path->slots[level];
|
|
c = path->nodes[level];
|
|
if (slot == 0) {
|
|
level++;
|
|
if (level == BTRFS_MAX_LEVEL)
|
|
return 1;
|
|
continue;
|
|
}
|
|
slot--;
|
|
|
|
next = read_node_slot(fs_info, c, slot);
|
|
if (!extent_buffer_uptodate(next)) {
|
|
if (IS_ERR(next))
|
|
return PTR_ERR(next);
|
|
return -EIO;
|
|
}
|
|
break;
|
|
}
|
|
path->slots[level] = slot;
|
|
while(1) {
|
|
level--;
|
|
c = path->nodes[level];
|
|
free_extent_buffer(c);
|
|
slot = btrfs_header_nritems(next);
|
|
if (slot != 0)
|
|
slot--;
|
|
path->nodes[level] = next;
|
|
path->slots[level] = slot;
|
|
if (!level)
|
|
break;
|
|
next = read_node_slot(fs_info, next, slot);
|
|
if (!extent_buffer_uptodate(next)) {
|
|
if (IS_ERR(next))
|
|
return PTR_ERR(next);
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Walk up the tree as far as necessary to find the next sibling tree block.
|
|
* More generic version of btrfs_next_leaf(), as it could find sibling nodes
|
|
* if @path->lowest_level is not 0.
|
|
*
|
|
* returns 0 if it found something or 1 if there are no greater leaves.
|
|
* returns < 0 on io errors.
|
|
*/
|
|
int btrfs_next_sibling_tree_block(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path)
|
|
{
|
|
int slot;
|
|
int level = path->lowest_level + 1;
|
|
struct extent_buffer *c;
|
|
struct extent_buffer *next = NULL;
|
|
|
|
BUG_ON(path->lowest_level + 1 >= BTRFS_MAX_LEVEL);
|
|
do {
|
|
if (!path->nodes[level])
|
|
return 1;
|
|
|
|
slot = path->slots[level] + 1;
|
|
c = path->nodes[level];
|
|
if (slot >= btrfs_header_nritems(c)) {
|
|
level++;
|
|
if (level == BTRFS_MAX_LEVEL)
|
|
return 1;
|
|
continue;
|
|
}
|
|
|
|
if (path->reada)
|
|
reada_for_search(fs_info, path, level, slot, 0);
|
|
|
|
next = read_node_slot(fs_info, c, slot);
|
|
if (!extent_buffer_uptodate(next))
|
|
return -EIO;
|
|
break;
|
|
} while (level < BTRFS_MAX_LEVEL);
|
|
path->slots[level] = slot;
|
|
while(1) {
|
|
level--;
|
|
c = path->nodes[level];
|
|
free_extent_buffer(c);
|
|
path->nodes[level] = next;
|
|
path->slots[level] = 0;
|
|
/*
|
|
* Fsck will happily load corrupt blocks in order to fix them,
|
|
* so we need an extra check just to make sure this block isn't
|
|
* marked uptodate but invalid.
|
|
*/
|
|
if (check_block(fs_info, path, level))
|
|
return -EIO;
|
|
if (level == path->lowest_level)
|
|
break;
|
|
if (path->reada)
|
|
reada_for_search(fs_info, path, level, 0, 0);
|
|
next = read_node_slot(fs_info, next, 0);
|
|
if (!extent_buffer_uptodate(next))
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_previous_item(struct btrfs_root *root,
|
|
struct btrfs_path *path, u64 min_objectid,
|
|
int type)
|
|
{
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
int ret;
|
|
|
|
while(1) {
|
|
if (path->slots[0] == 0) {
|
|
ret = btrfs_prev_leaf(root, path);
|
|
if (ret != 0)
|
|
return ret;
|
|
} else {
|
|
path->slots[0]--;
|
|
}
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (nritems == 0)
|
|
return 1;
|
|
if (path->slots[0] == nritems)
|
|
path->slots[0]--;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid < min_objectid)
|
|
break;
|
|
if (found_key.type == type)
|
|
return 0;
|
|
if (found_key.objectid == min_objectid &&
|
|
found_key.type < type)
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* search in extent tree to find a previous Metadata/Data extent item with
|
|
* min objectid.
|
|
*
|
|
* returns 0 if something is found, 1 if nothing was found and < 0 on error
|
|
*/
|
|
int btrfs_previous_extent_item(struct btrfs_root *root,
|
|
struct btrfs_path *path, u64 min_objectid)
|
|
{
|
|
struct btrfs_key found_key;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
int ret;
|
|
|
|
while (1) {
|
|
if (path->slots[0] == 0) {
|
|
ret = btrfs_prev_leaf(root, path);
|
|
if (ret != 0)
|
|
return ret;
|
|
} else {
|
|
path->slots[0]--;
|
|
}
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
if (nritems == 0)
|
|
return 1;
|
|
if (path->slots[0] == nritems)
|
|
path->slots[0]--;
|
|
|
|
btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
|
|
if (found_key.objectid < min_objectid)
|
|
break;
|
|
if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
|
|
found_key.type == BTRFS_METADATA_ITEM_KEY)
|
|
return 0;
|
|
if (found_key.objectid == min_objectid &&
|
|
found_key.type < BTRFS_EXTENT_ITEM_KEY)
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Search in extent tree to found next meta/data extent
|
|
* Caller needs to check for no-hole or skinny metadata features.
|
|
*/
|
|
int btrfs_next_extent_item(struct btrfs_root *root,
|
|
struct btrfs_path *path, u64 max_objectid)
|
|
{
|
|
struct btrfs_key found_key;
|
|
int ret;
|
|
|
|
while (1) {
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret)
|
|
return ret;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
|
|
path->slots[0]);
|
|
if (found_key.objectid > max_objectid)
|
|
return 1;
|
|
if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
|
|
found_key.type == BTRFS_METADATA_ITEM_KEY)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Search uuid tree - unmounted
|
|
*
|
|
* return -ENOENT for !found, < 0 for errors, or 0 if an item was found
|
|
*/
|
|
static int btrfs_uuid_tree_lookup(struct btrfs_root *uuid_root, u8 *uuid,
|
|
u8 type, u64 subid)
|
|
{
|
|
int ret;
|
|
struct btrfs_path *path = NULL;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
u32 item_size;
|
|
unsigned long offset;
|
|
struct btrfs_key key;
|
|
|
|
if (!uuid_root) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_uuid_to_key(uuid, &key);
|
|
key.type = type;
|
|
ret = btrfs_search_slot(NULL, uuid_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
item_size = btrfs_item_size(eb, slot);
|
|
offset = btrfs_item_ptr_offset(eb, slot);
|
|
ret = -ENOENT;
|
|
|
|
if (!IS_ALIGNED(item_size, sizeof(u64))) {
|
|
warning("uuid item with invalid size %lu!",
|
|
(unsigned long)item_size);
|
|
goto out;
|
|
}
|
|
while (item_size) {
|
|
__le64 data;
|
|
|
|
read_extent_buffer(eb, &data, offset, sizeof(data));
|
|
if (le64_to_cpu(data) == subid) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
offset += sizeof(data);
|
|
item_size -= sizeof(data);
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
|
|
u64 subvol_id_cpu)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *uuid_root = fs_info->uuid_root;
|
|
int ret;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
int slot;
|
|
unsigned long offset;
|
|
__le64 subvol_id_le;
|
|
|
|
if (!uuid_root) {
|
|
warning("%s: uuid root is not initialized", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = btrfs_uuid_tree_lookup(uuid_root, uuid, type, subvol_id_cpu);
|
|
if (ret != -ENOENT)
|
|
return ret;
|
|
|
|
key.type = type;
|
|
btrfs_uuid_to_key(uuid, &key);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, uuid_root, path, &key,
|
|
sizeof(subvol_id_le));
|
|
if (ret < 0 && ret != -EEXIST) {
|
|
warning(
|
|
"inserting uuid item failed (0x%016llx, 0x%016llx) type %u: %d",
|
|
(unsigned long long)key.objectid,
|
|
(unsigned long long)key.offset, type, ret);
|
|
goto out;
|
|
}
|
|
|
|
if (ret >= 0) {
|
|
/* Add an item for the type for the first time */
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
offset = btrfs_item_ptr_offset(eb, slot);
|
|
} else {
|
|
/*
|
|
* ret == -EEXIST case, An item with that type already exists.
|
|
* Extend the item and store the new subvol_id at the end.
|
|
*/
|
|
btrfs_extend_item(uuid_root, path, sizeof(subvol_id_le));
|
|
eb = path->nodes[0];
|
|
slot = path->slots[0];
|
|
offset = btrfs_item_ptr_offset(eb, slot);
|
|
offset += btrfs_item_size(eb, slot) - sizeof(subvol_id_le);
|
|
}
|
|
|
|
ret = 0;
|
|
subvol_id_le = cpu_to_le64(subvol_id_cpu);
|
|
write_extent_buffer(eb, &subvol_id_le, offset, sizeof(subvol_id_le));
|
|
btrfs_mark_buffer_dirty(eb);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|