1
0
mirror of https://github.com/kdave/btrfs-progs synced 2024-12-18 20:35:24 +00:00
btrfs-progs/mkfs/rootdir.c
Mark Harmstone 6a1d4adad1 btrfs-progs: mkfs: avoid dynamic allocation when doing --subvol
Reworks mkfs.btrfs --subvol so that dir and full_path in struct
rootdir_subvol are stored as arrays rather than pointers.

Signed-off-by: Mark Harmstone <maharmstone@fb.com>
2024-10-10 14:14:32 +10:30

1197 lines
30 KiB
C

/*
* Copyright (C) 2017 SUSE. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/stat.h>
#include <sys/xattr.h>
#include <dirent.h>
#include <unistd.h>
#include <fcntl.h>
#include <ftw.h>
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "kernel-lib/sizes.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/uapi/btrfs_tree.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/file-item.h"
#include "common/internal.h"
#include "common/messages.h"
#include "common/utils.h"
#include "common/extent-tree-utils.h"
#include "common/root-tree-utils.h"
#include "common/path-utils.h"
#include "common/rbtree-utils.h"
#include "mkfs/rootdir.h"
static u32 fs_block_size;
/*
* Size estimate will be done using the following data:
* 1) Number of inodes
* Since we will later shrink the fs, over-estimate is completely fine here
* as long as our estimate ensures we can populate the image without ENOSPC.
* So we only record how many inodes there are, and account the maximum
* space for each inode.
*
* 2) Data space for each (regular) inode
* To estimate data chunk size.
* Don't care if it can fit as an inline extent.
* Always round them up to sectorsize.
*/
static u64 ftw_meta_nr_inode;
static u64 ftw_data_size;
/*
* Represent one inode inside the path.
*
* For now, all those inodes are inside fs tree.
*/
struct inode_entry {
/* The inode number inside btrfs. */
u64 ino;
struct btrfs_root *root;
struct list_head list;
};
/*
* Record all the hard links we found for a specific file inside
* rootdir.
*
* The search is based on (root, st_dev, st_ino).
* The reason for @root as a search index is, for hard links separated by
* subvolume boundaries:
*
* rootdir/
* |- foobar_hardlink1
* |- foobar_hardlink2
* |- subv/ <- Will be created as a subvolume
* |- foobar_hardlink3.
*
* Since all the 3 hard links are inside the same rootdir and the same
* filesystem, on the host fs they are all hard links to the same inode.
*
* But for the btrfs we are building, only hardlink1 and hardlink2 can be
* created as hardlinks. Since we cannot create hardlink across subvolume.
* So we need @root as a search index to handle such case.
*/
struct hardlink_entry {
struct rb_node node;
/*
* The following three members are reported from the stat() of the
* host filesystem.
*
* For st_nlink we cannot trust it unconditionally, as
* some hard links may be out of rootdir.
* If @found_nlink reached @st_nlink, we know we have created all
* the hard links and can remove the entry.
*/
dev_t st_dev;
ino_t st_ino;
nlink_t st_nlink;
/* The following two are inside the new btrfs. */
struct btrfs_root *root;
u64 btrfs_ino;
/* How many hard links we have created. */
nlink_t found_nlink;
};
static struct rb_root hardlink_root = RB_ROOT;
/*
* The path towards the rootdir.
*
* Only directory inodes are stored inside the path.
*/
struct rootdir_path {
/*
* Level 0 means it's uninitialized
* Level 1 means it's the rootdir itself.
*/
int level;
struct list_head inode_list;
};
static struct rootdir_path current_path = {
.level = 0,
};
static struct btrfs_trans_handle *g_trans = NULL;
static struct list_head *g_subvols;
static u64 next_subvol_id = BTRFS_FIRST_FREE_OBJECTID;
static u64 default_subvol_id;
static inline struct inode_entry *rootdir_path_last(struct rootdir_path *path)
{
UASSERT(!list_empty(&path->inode_list));
return list_entry(path->inode_list.prev, struct inode_entry, list);
}
static void rootdir_path_pop(struct rootdir_path *path)
{
struct inode_entry *last;
UASSERT(path->level > 0);
last = rootdir_path_last(path);
list_del_init(&last->list);
path->level--;
free(last);
}
static int rootdir_path_push(struct rootdir_path *path, struct btrfs_root *root, u64 ino)
{
struct inode_entry *new;
new = malloc(sizeof(*new));
if (!new)
return -ENOMEM;
new->root = root;
new->ino = ino;
list_add_tail(&new->list, &path->inode_list);
path->level++;
return 0;
}
static int hardlink_compare_nodes(const struct rb_node *node1,
const struct rb_node *node2)
{
const struct hardlink_entry *entry1;
const struct hardlink_entry *entry2;
entry1 = rb_entry(node1, struct hardlink_entry, node);
entry2 = rb_entry(node2, struct hardlink_entry, node);
UASSERT(entry1->root);
UASSERT(entry2->root);
if (entry1->st_dev < entry2->st_dev)
return -1;
if (entry1->st_dev > entry2->st_dev)
return 1;
if (entry1->st_ino < entry2->st_ino)
return -1;
if (entry1->st_ino > entry2->st_ino)
return 1;
if (entry1->root < entry2->root)
return -1;
if (entry1->root > entry2->root)
return 1;
return 0;
}
static struct hardlink_entry *find_hard_link(struct btrfs_root *root,
const struct stat *st)
{
struct rb_node *node;
const struct hardlink_entry tmp = {
.st_dev = st->st_dev,
.st_ino = st->st_ino,
.root = root,
};
node = rb_search(&hardlink_root, &tmp,
(rb_compare_keys)hardlink_compare_nodes, NULL);
if (node)
return rb_entry(node, struct hardlink_entry, node);
return NULL;
}
static int add_hard_link(struct btrfs_root *root, u64 btrfs_ino,
const struct stat *st)
{
struct hardlink_entry *new;
int ret;
UASSERT(st->st_nlink > 1);
new = calloc(1, sizeof(*new));
if (!new)
return -ENOMEM;
new->root = root;
new->btrfs_ino = btrfs_ino;
new->found_nlink = 1;
new->st_dev = st->st_dev;
new->st_ino = st->st_ino;
new->st_nlink = st->st_nlink;
ret = rb_insert(&hardlink_root, &new->node, hardlink_compare_nodes);
if (ret) {
free(new);
return -EEXIST;
}
return 0;
}
static void free_one_hardlink(struct rb_node *node)
{
struct hardlink_entry *entry = rb_entry(node, struct hardlink_entry, node);
free(entry);
}
static void stat_to_inode_item(struct btrfs_inode_item *dst, const struct stat *st)
{
/*
* Do not touch size for directory inode, the size would be
* automatically updated during btrfs_link_inode().
*/
if (!S_ISDIR(st->st_mode))
btrfs_set_stack_inode_size(dst, st->st_size);
btrfs_set_stack_inode_nbytes(dst, 0);
btrfs_set_stack_inode_block_group(dst, 0);
btrfs_set_stack_inode_uid(dst, st->st_uid);
btrfs_set_stack_inode_gid(dst, st->st_gid);
btrfs_set_stack_inode_mode(dst, st->st_mode);
btrfs_set_stack_inode_rdev(dst, 0);
btrfs_set_stack_inode_flags(dst, 0);
btrfs_set_stack_timespec_sec(&dst->atime, st->st_atime);
btrfs_set_stack_timespec_nsec(&dst->atime, 0);
btrfs_set_stack_timespec_sec(&dst->ctime, st->st_ctime);
btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
btrfs_set_stack_timespec_sec(&dst->mtime, st->st_mtime);
btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
btrfs_set_stack_timespec_sec(&dst->otime, 0);
btrfs_set_stack_timespec_nsec(&dst->otime, 0);
}
static int add_xattr_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid,
const char *file_name)
{
int ret;
int cur_name_len;
char xattr_list[XATTR_LIST_MAX];
char *xattr_list_end;
char *cur_name;
char cur_value[XATTR_SIZE_MAX];
ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX);
if (ret < 0) {
if (errno == ENOTSUP)
return 0;
error("getting a list of xattr failed for %s: %m", file_name);
return ret;
}
if (ret == 0)
return ret;
xattr_list_end = xattr_list + ret;
cur_name = xattr_list;
while (cur_name < xattr_list_end) {
cur_name_len = strlen(cur_name);
ret = lgetxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX);
if (ret < 0) {
if (errno == ENOTSUP)
return 0;
error("getting a xattr value failed for %s attr %s: %m",
file_name, cur_name);
return ret;
}
ret = btrfs_insert_xattr_item(trans, root, cur_name,
cur_name_len, cur_value,
ret, objectid);
if (ret) {
errno = -ret;
error("inserting a xattr item failed for %s: %m",
file_name);
}
cur_name += cur_name_len + 1;
}
return ret;
}
static int add_symbolic_link(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *inode_item,
u64 objectid, const char *path_name)
{
u64 nbytes;
int ret;
char buf[PATH_MAX];
ret = readlink(path_name, buf, sizeof(buf));
if (ret <= 0) {
error("readlink failed for %s: %m", path_name);
goto fail;
}
if (ret >= sizeof(buf)) {
error("symlink too long for %s", path_name);
ret = -1;
goto fail;
}
buf[ret] = '\0'; /* readlink does not do it for us */
nbytes = ret + 1;
ret = btrfs_insert_inline_extent(trans, root, objectid, 0, buf, nbytes);
if (ret < 0) {
errno = -ret;
error("failed to insert inline extent for %s: %m", path_name);
goto fail;
}
btrfs_set_stack_inode_nbytes(inode_item, nbytes);
fail:
return ret;
}
static int add_file_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_inode_item *btrfs_inode, u64 objectid,
const struct stat *st, const char *path_name)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
int ret = -1;
ssize_t ret_read;
u64 bytes_read = 0;
struct btrfs_key key;
int blocks;
u32 sectorsize = fs_info->sectorsize;
u64 first_block = 0;
u64 file_pos = 0;
u64 cur_bytes;
u64 total_bytes;
void *buf = NULL;
int fd;
if (st->st_size == 0)
return 0;
fd = open(path_name, O_RDONLY);
if (fd == -1) {
error("cannot open %s: %m", path_name);
return ret;
}
blocks = st->st_size / sectorsize;
if (st->st_size % sectorsize)
blocks += 1;
if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(fs_info) &&
st->st_size < sectorsize) {
char *buffer = malloc(st->st_size);
if (!buffer) {
ret = -ENOMEM;
goto end;
}
ret_read = pread(fd, buffer, st->st_size, bytes_read);
if (ret_read == -1) {
error("cannot read %s at offset %llu length %llu: %m",
path_name, bytes_read, (unsigned long long)st->st_size);
free(buffer);
goto end;
}
ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
buffer, st->st_size);
free(buffer);
/* Update the inode nbytes for inline extents. */
btrfs_set_stack_inode_nbytes(btrfs_inode, st->st_size);
goto end;
}
/* round up our st_size to the FS blocksize */
total_bytes = (u64)blocks * sectorsize;
buf = malloc(sectorsize);
if (!buf) {
ret = -ENOMEM;
goto end;
}
again:
/*
* keep our extent size at 1MB max, this makes it easier to work inside
* the tiny block groups created during mkfs
*/
cur_bytes = min(total_bytes, (u64)SZ_1M);
ret = btrfs_reserve_extent(trans, root, cur_bytes, 0, 0, (u64)-1,
&key, 1);
if (ret)
goto end;
first_block = key.objectid;
bytes_read = 0;
while (bytes_read < cur_bytes) {
memset(buf, 0, sectorsize);
ret_read = pread(fd, buf, sectorsize, file_pos + bytes_read);
if (ret_read == -1) {
error("cannot read %s at offset %llu length %u: %m",
path_name, file_pos + bytes_read, sectorsize);
goto end;
}
ret = write_data_to_disk(root->fs_info, buf,
first_block + bytes_read, sectorsize);
if (ret) {
error("failed to write %s", path_name);
goto end;
}
ret = btrfs_csum_file_block(trans, first_block + bytes_read,
BTRFS_EXTENT_CSUM_OBJECTID,
fs_info->csum_type, buf);
if (ret)
goto end;
bytes_read += sectorsize;
}
if (bytes_read) {
ret = btrfs_record_file_extent(trans, root, objectid,
btrfs_inode, file_pos, first_block, cur_bytes);
if (ret)
goto end;
}
file_pos += cur_bytes;
total_bytes -= cur_bytes;
if (total_bytes)
goto again;
end:
free(buf);
close(fd);
return ret;
}
static int update_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const struct btrfs_inode_item *inode_item,
u64 ino)
{
struct btrfs_path path = { 0 };
struct btrfs_key key = {
.objectid = ino,
.type = BTRFS_INODE_ITEM_KEY,
.offset = 0,
};
u32 item_ptr_off;
int ret;
ret = btrfs_lookup_inode(trans, root, &path, &key, 1);
if (ret > 0)
ret = -ENOENT;
if (ret < 0) {
btrfs_release_path(&path);
return ret;
}
item_ptr_off = btrfs_item_ptr_offset(path.nodes[0], path.slots[0]);
write_extent_buffer(path.nodes[0], inode_item, item_ptr_off, sizeof(*inode_item));
btrfs_mark_buffer_dirty(path.nodes[0]);
btrfs_release_path(&path);
return 0;
}
static u8 ftype_to_btrfs_type(mode_t ftype)
{
if (S_ISREG(ftype))
return BTRFS_FT_REG_FILE;
if (S_ISDIR(ftype))
return BTRFS_FT_DIR;
if (S_ISLNK(ftype))
return BTRFS_FT_SYMLINK;
if (S_ISCHR(ftype))
return BTRFS_FT_CHRDEV;
if (S_ISBLK(ftype))
return BTRFS_FT_BLKDEV;
if (S_ISFIFO(ftype))
return BTRFS_FT_FIFO;
if (S_ISSOCK(ftype))
return BTRFS_FT_SOCK;
return BTRFS_FT_UNKNOWN;
}
static int ftw_add_subvol(const char *full_path, const struct stat *st,
int typeflag, struct FTW *ftwbuf,
struct rootdir_subvol *subvol)
{
int ret;
struct btrfs_key key;
struct btrfs_root *new_root;
struct inode_entry *parent;
struct btrfs_inode_item inode_item = { 0 };
u64 subvol_id, ino;
subvol_id = next_subvol_id++;
ret = btrfs_make_subvolume(g_trans, subvol_id, subvol->readonly);
if (ret < 0) {
errno = -ret;
error("failed to create subvolume: %m");
return ret;
}
if (subvol->is_default)
default_subvol_id = subvol_id;
key.objectid = subvol_id;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
new_root = btrfs_read_fs_root(g_trans->fs_info, &key);
if (IS_ERR(new_root)) {
ret = PTR_ERR(new_root);
errno = -ret;
error("unable to read fs root id %llu: %m", subvol_id);
return ret;
}
parent = rootdir_path_last(&current_path);
ret = btrfs_link_subvolume(g_trans, parent->root, parent->ino,
path_basename(subvol->full_path),
strlen(path_basename(subvol->full_path)),
new_root);
if (ret) {
errno = -ret;
error("unable to link subvolume %s: %m", path_basename(subvol->full_path));
return ret;
}
ino = btrfs_root_dirid(&new_root->root_item);
ret = add_xattr_item(g_trans, new_root, ino, full_path);
if (ret < 0) {
errno = -ret;
error("failed to add xattr item for the top level inode in subvol %llu: %m",
subvol_id);
return ret;
}
stat_to_inode_item(&inode_item, st);
btrfs_set_stack_inode_nlink(&inode_item, 1);
ret = update_inode_item(g_trans, new_root, &inode_item, ino);
if (ret < 0) {
errno = -ret;
error("failed to update root dir for root %llu: %m", subvol_id);
return ret;
}
ret = rootdir_path_push(&current_path, new_root, ino);
if (ret < 0) {
errno = -ret;
error("failed to allocate new entry for subvolume %llu ('%s'): %m",
subvol_id, full_path);
return ret;
}
return 0;
}
static int ftw_add_inode(const char *full_path, const struct stat *st,
int typeflag, struct FTW *ftwbuf)
{
struct btrfs_fs_info *fs_info = g_trans->fs_info;
struct btrfs_root *root;
struct btrfs_inode_item inode_item = { 0 };
struct inode_entry *parent;
struct rootdir_subvol *rds;
const bool have_hard_links = (!S_ISDIR(st->st_mode) && st->st_nlink > 1);
u64 ino;
int ret;
/* The rootdir itself. */
if (unlikely(ftwbuf->level == 0)) {
u64 root_ino;
root = fs_info->fs_root;
root_ino = btrfs_root_dirid(&root->root_item);
UASSERT(S_ISDIR(st->st_mode));
UASSERT(current_path.level == 0);
ret = add_xattr_item(g_trans, root, root_ino, full_path);
if (ret < 0) {
errno = -ret;
error("failed to add xattr item for the top level inode: %m");
return ret;
}
stat_to_inode_item(&inode_item, st);
/*
* Rootdir inode exists without any parent, thus needs to set
* its nlink to 1 manually.
*/
btrfs_set_stack_inode_nlink(&inode_item, 1);
ret = update_inode_item(g_trans, root, &inode_item, root_ino);
if (ret < 0) {
errno = -ret;
error("failed to update root dir for root %llu: %m",
root->root_key.objectid);
return ret;
}
/* Push (and initialize) the rootdir directory into the stack. */
ret = rootdir_path_push(&current_path, root, btrfs_root_dirid(&root->root_item));
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_MEMORY, "push path for rootdir: %m");
return ret;
}
return ret;
}
/*
* The rootdir_path structure works like this, with the layout:
*
* rootdir/
* |- file1
* |- dir1
* | |- file2
* |- file3
*
* nftw() would results the following sequence:
*
* - "rootdir" level=0 empty stack (level 0).
* The initial push. Our rootpath stack has nothing.
* So we push the ino of rootdir (btrfs ino 256) into the stack.
*
* - "rootdir/dir1" level=1 stack=256 (level 1)
* nftw() is pre-order traversal, and it always visit
* directory first.
* We find it's a directory, knowing we will visit the
* child inodes of it.
* So we push the inode (btrfs ino 257) into the stack.
*
* - "rootdir/dir1/file2" level=2 stack=256,257 (level 2)
* This is a regular file, we do not need to change our stack.
*
* - "rootdir/file1" level=1 stack=256,257 (level 2)
* Level changed, we enter the upper level directory.
* Pop the stack to match the parent inode.
*
* - "rootdir/file3" level=1 stack=256 (level 1)
*
* So if our stack level > current ftw level, it means we
* have changed to a (one or more levels) upper directory,
* thus we need to pop the path until we reach the correct
* parent.
*/
while (current_path.level > ftwbuf->level)
rootdir_path_pop(&current_path);
if (S_ISDIR(st->st_mode)) {
list_for_each_entry(rds, g_subvols, list) {
if (!strcmp(full_path, rds->full_path)) {
ret = ftw_add_subvol(full_path, st, typeflag,
ftwbuf, rds);
list_del(&rds->list);
free(rds);
return ret;
}
}
}
parent = rootdir_path_last(&current_path);
root = parent->root;
/* Check if there is already a hard link record for this. */
if (have_hard_links) {
struct hardlink_entry *found;
found = find_hard_link(root, st);
/*
* Can only add the hard link if it doesn't cross subvolume
* boundary.
*/
if (found && found->root == root) {
ret = btrfs_add_link(g_trans, root, found->btrfs_ino,
parent->ino, full_path + ftwbuf->base,
strlen(full_path) - ftwbuf->base,
ftype_to_btrfs_type(st->st_mode),
NULL, 1, 0);
if (ret < 0) {
errno = -ret;
error(
"failed to add link for hard link ('%s'): %m", full_path);
return ret;
}
found->found_nlink++;
/* We found all hard links for it. Can remove the entry. */
if (found->found_nlink >= found->st_nlink) {
rb_erase(&found->node, &hardlink_root);
free(found);
}
return 0;
}
}
ret = btrfs_find_free_objectid(g_trans, root,
BTRFS_FIRST_FREE_OBJECTID, &ino);
if (ret < 0) {
errno = -ret;
error("failed to find free objectid for file %s: %m", full_path);
return ret;
}
stat_to_inode_item(&inode_item, st);
ret = btrfs_insert_inode(g_trans, root, ino, &inode_item);
if (ret < 0) {
errno = -ret;
error("failed to insert inode item %llu for '%s': %m", ino, full_path);
return ret;
}
ret = btrfs_add_link(g_trans, root, ino, parent->ino,
full_path + ftwbuf->base,
strlen(full_path) - ftwbuf->base,
ftype_to_btrfs_type(st->st_mode),
NULL, 1, 0);
if (ret < 0) {
errno = -ret;
error("failed to add link for inode %llu ('%s'): %m", ino, full_path);
return ret;
}
/* Record this new hard link. */
if (have_hard_links) {
ret = add_hard_link(root, ino, st);
if (ret < 0) {
errno = -ret;
error("failed to add hard link record for '%s': %m",
full_path);
return ret;
}
ret = 0;
}
/*
* btrfs_add_link() has increased the nlink to 1 in the metadata.
* Also update the value in case we need to update the inode item
* later.
*/
btrfs_set_stack_inode_nlink(&inode_item, 1);
ret = add_xattr_item(g_trans, root, ino, full_path);
if (ret < 0) {
errno = -ret;
error("failed to add xattrs for inode %llu ('%s'): %m", ino, full_path);
return ret;
}
if (S_ISDIR(st->st_mode)) {
ret = rootdir_path_push(&current_path, root, ino);
if (ret < 0) {
errno = -ret;
error("failed to allocate new entry for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
} else if (S_ISREG(st->st_mode)) {
ret = add_file_items(g_trans, root, &inode_item, ino, st, full_path);
if (ret < 0) {
errno = -ret;
error("failed to add file extents for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
ret = update_inode_item(g_trans, root, &inode_item, ino);
if (ret < 0) {
errno = -ret;
error("failed to update inode item for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
} else if (S_ISLNK(st->st_mode)) {
ret = add_symbolic_link(g_trans, root, &inode_item, ino, full_path);
if (ret < 0) {
errno = -ret;
error("failed to insert link for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
ret = update_inode_item(g_trans, root, &inode_item, ino);
if (ret < 0) {
errno = -ret;
error("failed to update inode item for inode %llu ('%s'): %m",
ino, full_path);
return ret;
}
}
return 0;
};
static int set_default_subvolume(struct btrfs_trans_handle *trans)
{
struct btrfs_path path = { 0 };
struct btrfs_dir_item *di;
struct btrfs_key location;
struct extent_buffer *leaf;
struct btrfs_disk_key disk_key;
u64 features;
di = btrfs_lookup_dir_item(trans, trans->fs_info->tree_root, &path,
btrfs_super_root_dir(trans->fs_info->super_copy),
"default", 7, 1);
if (IS_ERR_OR_NULL(di)) {
btrfs_release_path(&path);
if (di)
return PTR_ERR(di);
else
return -ENOENT;
}
leaf = path.nodes[0];
location.objectid = default_subvol_id;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
btrfs_cpu_key_to_disk(&disk_key, &location);
btrfs_set_dir_item_key(leaf, di, &disk_key);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(&path);
features = btrfs_super_incompat_flags(trans->fs_info->super_copy);
features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
btrfs_set_super_incompat_flags(trans->fs_info->super_copy, features);
return 0;
}
int btrfs_mkfs_fill_dir(struct btrfs_trans_handle *trans, const char *source_dir,
struct btrfs_root *root, struct list_head *subvols)
{
int ret;
struct stat root_st;
ret = lstat(source_dir, &root_st);
if (ret) {
error("unable to lstat %s: %m", source_dir);
return -errno;
}
g_trans = trans;
g_subvols = subvols;
INIT_LIST_HEAD(&current_path.inode_list);
ret = nftw(source_dir, ftw_add_inode, 32, FTW_PHYS);
if (ret) {
error("unable to traverse directory %s: %d", source_dir, ret);
return ret;
}
while (current_path.level > 0)
rootdir_path_pop(&current_path);
if (default_subvol_id != 0) {
ret = set_default_subvolume(trans);
if (ret < 0) {
error("error setting default subvolume: %d", ret);
return ret;
}
}
rb_free_nodes(&hardlink_root, free_one_hardlink);
return 0;
}
static int ftw_add_entry_size(const char *fpath, const struct stat *st,
int type, struct FTW *ftwbuf)
{
/*
* Failed to read the directory, mostly due to EPERM. Abort ASAP, so
* we don't need to populate the fs.
*/
if (type == FTW_DNR || type == FTW_NS)
return -EPERM;
if (S_ISREG(st->st_mode))
ftw_data_size += round_up(st->st_size, fs_block_size);
ftw_meta_nr_inode++;
return 0;
}
u64 btrfs_mkfs_size_dir(const char *dir_name, u32 sectorsize, u64 min_dev_size,
u64 meta_profile, u64 data_profile)
{
u64 total_size = 0;
int ret;
u64 meta_size = 0; /* Based on @ftw_meta_nr_inode */
u64 meta_chunk_size = 0; /* Based on @meta_size */
u64 data_chunk_size = 0; /* Based on @ftw_data_size */
u64 meta_threshold = SZ_8M;
u64 data_threshold = SZ_8M;
float data_multiplier = 1;
float meta_multiplier = 1;
fs_block_size = sectorsize;
ftw_data_size = 0;
ftw_meta_nr_inode = 0;
/*
* Symbolic link is not followed when creating files, so no need to
* follow them here.
*/
ret = nftw(dir_name, ftw_add_entry_size, 10, FTW_PHYS);
if (ret < 0) {
error("ftw subdir walk of %s failed: %m", dir_name);
exit(1);
}
/*
* Maximum metadata usage for every inode, which will be PATH_MAX
* for the following items:
* 1) DIR_ITEM
* 2) DIR_INDEX
* 3) INODE_REF
*
* Plus possible inline extent size, which is sectorsize.
*
* And finally, allow metadata usage to increase with data size.
* Follow the old kernel 8:1 data:meta ratio.
* This is especially important for --rootdir, as the file extent size
* upper limit is 1M, instead of 128M in kernel.
* This can bump meta usage easily.
*/
meta_size = ftw_meta_nr_inode * (PATH_MAX * 3 + sectorsize) +
ftw_data_size / 8;
/* Minimal chunk size from btrfs_alloc_chunk(). */
if (meta_profile & BTRFS_BLOCK_GROUP_DUP) {
meta_threshold = SZ_32M;
meta_multiplier = 2;
}
if (data_profile & BTRFS_BLOCK_GROUP_DUP) {
data_threshold = SZ_64M;
data_multiplier = 2;
}
/*
* Only when the usage is larger than the minimal chunk size (threshold)
* we need to allocate new chunk, or the initial chunk in the image is
* large enough.
*/
if (meta_size > meta_threshold)
meta_chunk_size = (round_up(meta_size, meta_threshold) -
meta_threshold) * meta_multiplier;
if (ftw_data_size > data_threshold)
data_chunk_size = (round_up(ftw_data_size, data_threshold) -
data_threshold) * data_multiplier;
total_size = data_chunk_size + meta_chunk_size + min_dev_size;
return total_size;
}
/*
* Get the end position of the last device extent for given @devid;
* @size_ret is exclusive (means it should be aligned to sectorsize)
*/
static int get_device_extent_end(struct btrfs_fs_info *fs_info,
u64 devid, u64 *size_ret)
{
struct btrfs_root *dev_root = fs_info->dev_root;
struct btrfs_key key;
struct btrfs_path path = { 0 };
struct btrfs_dev_extent *de;
int ret;
key.objectid = devid;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, dev_root, &key, &path, 0, 0);
if (ret == 0) {
error("DEV_EXTENT for devid %llu not found", devid);
ret = -EUCLEAN;
goto out;
}
ret = btrfs_previous_item(dev_root, &path, devid, BTRFS_DEV_EXTENT_KEY);
if (ret < 0)
goto out;
/* No dev_extent at all, not really possible for rootdir case */
if (ret > 0) {
*size_ret = 0;
ret = -EUCLEAN;
goto out;
}
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
de = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_dev_extent);
*size_ret = key.offset + btrfs_dev_extent_length(path.nodes[0], de);
out:
btrfs_release_path(&path);
return ret;
}
/*
* Set device size to @new_size.
*
* Only used for --rootdir option.
* We will need to reset the following values:
* 1) dev item in chunk tree
* 2) super->dev_item
* 3) super->total_bytes
*/
static int set_device_size(struct btrfs_fs_info *fs_info,
struct btrfs_device *device, u64 new_size)
{
struct btrfs_root *chunk_root = fs_info->chunk_root;
struct btrfs_trans_handle *trans;
struct btrfs_dev_item *di;
struct btrfs_path path = { 0 };
struct btrfs_key key;
int ret;
/*
* Update in-memory device->total_bytes, so that at trans commit time,
* super->dev_item will also get updated
*/
device->total_bytes = new_size;
/* Update device item in chunk tree */
trans = btrfs_start_transaction(chunk_root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
return ret;
}
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
if (ret < 0)
goto err;
if (ret > 0)
ret = -ENOENT;
di = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_dev_item);
btrfs_set_device_total_bytes(path.nodes[0], di, new_size);
btrfs_mark_buffer_dirty(path.nodes[0]);
/*
* Update super->total_bytes, since it's only used for --rootdir,
* there is only one device, just use the @new_size.
*/
btrfs_set_super_total_bytes(fs_info->super_copy, new_size);
/*
* Commit transaction to reflect the updated super->total_bytes and
* super->dev_item
*/
ret = btrfs_commit_transaction(trans, chunk_root);
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
}
btrfs_release_path(&path);
return ret;
err:
btrfs_release_path(&path);
/*
* Committing the transaction here won't cause problems since the fs
* still has an invalid magic number, and something wrong already
* happened, we don't care the return value anyway.
*/
btrfs_commit_transaction(trans, chunk_root);
return ret;
}
int btrfs_mkfs_shrink_fs(struct btrfs_fs_info *fs_info, u64 *new_size_ret,
bool shrink_file_size)
{
u64 new_size;
struct btrfs_device *device;
struct list_head *cur;
struct stat file_stat;
int nr_devs = 0;
int ret;
list_for_each(cur, &fs_info->fs_devices->devices)
nr_devs++;
if (nr_devs > 1) {
error("cannot shrink fs with more than 1 device");
return -ENOTTY;
}
ret = get_device_extent_end(fs_info, 1, &new_size);
if (ret < 0) {
errno = -ret;
error("failed to get minimal device size: %d (%m)", ret);
return ret;
}
if (!IS_ALIGNED(new_size, fs_info->sectorsize)) {
error("shrunk filesystem size %llu not aligned to %u",
new_size, fs_info->sectorsize);
return -EUCLEAN;
}
device = list_entry(fs_info->fs_devices->devices.next,
struct btrfs_device, dev_list);
ret = set_device_size(fs_info, device, new_size);
if (ret < 0)
return ret;
if (new_size_ret)
*new_size_ret = new_size;
if (shrink_file_size) {
ret = fstat(device->fd, &file_stat);
if (ret < 0) {
error("failed to stat devid %llu: %m", device->devid);
return ret;
}
if (!S_ISREG(file_stat.st_mode))
return ret;
ret = ftruncate(device->fd, new_size);
if (ret < 0) {
error("failed to truncate device file of devid %llu: %m",
device->devid);
return ret;
}
}
return ret;
}