mirror of
https://github.com/kdave/btrfs-progs
synced 2024-12-25 23:52:17 +00:00
6d2cf04247
This commit introduces a new command called 'btrfs' for managing a btrfs filesystem. 'btrfs' handles: - snapshot/subvolume creation - adding/removal of volume (ie: disk) - defragment of a tree - scan of a device searching a btrfs filesystem - re-balancing of the chunk on the disks - listing subvolumes and snapshots This has also been updated to include the new defrag range ioctl. Signed-off-by: Chris Mason <chris.mason@oracle.com>
420 lines
9.5 KiB
C
420 lines
9.5 KiB
C
/*
|
|
* Copyright (C) 2010 Oracle. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#ifndef __CHECKER__
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mount.h>
|
|
#include "ioctl.h"
|
|
#endif
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <fcntl.h>
|
|
#include <unistd.h>
|
|
#include <dirent.h>
|
|
#include <libgen.h>
|
|
#include "kerncompat.h"
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "utils.h"
|
|
#include "version.h"
|
|
|
|
/* we store all the roots we find in an rbtree so that we can
|
|
* search for them later.
|
|
*/
|
|
struct root_lookup {
|
|
struct rb_root root;
|
|
};
|
|
|
|
/*
|
|
* one of these for each root we find.
|
|
*/
|
|
struct root_info {
|
|
struct rb_node rb_node;
|
|
|
|
/* this root's id */
|
|
u64 root_id;
|
|
|
|
/* the id of the root that references this one */
|
|
u64 ref_tree;
|
|
|
|
/* the dir id we're in from ref_tree */
|
|
u64 dir_id;
|
|
|
|
/* path from the subvol we live in to this root, including the
|
|
* root's name. This is null until we do the extra lookup ioctl.
|
|
*/
|
|
char *path;
|
|
|
|
/* the name of this root in the directory it lives in */
|
|
char name[];
|
|
};
|
|
|
|
void root_lookup_init(struct root_lookup *tree)
|
|
{
|
|
tree->root.rb_node = NULL;
|
|
}
|
|
|
|
static int comp_entry(struct root_info *entry, u64 root_id, u64 ref_tree)
|
|
{
|
|
if (entry->root_id > root_id)
|
|
return 1;
|
|
if (entry->root_id < root_id)
|
|
return -1;
|
|
if (entry->ref_tree > ref_tree)
|
|
return 1;
|
|
if (entry->ref_tree < ref_tree)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* insert a new root into the tree. returns the existing root entry
|
|
* if one is already there. Both root_id and ref_tree are used
|
|
* as the key
|
|
*/
|
|
static struct rb_node *tree_insert(struct rb_root *root, u64 root_id,
|
|
u64 ref_tree, struct rb_node *node)
|
|
{
|
|
struct rb_node ** p = &root->rb_node;
|
|
struct rb_node * parent = NULL;
|
|
struct root_info *entry;
|
|
int comp;
|
|
|
|
while(*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct root_info, rb_node);
|
|
|
|
comp = comp_entry(entry, root_id, ref_tree);
|
|
|
|
if (comp < 0)
|
|
p = &(*p)->rb_left;
|
|
else if (comp > 0)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return parent;
|
|
}
|
|
|
|
entry = rb_entry(parent, struct root_info, rb_node);
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* find a given root id in the tree. We return the smallest one,
|
|
* rb_next can be used to move forward looking for more if required
|
|
*/
|
|
static struct root_info *tree_search(struct rb_root *root, u64 root_id)
|
|
{
|
|
struct rb_node * n = root->rb_node;
|
|
struct root_info *entry;
|
|
|
|
while(n) {
|
|
entry = rb_entry(n, struct root_info, rb_node);
|
|
|
|
if (entry->root_id < root_id)
|
|
n = n->rb_left;
|
|
else if (entry->root_id > root_id)
|
|
n = n->rb_right;
|
|
else {
|
|
struct root_info *prev;
|
|
struct rb_node *prev_n;
|
|
while (1) {
|
|
prev_n = rb_prev(n);
|
|
if (!prev_n)
|
|
break;
|
|
prev = rb_entry(prev_n, struct root_info,
|
|
rb_node);
|
|
if (prev->root_id != root_id)
|
|
break;
|
|
entry = prev;
|
|
n = prev_n;
|
|
}
|
|
return entry;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* this allocates a new root in the lookup tree.
|
|
*
|
|
* root_id should be the object id of the root
|
|
*
|
|
* ref_tree is the objectid of the referring root.
|
|
*
|
|
* dir_id is the directory in ref_tree where this root_id can be found.
|
|
*
|
|
* name is the name of root_id in that directory
|
|
*
|
|
* name_len is the length of name
|
|
*/
|
|
static int add_root(struct root_lookup *root_lookup,
|
|
u64 root_id, u64 ref_tree, u64 dir_id, char *name,
|
|
int name_len)
|
|
{
|
|
struct root_info *ri;
|
|
struct rb_node *ret;
|
|
ri = malloc(sizeof(*ri) + name_len + 1);
|
|
if (!ri) {
|
|
printf("memory allocation failed\n");
|
|
exit(1);
|
|
}
|
|
memset(ri, 0, sizeof(*ri) + name_len + 1);
|
|
ri->path = NULL;
|
|
ri->dir_id = dir_id;
|
|
ri->root_id = root_id;
|
|
ri->ref_tree = ref_tree;
|
|
strncpy(ri->name, name, name_len);
|
|
|
|
ret = tree_insert(&root_lookup->root, root_id, ref_tree, &ri->rb_node);
|
|
if (ret) {
|
|
printf("failed to insert tree %llu\n", (unsigned long long)root_id);
|
|
exit(1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* for a given root_info, search through the root_lookup tree to construct
|
|
* the full path name to it.
|
|
*
|
|
* This can't be called until all the root_info->path fields are filled
|
|
* in by lookup_ino_path
|
|
*/
|
|
static int resolve_root(struct root_lookup *rl, struct root_info *ri)
|
|
{
|
|
u64 top_id;
|
|
char *full_path = NULL;
|
|
int len = 0;
|
|
struct root_info *found;
|
|
|
|
/*
|
|
* we go backwards from the root_info object and add pathnames
|
|
* from parent directories as we go.
|
|
*/
|
|
found = ri;
|
|
while (1) {
|
|
char *tmp;
|
|
u64 next;
|
|
int add_len = strlen(found->path);
|
|
|
|
/* room for / and for null */
|
|
tmp = malloc(add_len + 2 + len);
|
|
if (full_path) {
|
|
memcpy(tmp + add_len + 1, full_path, len);
|
|
tmp[add_len] = '/';
|
|
memcpy(tmp, found->path, add_len);
|
|
tmp [add_len + len + 1] = '\0';
|
|
free(full_path);
|
|
full_path = tmp;
|
|
len += add_len + 1;
|
|
} else {
|
|
full_path = strdup(found->path);
|
|
len = add_len;
|
|
}
|
|
|
|
next = found->ref_tree;
|
|
/* if the ref_tree refers to ourselves, we're at the top */
|
|
if (next == found->root_id) {
|
|
top_id = next;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* if the ref_tree wasn't in our tree of roots, we're
|
|
* at the top
|
|
*/
|
|
found = tree_search(&rl->root, next);
|
|
if (!found) {
|
|
top_id = next;
|
|
break;
|
|
}
|
|
}
|
|
printf("ID %llu top level %llu path %s\n", ri->root_id, top_id,
|
|
full_path);
|
|
free(full_path);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* for a single root_info, ask the kernel to give us a path name
|
|
* inside it's ref_root for the dir_id where it lives.
|
|
*
|
|
* This fills in root_info->path with the path to the directory and and
|
|
* appends this root's name.
|
|
*/
|
|
static int lookup_ino_path(int fd, struct root_info *ri)
|
|
{
|
|
struct btrfs_ioctl_ino_lookup_args args;
|
|
int ret;
|
|
|
|
if (ri->path)
|
|
return 0;
|
|
|
|
memset(&args, 0, sizeof(args));
|
|
args.treeid = ri->ref_tree;
|
|
args.objectid = ri->dir_id;
|
|
|
|
ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &args);
|
|
if (ret) {
|
|
fprintf(stderr, "Failed to lookup path for root %llu\n",
|
|
(unsigned long long)ri->ref_tree);
|
|
exit(1);
|
|
}
|
|
|
|
if (args.name[0]) {
|
|
/*
|
|
* we're in a subdirectory of ref_tree, the kernel ioctl
|
|
* puts a / in there for us
|
|
*/
|
|
ri->path = malloc(strlen(ri->name) + strlen(args.name) + 1);
|
|
if (!ri->path) {
|
|
perror("malloc failed");
|
|
exit(1);
|
|
}
|
|
strcpy(ri->path, args.name);
|
|
strcat(ri->path, ri->name);
|
|
} else {
|
|
/* we're at the root of ref_tree */
|
|
ri->path = strdup(ri->name);
|
|
if (!ri->path) {
|
|
perror("strdup failed");
|
|
exit(1);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int list_subvols(int fd)
|
|
{
|
|
struct root_lookup root_lookup;
|
|
struct rb_node *n;
|
|
int ret;
|
|
struct btrfs_ioctl_search_args args;
|
|
struct btrfs_ioctl_search_key *sk = &args.key;
|
|
struct btrfs_ioctl_search_header *sh;
|
|
struct btrfs_root_ref *ref;
|
|
unsigned long off = 0;
|
|
int name_len;
|
|
char *name;
|
|
u64 dir_id;
|
|
int i;
|
|
|
|
root_lookup_init(&root_lookup);
|
|
|
|
memset(&args, 0, sizeof(args));
|
|
|
|
/* search in the tree of tree roots */
|
|
sk->tree_id = 1;
|
|
|
|
/*
|
|
* set the min and max to backref keys. The search will
|
|
* only send back this type of key now.
|
|
*/
|
|
sk->max_type = BTRFS_ROOT_BACKREF_KEY;
|
|
sk->min_type = BTRFS_ROOT_BACKREF_KEY;
|
|
|
|
/*
|
|
* set all the other params to the max, we'll take any objectid
|
|
* and any trans
|
|
*/
|
|
sk->max_objectid = (u64)-1;
|
|
sk->max_offset = (u64)-1;
|
|
sk->max_transid = (u64)-1;
|
|
|
|
/* just a big number, doesn't matter much */
|
|
sk->nr_items = 4096;
|
|
|
|
while(1) {
|
|
ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args);
|
|
if (ret < 0) {
|
|
perror("ioctl:");
|
|
break;
|
|
}
|
|
/* the ioctl returns the number of item it found in nr_items */
|
|
if (sk->nr_items == 0)
|
|
break;
|
|
|
|
off = 0;
|
|
|
|
/*
|
|
* for each item, pull the key out of the header and then
|
|
* read the root_ref item it contains
|
|
*/
|
|
for (i = 0; i < sk->nr_items; i++) {
|
|
sh = (struct btrfs_ioctl_search_header *)(args.buf +
|
|
off);
|
|
off += sizeof(*sh);
|
|
|
|
ref = (struct btrfs_root_ref *)(args.buf + off);
|
|
name_len = btrfs_stack_root_ref_name_len(ref);
|
|
name = (char *)(ref + 1);
|
|
dir_id = btrfs_stack_root_ref_dirid(ref);
|
|
|
|
add_root(&root_lookup, sh->objectid, sh->offset,
|
|
dir_id, name, name_len);
|
|
|
|
off += sh->len;
|
|
|
|
/*
|
|
* record the mins in sk so we can make sure the
|
|
* next search doesn't repeat this root
|
|
*/
|
|
sk->min_objectid = sh->objectid;
|
|
sk->min_type = sh->type;
|
|
sk->min_offset = sh->offset;
|
|
}
|
|
sk->nr_items = 4096;
|
|
/* this iteration is done, step forward one root for the next
|
|
* ioctl
|
|
*/
|
|
if (sk->min_objectid < (u64)-1)
|
|
sk->min_objectid++;
|
|
else
|
|
break;
|
|
}
|
|
/*
|
|
* now we have an rbtree full of root_info objects, but we need to fill
|
|
* in their path names within the subvol that is referencing each one.
|
|
*/
|
|
n = rb_first(&root_lookup.root);
|
|
while (n) {
|
|
struct root_info *entry;
|
|
entry = rb_entry(n, struct root_info, rb_node);
|
|
lookup_ino_path(fd, entry);
|
|
n = rb_next(n);
|
|
}
|
|
|
|
/* now that we have all the subvol-relative paths filled in,
|
|
* we have to string the subvols together so that we can get
|
|
* a path all the way back to the FS root
|
|
*/
|
|
n = rb_last(&root_lookup.root);
|
|
while (n) {
|
|
struct root_info *entry;
|
|
entry = rb_entry(n, struct root_info, rb_node);
|
|
resolve_root(&root_lookup, entry);
|
|
n = rb_prev(n);
|
|
}
|
|
|
|
return ret;
|
|
}
|