btrfs-progs/cmds-inspect-tree-stats.c
Qu Wenruo 7fb70440cf btrfs-progs: Fix wrong optind re-initialization to allow mixed option and non-option
In function handle_global_options(), we reset @optind to 1.
However according to man page of getopt(3) NOTES section, if we need to
rescan options later, @optind should be reset to 0 to initialize the
internal variables correctly.

This explains the reason why in cmd_check(), getopt_long() doesn't
handle the following command correctly:
"btrfs check /dev/data/btrfs --check-data-csum"

While mkfs.btrfs handles mixed non-option and option correctly:
"mkfs.btrfs -f /dev/data/disk1 --data raid1 /dev/data/disk2"

Cc: Paul Jones <paul@pauljones.id.au>
Cc: Hugo Mills <hugo@carfax.org.uk>
Fixes: 010ceab56e ("btrfs-progs: rework option parser to use getopt for global options")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 14:59:45 +02:00

498 lines
12 KiB
C

/*
* Copyright (C) 2011 Red Hat. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <zlib.h>
#include "kerncompat.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
#include "list.h"
#include "volumes.h"
#include "utils.h"
#include "commands.h"
#include "help.h"
static int verbose = 0;
static int no_pretty = 0;
struct seek {
u64 distance;
u64 count;
struct rb_node n;
};
struct root_stats {
u64 total_nodes;
u64 total_leaves;
u64 total_bytes;
u64 total_inline;
u64 total_seeks;
u64 forward_seeks;
u64 backward_seeks;
u64 total_seek_len;
u64 max_seek_len;
u64 total_clusters;
u64 total_cluster_size;
u64 min_cluster_size;
u64 max_cluster_size;
u64 lowest_bytenr;
u64 highest_bytenr;
struct rb_root seek_root;
int total_levels;
};
static int add_seek(struct rb_root *root, u64 dist)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct seek *seek = NULL;
while (*p) {
parent = *p;
seek = rb_entry(parent, struct seek, n);
if (dist < seek->distance) {
p = &(*p)->rb_left;
} else if (dist > seek->distance) {
p = &(*p)->rb_right;
} else {
seek->count++;
return 0;
}
}
seek = malloc(sizeof(struct seek));
if (!seek)
return -ENOMEM;
seek->distance = dist;
seek->count = 1;
rb_link_node(&seek->n, parent, p);
rb_insert_color(&seek->n, root);
return 0;
}
static int walk_leaf(struct btrfs_root *root, struct btrfs_path *path,
struct root_stats *stat, int find_inline)
{
struct extent_buffer *b = path->nodes[0];
struct btrfs_file_extent_item *fi;
struct btrfs_key found_key;
int i;
stat->total_bytes += root->fs_info->nodesize;
stat->total_leaves++;
if (!find_inline)
return 0;
for (i = 0; i < btrfs_header_nritems(b); i++) {
btrfs_item_key_to_cpu(b, &found_key, i);
if (found_key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(b, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(b, fi) == BTRFS_FILE_EXTENT_INLINE)
stat->total_inline +=
btrfs_file_extent_inline_item_len(b,
btrfs_item_nr(i));
}
return 0;
}
static u64 calc_distance(u64 block1, u64 block2)
{
if (block1 < block2)
return block2 - block1;
return block1 - block2;
}
static int walk_nodes(struct btrfs_root *root, struct btrfs_path *path,
struct root_stats *stat, int level, int find_inline)
{
struct extent_buffer *b = path->nodes[level];
u32 nodesize = root->fs_info->nodesize;
u64 last_block;
u64 cluster_size = nodesize;
int i;
int ret = 0;
stat->total_bytes += nodesize;
stat->total_nodes++;
last_block = btrfs_header_bytenr(b);
for (i = 0; i < btrfs_header_nritems(b); i++) {
struct extent_buffer *tmp = NULL;
u64 cur_blocknr = btrfs_node_blockptr(b, i);
path->slots[level] = i;
if ((level - 1) > 0 || find_inline) {
tmp = read_tree_block(root->fs_info, cur_blocknr,
btrfs_node_ptr_generation(b, i));
if (!extent_buffer_uptodate(tmp)) {
error("failed to read blocknr %llu",
btrfs_node_blockptr(b, i));
continue;
}
path->nodes[level - 1] = tmp;
}
if (level - 1)
ret = walk_nodes(root, path, stat, level - 1,
find_inline);
else
ret = walk_leaf(root, path, stat, find_inline);
if (last_block + nodesize != cur_blocknr) {
u64 distance = calc_distance(last_block +
nodesize,
cur_blocknr);
stat->total_seeks++;
stat->total_seek_len += distance;
if (stat->max_seek_len < distance)
stat->max_seek_len = distance;
if (add_seek(&stat->seek_root, distance)) {
error("cannot add new seek at distance %llu",
(unsigned long long)distance);
ret = -ENOMEM;
break;
}
if (last_block < cur_blocknr)
stat->forward_seeks++;
else
stat->backward_seeks++;
if (cluster_size != nodesize) {
stat->total_cluster_size += cluster_size;
stat->total_clusters++;
if (cluster_size < stat->min_cluster_size)
stat->min_cluster_size = cluster_size;
if (cluster_size > stat->max_cluster_size)
stat->max_cluster_size = cluster_size;
}
cluster_size = nodesize;
} else {
cluster_size += nodesize;
}
last_block = cur_blocknr;
if (cur_blocknr < stat->lowest_bytenr)
stat->lowest_bytenr = cur_blocknr;
if (cur_blocknr > stat->highest_bytenr)
stat->highest_bytenr = cur_blocknr;
free_extent_buffer(tmp);
if (ret) {
error("walking down path failed: %d", ret);
break;
}
}
return ret;
}
static void print_seek_histogram(struct root_stats *stat)
{
struct rb_node *n = rb_first(&stat->seek_root);
struct seek *seek;
u64 tick_interval;
u64 group_start = 0;
u64 group_count = 0;
u64 group_end = 0;
u64 i;
u64 max_seek = stat->max_seek_len;
int digits = 1;
if (stat->total_seeks < 20)
return;
while ((max_seek /= 10))
digits++;
/* Make a tick count as 5% of the total seeks */
tick_interval = stat->total_seeks / 20;
printf("\tSeek histogram\n");
for (; n; n = rb_next(n)) {
u64 ticks, gticks = 0;
seek = rb_entry(n, struct seek, n);
ticks = seek->count / tick_interval;
if (group_count)
gticks = group_count / tick_interval;
if (ticks <= 2 && gticks <= 2) {
if (group_count == 0)
group_start = seek->distance;
group_end = seek->distance;
group_count += seek->count;
continue;
}
if (group_count) {
gticks = group_count / tick_interval;
printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start,
digits, group_end, digits, group_count);
if (gticks) {
for (i = 0; i < gticks; i++)
printf("#");
printf("\n");
} else {
printf("|\n");
}
group_count = 0;
}
if (ticks <= 2)
continue;
printf("\t\t%*Lu - %*Lu: %*Lu ", digits, seek->distance,
digits, seek->distance, digits, seek->count);
for (i = 0; i < ticks; i++)
printf("#");
printf("\n");
}
if (group_count) {
u64 gticks;
gticks = group_count / tick_interval;
printf("\t\t%*Lu - %*Lu: %*Lu ", digits, group_start,
digits, group_end, digits, group_count);
if (gticks) {
for (i = 0; i < gticks; i++)
printf("#");
printf("\n");
} else {
printf("|\n");
}
group_count = 0;
}
}
static void timeval_subtract(struct timeval *result, struct timeval *x,
struct timeval *y)
{
if (x->tv_usec < y->tv_usec) {
int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;
y->tv_usec -= 1000000 * nsec;
y->tv_sec += nsec;
}
if (x->tv_usec - y->tv_usec > 1000000) {
int nsec = (x->tv_usec - y->tv_usec) / 1000000;
y->tv_usec += 1000000 * nsec;
y->tv_sec -= nsec;
}
result->tv_sec = x->tv_sec - y->tv_sec;
result->tv_usec = x->tv_usec - y->tv_usec;
}
static int calc_root_size(struct btrfs_root *tree_root, struct btrfs_key *key,
int find_inline)
{
struct btrfs_root *root;
struct btrfs_path path;
struct rb_node *n;
struct timeval start, end, diff = {0};
struct root_stats stat;
int level;
int ret = 0;
int size_fail = 0;
root = btrfs_read_fs_root(tree_root->fs_info, key);
if (IS_ERR(root)) {
error("failed to read root %llu", key->objectid);
return 1;
}
btrfs_init_path(&path);
memset(&stat, 0, sizeof(stat));
level = btrfs_header_level(root->node);
stat.lowest_bytenr = btrfs_header_bytenr(root->node);
stat.highest_bytenr = stat.lowest_bytenr;
stat.min_cluster_size = (u64)-1;
stat.max_cluster_size = root->fs_info->nodesize;
path.nodes[level] = root->node;
if (gettimeofday(&start, NULL)) {
error("cannot get time: %m");
goto out;
}
if (!level) {
ret = walk_leaf(root, &path, &stat, find_inline);
if (ret)
goto out;
goto out_print;
}
ret = walk_nodes(root, &path, &stat, level, find_inline);
if (ret)
goto out;
if (gettimeofday(&end, NULL)) {
error("cannot get time: %m");
goto out;
}
timeval_subtract(&diff, &end, &start);
out_print:
if (stat.min_cluster_size == (u64)-1) {
stat.min_cluster_size = 0;
stat.total_clusters = 1;
}
if (no_pretty || size_fail) {
printf("\tTotal size: %llu\n", stat.total_bytes);
printf("\t\tInline data: %llu\n", stat.total_inline);
printf("\tTotal seeks: %llu\n", stat.total_seeks);
printf("\t\tForward seeks: %llu\n", stat.forward_seeks);
printf("\t\tBackward seeks: %llu\n", stat.backward_seeks);
printf("\t\tAvg seek len: %llu\n", stat.total_seeks ?
stat.total_seek_len / stat.total_seeks : 0);
print_seek_histogram(&stat);
printf("\tTotal clusters: %llu\n", stat.total_clusters);
printf("\t\tAvg cluster size: %llu\n", stat.total_cluster_size /
stat.total_clusters);
printf("\t\tMin cluster size: %llu\n", stat.min_cluster_size);
printf("\t\tMax cluster size: %llu\n", stat.max_cluster_size);
printf("\tTotal disk spread: %llu\n", stat.highest_bytenr -
stat.lowest_bytenr);
printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec,
(int)diff.tv_usec);
printf("\tLevels: %d\n", level + 1);
} else {
printf("\tTotal size: %s\n", pretty_size(stat.total_bytes));
printf("\t\tInline data: %s\n", pretty_size(stat.total_inline));
printf("\tTotal seeks: %llu\n", stat.total_seeks);
printf("\t\tForward seeks: %llu\n", stat.forward_seeks);
printf("\t\tBackward seeks: %llu\n", stat.backward_seeks);
printf("\t\tAvg seek len: %s\n", stat.total_seeks ?
pretty_size(stat.total_seek_len / stat.total_seeks) :
pretty_size(0));
print_seek_histogram(&stat);
printf("\tTotal clusters: %llu\n", stat.total_clusters);
printf("\t\tAvg cluster size: %s\n",
pretty_size((stat.total_cluster_size /
stat.total_clusters)));
printf("\t\tMin cluster size: %s\n",
pretty_size(stat.min_cluster_size));
printf("\t\tMax cluster size: %s\n",
pretty_size(stat.max_cluster_size));
printf("\tTotal disk spread: %s\n",
pretty_size(stat.highest_bytenr -
stat.lowest_bytenr));
printf("\tTotal read time: %d s %d us\n", (int)diff.tv_sec,
(int)diff.tv_usec);
printf("\tLevels: %d\n", level + 1);
}
out:
while ((n = rb_first(&stat.seek_root)) != NULL) {
struct seek *seek = rb_entry(n, struct seek, n);
rb_erase(n, &stat.seek_root);
free(seek);
}
/*
* We only use path to save node data in iterating, without holding
* eb's ref_cnt in path. Don't use btrfs_release_path() here, it will
* free these eb again, and cause many problems, as negative ref_cnt or
* invalid memory access.
*/
return ret;
}
const char * const cmd_inspect_tree_stats_usage[] = {
"btrfs inspect-internal tree-stats [options] <device>",
"Print various stats for trees",
"-b raw numbers in bytes",
NULL
};
int cmd_inspect_tree_stats(int argc, char **argv)
{
struct btrfs_key key;
struct btrfs_root *root;
int opt;
int ret = 0;
optind = 0;
while ((opt = getopt(argc, argv, "vb")) != -1) {
switch (opt) {
case 'v':
verbose++;
break;
case 'b':
no_pretty = 1;
break;
default:
usage(cmd_inspect_tree_stats_usage);
}
}
if (check_argc_exact(argc - optind, 1)) {
usage(cmd_inspect_tree_stats_usage);
}
ret = check_mounted(argv[optind]);
if (ret < 0) {
warning("unable to check mount status of: %s",
strerror(-ret));
} else if (ret) {
warning("%s already mounted, results may be inaccurate",
argv[optind]);
}
root = open_ctree(argv[optind], 0, 0);
if (!root) {
error("cannot open ctree");
exit(1);
}
printf("Calculating size of root tree\n");
key.objectid = BTRFS_ROOT_TREE_OBJECTID;
ret = calc_root_size(root, &key, 0);
if (ret)
goto out;
printf("Calculating size of extent tree\n");
key.objectid = BTRFS_EXTENT_TREE_OBJECTID;
ret = calc_root_size(root, &key, 0);
if (ret)
goto out;
printf("Calculating size of csum tree\n");
key.objectid = BTRFS_CSUM_TREE_OBJECTID;
ret = calc_root_size(root, &key, 0);
if (ret)
goto out;
key.objectid = BTRFS_FS_TREE_OBJECTID;
key.offset = (u64)-1;
printf("Calculating size of fs tree\n");
ret = calc_root_size(root, &key, 1);
if (ret)
goto out;
out:
close_ctree(root);
return ret;
}