mirror of
https://github.com/kdave/btrfs-progs
synced 2025-01-09 06:59:30 +00:00
bed70b939f
[BUG] Commit "btrfs-progs: prepare merging compat feature lists" tries to merged "-O" and "-R" options, as they don't correctly represents btrfs features. But that commit caused the following bug during mkfs for experimental build: $ mkfs.btrfs -f -O block-group-tree /dev/nvme0n1 btrfs-progs v5.19.1 See http://btrfs.wiki.kernel.org for more information. ERROR: superblock magic doesn't match ERROR: illegal nodesize 16384 (not equal to 4096 for mixed block group) [CAUSE] Currently btrfs_parse_fs_features() will return a u64, and reuse the same u64 for both incompat and compat RO flags for experimental branch. This can easily leads to conflicts, as BTRFS_FEATURE_INCOMPAT_MIXED_BLOCK_GROUP and BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE both share the same bit (1 << 2). Thus for above case, mkfs.btrfs believe it has set MIXED_BLOCK_GROUP feature, but what we really want is BLOCK_GROUP_TREE. [FIX] Instead of incorrectly re-using the same bits in btrfs_feature, split the old flags into 3 flags: - incompat_flag - compat_ro_flag - runtime_flag The first two flags are easy to understand, the corresponding flag of each feature. The last runtime_flag is to compensate features which doesn't have any on-disk flag set, like QUOTA and LIST_ALL. And since we're no longer using a single u64 as features, we have to introduce a new structure, btrfs_mkfs_features, to contain above 3 flags. This also mean, things like default mkfs features must be converted to use the new structure, thus those old macros are all converted to const static structures: - BTRFS_MKFS_DEFAULT_FEATURES + BTRFS_MKFS_DEFAULT_RUNTIME_FEATURES -> btrfs_mkfs_default_features - BTRFS_CONVERT_ALLOWED_FEATURES -> btrfs_convert_allowed_features And since we're using a structure, it's not longer as easy to implement a disallowed mask. Thus functions with @mask_disallowed are all changed to using an @allowed structure pointer (which can be NULL). Finally if we have experimental features enabled, all features can be specified by -O options, and we can output a unified feature list, instead of the old split ones. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1175 lines
34 KiB
C
1175 lines
34 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public
|
|
* License v2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public
|
|
* License along with this program; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 021110-1307, USA.
|
|
*/
|
|
|
|
#include <sys/stat.h>
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <limits.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <uuid/uuid.h>
|
|
#include <blkid/blkid.h>
|
|
#include "kernel-shared/ctree.h"
|
|
#include "kernel-shared/disk-io.h"
|
|
#include "kernel-shared/volumes.h"
|
|
#include "kernel-shared/transaction.h"
|
|
#include "kernel-shared/extent_io.h"
|
|
#include "kernel-shared/zoned.h"
|
|
#include "common/fsfeatures.h"
|
|
#include "common/internal.h"
|
|
#include "common/messages.h"
|
|
#include "common/path-utils.h"
|
|
#include "common/device-utils.h"
|
|
#include "common/open-utils.h"
|
|
#include "mkfs/common.h"
|
|
#include "ioctl.h"
|
|
|
|
static u64 reference_root_table[] = {
|
|
[MKFS_ROOT_TREE] = BTRFS_ROOT_TREE_OBJECTID,
|
|
[MKFS_EXTENT_TREE] = BTRFS_EXTENT_TREE_OBJECTID,
|
|
[MKFS_CHUNK_TREE] = BTRFS_CHUNK_TREE_OBJECTID,
|
|
[MKFS_DEV_TREE] = BTRFS_DEV_TREE_OBJECTID,
|
|
[MKFS_FS_TREE] = BTRFS_FS_TREE_OBJECTID,
|
|
[MKFS_CSUM_TREE] = BTRFS_CSUM_TREE_OBJECTID,
|
|
[MKFS_FREE_SPACE_TREE] = BTRFS_FREE_SPACE_TREE_OBJECTID,
|
|
[MKFS_BLOCK_GROUP_TREE] = BTRFS_BLOCK_GROUP_TREE_OBJECTID,
|
|
};
|
|
|
|
static int btrfs_write_empty_tree(int fd, struct btrfs_mkfs_config *cfg,
|
|
struct extent_buffer *buf, u64 objectid,
|
|
u64 block)
|
|
{
|
|
int ret;
|
|
|
|
memset(buf->data + sizeof(struct btrfs_header), 0,
|
|
cfg->nodesize - sizeof(struct btrfs_header));
|
|
btrfs_set_header_bytenr(buf, block);
|
|
btrfs_set_header_owner(buf, objectid);
|
|
btrfs_set_header_nritems(buf, 0);
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize, block, cfg->zone_size);
|
|
if (ret != cfg->nodesize)
|
|
return ret < 0 ? -errno : -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_create_tree_root(int fd, struct btrfs_mkfs_config *cfg,
|
|
struct extent_buffer *buf,
|
|
const enum btrfs_mkfs_block *blocks,
|
|
int blocks_nr)
|
|
{
|
|
struct btrfs_root_item root_item;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct btrfs_disk_key disk_key;
|
|
u32 nritems = 0;
|
|
u32 itemoff;
|
|
int ret = 0;
|
|
int blk;
|
|
int i;
|
|
u8 uuid[BTRFS_UUID_SIZE];
|
|
bool block_group_tree = !!(cfg->features.compat_ro_flags &
|
|
BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE);
|
|
|
|
memset(buf->data + sizeof(struct btrfs_header), 0,
|
|
cfg->nodesize - sizeof(struct btrfs_header));
|
|
memset(&root_item, 0, sizeof(root_item));
|
|
memset(&disk_key, 0, sizeof(disk_key));
|
|
|
|
/* create the items for the root tree */
|
|
inode_item = &root_item.inode;
|
|
btrfs_set_stack_inode_generation(inode_item, 1);
|
|
btrfs_set_stack_inode_size(inode_item, 3);
|
|
btrfs_set_stack_inode_nlink(inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(inode_item, cfg->nodesize);
|
|
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
|
|
btrfs_set_root_refs(&root_item, 1);
|
|
btrfs_set_root_used(&root_item, cfg->nodesize);
|
|
btrfs_set_root_generation(&root_item, 1);
|
|
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_ROOT_ITEM_KEY);
|
|
btrfs_set_disk_key_offset(&disk_key, 0);
|
|
itemoff = cfg->leaf_data_size - sizeof(root_item);
|
|
|
|
for (i = 0; i < blocks_nr; i++) {
|
|
blk = blocks[i];
|
|
if (blk == MKFS_ROOT_TREE || blk == MKFS_CHUNK_TREE)
|
|
continue;
|
|
|
|
if (!block_group_tree && blk == MKFS_BLOCK_GROUP_TREE)
|
|
continue;
|
|
|
|
btrfs_set_root_bytenr(&root_item, cfg->blocks[blk]);
|
|
btrfs_set_disk_key_objectid(&disk_key,
|
|
reference_root_table[blk]);
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, sizeof(root_item));
|
|
if (blk == MKFS_FS_TREE) {
|
|
time_t now = time(NULL);
|
|
|
|
uuid_generate(uuid);
|
|
memcpy(root_item.uuid, uuid, BTRFS_UUID_SIZE);
|
|
btrfs_set_stack_timespec_sec(&root_item.otime, now);
|
|
btrfs_set_stack_timespec_sec(&root_item.ctime, now);
|
|
} else {
|
|
memset(uuid, 0, BTRFS_UUID_SIZE);
|
|
memcpy(root_item.uuid, uuid, BTRFS_UUID_SIZE);
|
|
btrfs_set_stack_timespec_sec(&root_item.otime, 0);
|
|
btrfs_set_stack_timespec_sec(&root_item.ctime, 0);
|
|
}
|
|
write_extent_buffer(buf, &root_item,
|
|
btrfs_item_ptr_offset(buf, nritems),
|
|
sizeof(root_item));
|
|
nritems++;
|
|
itemoff -= sizeof(root_item);
|
|
}
|
|
|
|
btrfs_set_header_nritems(buf, nritems);
|
|
|
|
/* generate checksum */
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
|
|
/* write back root tree */
|
|
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
|
|
cfg->blocks[MKFS_ROOT_TREE], cfg->zone_size);
|
|
if (ret != cfg->nodesize)
|
|
return (ret < 0 ? -errno : -EIO);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int create_free_space_tree(int fd, struct btrfs_mkfs_config *cfg,
|
|
struct extent_buffer *buf, u64 group_start,
|
|
u64 group_size, u64 free_start)
|
|
{
|
|
struct btrfs_free_space_info *info;
|
|
struct btrfs_disk_key disk_key;
|
|
int itemoff = cfg->leaf_data_size;
|
|
int nritems = 0;
|
|
int ret;
|
|
|
|
memset(buf->data + sizeof(struct btrfs_header), 0,
|
|
cfg->nodesize - sizeof(struct btrfs_header));
|
|
itemoff -= sizeof(*info);
|
|
|
|
btrfs_set_disk_key_objectid(&disk_key, group_start);
|
|
btrfs_set_disk_key_offset(&disk_key, group_size);
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_FREE_SPACE_INFO_KEY);
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, sizeof(*info));
|
|
|
|
info = btrfs_item_ptr(buf, nritems, struct btrfs_free_space_info);
|
|
btrfs_set_free_space_extent_count(buf, info, 1);
|
|
btrfs_set_free_space_flags(buf, info, 0);
|
|
|
|
nritems++;
|
|
btrfs_set_disk_key_objectid(&disk_key, free_start);
|
|
btrfs_set_disk_key_offset(&disk_key, group_start + group_size - free_start);
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_FREE_SPACE_EXTENT_KEY);
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, 0);
|
|
|
|
nritems++;
|
|
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_FREE_SPACE_TREE]);
|
|
btrfs_set_header_owner(buf, BTRFS_FREE_SPACE_TREE_OBJECTID);
|
|
btrfs_set_header_nritems(buf, nritems);
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
|
|
cfg->blocks[MKFS_FREE_SPACE_TREE], cfg->zone_size);
|
|
if (ret != cfg->nodesize)
|
|
return ret < 0 ? -errno : -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static void write_block_group_item(struct extent_buffer *buf, u32 nr,
|
|
u64 objectid, u64 offset, u64 used,
|
|
u64 chunk_objectid, u32 itemoff)
|
|
{
|
|
struct btrfs_block_group_item *bg_item;
|
|
struct btrfs_disk_key disk_key;
|
|
|
|
btrfs_set_disk_key_objectid(&disk_key, objectid);
|
|
btrfs_set_disk_key_offset(&disk_key, offset);
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_BLOCK_GROUP_ITEM_KEY);
|
|
btrfs_set_item_key(buf, &disk_key, nr);
|
|
btrfs_set_item_offset(buf, nr, itemoff);
|
|
btrfs_set_item_size(buf, nr, sizeof(*bg_item));
|
|
|
|
bg_item = btrfs_item_ptr(buf, nr, struct btrfs_block_group_item);
|
|
btrfs_set_block_group_used(buf, bg_item, used);
|
|
btrfs_set_block_group_flags(buf, bg_item, BTRFS_BLOCK_GROUP_SYSTEM);
|
|
btrfs_set_block_group_chunk_objectid(buf, bg_item, chunk_objectid);
|
|
}
|
|
|
|
static int create_block_group_tree(int fd, struct btrfs_mkfs_config *cfg,
|
|
struct extent_buffer *buf,
|
|
u64 bg_offset, u64 bg_size, u64 bg_used)
|
|
{
|
|
int ret;
|
|
|
|
memset(buf->data + sizeof(struct btrfs_header), 0,
|
|
cfg->nodesize - sizeof(struct btrfs_header));
|
|
write_block_group_item(buf, 0, bg_offset, bg_size, bg_used,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
cfg->leaf_data_size -
|
|
sizeof(struct btrfs_block_group_item));
|
|
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_BLOCK_GROUP_TREE]);
|
|
btrfs_set_header_owner(buf, BTRFS_BLOCK_GROUP_TREE_OBJECTID);
|
|
btrfs_set_header_nritems(buf, 1);
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
ret = pwrite(fd, buf->data, cfg->nodesize,
|
|
cfg->blocks[MKFS_BLOCK_GROUP_TREE]);
|
|
if (ret != cfg->nodesize)
|
|
return ret < 0 ? -errno : -EIO;
|
|
return 0;
|
|
}
|
|
|
|
static u64 zoned_system_group_offset(u64 zone_size)
|
|
{
|
|
const int zone_shift = ilog2(zone_size);
|
|
u32 zone_num = BTRFS_NR_SB_LOG_ZONES;
|
|
u64 start = (u64)zone_num * zone_size;
|
|
u32 sb_zones[BTRFS_SUPER_MIRROR_MAX];
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++)
|
|
sb_zones[i] = sb_zone_number(zone_shift, i);
|
|
|
|
for (;;) {
|
|
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
|
|
if (zone_num == sb_zones[i] ||
|
|
!(btrfs_sb_offset(i) + BTRFS_SUPER_INFO_SIZE <= start ||
|
|
start + zone_size <= btrfs_sb_offset(i)))
|
|
goto next;
|
|
}
|
|
|
|
return start;
|
|
next:
|
|
zone_num++;
|
|
start += zone_size;
|
|
}
|
|
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
/*
|
|
* Add @block into the @blocks array.
|
|
*
|
|
* The @blocks should already be in ascending order and no duplicate.
|
|
*/
|
|
static void mkfs_blocks_add(enum btrfs_mkfs_block *blocks, int *blocks_nr,
|
|
enum btrfs_mkfs_block to_add)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < *blocks_nr; i++) {
|
|
/* The target is already in the array. */
|
|
if (blocks[i] == to_add)
|
|
return;
|
|
|
|
/*
|
|
* We find the first one past @to_add, move the array one slot
|
|
* right, insert a new one.
|
|
*/
|
|
if (blocks[i] > to_add) {
|
|
memmove(blocks + i + 1, blocks + i, *blocks_nr - i);
|
|
blocks[i] = to_add;
|
|
(*blocks_nr)++;
|
|
return;
|
|
}
|
|
/* Current one still smaller than @to_add, go to next slot. */
|
|
}
|
|
/* All slots iterated and not match, insert into the last slot. */
|
|
blocks[i] = to_add;
|
|
(*blocks_nr)++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Remove @block from the @blocks array.
|
|
*
|
|
* The @blocks should already be in ascending order and no duplicate.
|
|
*/
|
|
static void mkfs_blocks_remove(enum btrfs_mkfs_block *blocks, int *blocks_nr,
|
|
enum btrfs_mkfs_block to_remove)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < *blocks_nr; i++) {
|
|
/* Found the target, move the array one slot left. */
|
|
if (blocks[i] == to_remove) {
|
|
memmove(blocks + i, blocks + i + 1, *blocks_nr - i - 1);
|
|
(*blocks_nr)--;
|
|
}
|
|
}
|
|
/* Nothing found, exit directly. */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* @fs_uuid - if NULL, generates a UUID, returns back the new filesystem UUID
|
|
*
|
|
* The superblock signature is not valid, denotes a partially created
|
|
* filesystem, needs to be finalized.
|
|
*
|
|
* The temporary fs will have the following chunk layout:
|
|
* Device extent:
|
|
* 0 1M 5M ......
|
|
* | Reserved | dev extent for SYS chunk |
|
|
*
|
|
* And chunk mapping will be:
|
|
* Chunk mapping:
|
|
* 0 1M 5M
|
|
* | | System chunk, 1:1 mapped |
|
|
*
|
|
* That's to say, there will only be *ONE* system chunk, mapped to
|
|
* [1M, 5M) physical offset.
|
|
* And the only chunk is also in logical address [1M, 5M), containing
|
|
* all essential tree blocks.
|
|
*/
|
|
int make_btrfs(int fd, struct btrfs_mkfs_config *cfg)
|
|
{
|
|
struct btrfs_super_block super;
|
|
struct extent_buffer *buf;
|
|
struct btrfs_disk_key disk_key;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_chunk *chunk;
|
|
struct btrfs_dev_item *dev_item;
|
|
struct btrfs_dev_extent *dev_extent;
|
|
enum btrfs_mkfs_block blocks[MKFS_BLOCK_COUNT];
|
|
u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
|
|
u8 *ptr;
|
|
int i;
|
|
int ret;
|
|
int blocks_nr;
|
|
int blk;
|
|
u32 itemoff;
|
|
u32 nritems = 0;
|
|
u64 first_free;
|
|
u64 ref_root;
|
|
u32 array_size;
|
|
u32 item_size;
|
|
u64 total_used = 0;
|
|
int skinny_metadata = !!(cfg->features.incompat_flags &
|
|
BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA);
|
|
u64 num_bytes;
|
|
u64 system_group_offset = BTRFS_BLOCK_RESERVED_1M_FOR_SUPER;
|
|
u64 system_group_size = BTRFS_MKFS_SYSTEM_GROUP_SIZE;
|
|
bool add_block_group = true;
|
|
bool free_space_tree = !!(cfg->features.compat_ro_flags &
|
|
BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE);
|
|
bool block_group_tree = !!(cfg->features.compat_ro_flags &
|
|
BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE);
|
|
bool extent_tree_v2 = !!(cfg->features.incompat_flags &
|
|
BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2);
|
|
|
|
memcpy(blocks, default_blocks,
|
|
sizeof(enum btrfs_mkfs_block) * ARRAY_SIZE(default_blocks));
|
|
blocks_nr = ARRAY_SIZE(default_blocks);
|
|
|
|
/*
|
|
* Add one new block for block group tree.
|
|
* And for block group tree, we don't need to add block group item
|
|
* into extent tree, the item will be handled in block group tree
|
|
* initialization.
|
|
*/
|
|
if (block_group_tree) {
|
|
mkfs_blocks_add(blocks, &blocks_nr, MKFS_BLOCK_GROUP_TREE);
|
|
add_block_group = false;
|
|
}
|
|
|
|
/* Don't include the free space tree in the blocks to process. */
|
|
if (!free_space_tree)
|
|
mkfs_blocks_remove(blocks, &blocks_nr, MKFS_FREE_SPACE_TREE);
|
|
|
|
if ((cfg->features.incompat_flags & BTRFS_FEATURE_INCOMPAT_ZONED)) {
|
|
system_group_offset = zoned_system_group_offset(cfg->zone_size);
|
|
system_group_size = cfg->zone_size;
|
|
}
|
|
|
|
buf = malloc(sizeof(*buf) + max(cfg->sectorsize, cfg->nodesize));
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
|
|
first_free = BTRFS_SUPER_INFO_OFFSET + cfg->sectorsize * 2 - 1;
|
|
first_free &= ~((u64)cfg->sectorsize - 1);
|
|
|
|
memset(&super, 0, sizeof(super));
|
|
|
|
num_bytes = (cfg->num_bytes / cfg->sectorsize) * cfg->sectorsize;
|
|
if (!*cfg->fs_uuid) {
|
|
uuid_generate(super.fsid);
|
|
uuid_unparse(super.fsid, cfg->fs_uuid);
|
|
} else {
|
|
uuid_parse(cfg->fs_uuid, super.fsid);
|
|
}
|
|
uuid_generate(super.dev_item.uuid);
|
|
uuid_generate(chunk_tree_uuid);
|
|
|
|
for (i = 0; i < blocks_nr; i++) {
|
|
blk = blocks[i];
|
|
cfg->blocks[blk] = system_group_offset + cfg->nodesize * i;
|
|
total_used += cfg->nodesize;
|
|
}
|
|
|
|
btrfs_set_super_bytenr(&super, BTRFS_SUPER_INFO_OFFSET);
|
|
btrfs_set_super_num_devices(&super, 1);
|
|
btrfs_set_super_magic(&super, BTRFS_MAGIC_TEMPORARY);
|
|
btrfs_set_super_generation(&super, 1);
|
|
btrfs_set_super_root(&super, cfg->blocks[MKFS_ROOT_TREE]);
|
|
btrfs_set_super_chunk_root(&super, cfg->blocks[MKFS_CHUNK_TREE]);
|
|
btrfs_set_super_total_bytes(&super, num_bytes);
|
|
btrfs_set_super_bytes_used(&super, total_used);
|
|
btrfs_set_super_sectorsize(&super, cfg->sectorsize);
|
|
super.__unused_leafsize = cpu_to_le32(cfg->nodesize);
|
|
btrfs_set_super_nodesize(&super, cfg->nodesize);
|
|
btrfs_set_super_stripesize(&super, cfg->stripesize);
|
|
btrfs_set_super_csum_type(&super, cfg->csum_type);
|
|
btrfs_set_super_chunk_root_generation(&super, 1);
|
|
if (cfg->features.incompat_flags & BTRFS_FEATURE_INCOMPAT_ZONED)
|
|
btrfs_set_super_cache_generation(&super, 0);
|
|
else
|
|
btrfs_set_super_cache_generation(&super, -1);
|
|
btrfs_set_super_incompat_flags(&super, cfg->features.incompat_flags);
|
|
if (free_space_tree)
|
|
btrfs_set_super_cache_generation(&super, 0);
|
|
btrfs_set_super_compat_ro_flags(&super, cfg->features.compat_ro_flags);
|
|
|
|
if (extent_tree_v2)
|
|
btrfs_set_super_nr_global_roots(&super, 1);
|
|
|
|
if (cfg->label)
|
|
__strncpy_null(super.label, cfg->label, BTRFS_LABEL_SIZE - 1);
|
|
|
|
/* create the tree of root objects */
|
|
memset(buf->data, 0, cfg->nodesize);
|
|
buf->len = cfg->nodesize;
|
|
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_ROOT_TREE]);
|
|
btrfs_set_header_generation(buf, 1);
|
|
btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(buf, BTRFS_ROOT_TREE_OBJECTID);
|
|
write_extent_buffer(buf, super.fsid, btrfs_header_fsid(),
|
|
BTRFS_FSID_SIZE);
|
|
|
|
write_extent_buffer(buf, chunk_tree_uuid,
|
|
btrfs_header_chunk_tree_uuid(buf),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
ret = btrfs_create_tree_root(fd, cfg, buf, blocks, blocks_nr);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/* create the items for the extent tree */
|
|
memset(buf->data + sizeof(struct btrfs_header), 0,
|
|
cfg->nodesize - sizeof(struct btrfs_header));
|
|
nritems = 0;
|
|
itemoff = cfg->leaf_data_size;
|
|
for (i = 0; i < blocks_nr; i++) {
|
|
blk = blocks[i];
|
|
|
|
/* Add the block group item for our temporary chunk. */
|
|
if (cfg->blocks[blk] > system_group_offset && add_block_group) {
|
|
itemoff -= sizeof(struct btrfs_block_group_item);
|
|
write_block_group_item(buf, nritems,
|
|
system_group_offset,
|
|
system_group_size, total_used,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
|
|
itemoff);
|
|
add_block_group = false;
|
|
nritems++;
|
|
}
|
|
|
|
item_size = sizeof(struct btrfs_extent_item);
|
|
if (!skinny_metadata)
|
|
item_size += sizeof(struct btrfs_tree_block_info);
|
|
|
|
if (cfg->blocks[blk] < first_free) {
|
|
error("block[%d] below first free: %llu < %llu",
|
|
i, cfg->blocks[blk], first_free);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
if (i > 0 && cfg->blocks[blk] < cfg->blocks[blocks[i - 1]]) {
|
|
error("blocks %d and %d in reverse order: %llu < %llu",
|
|
blk, blocks[i - 1],
|
|
cfg->blocks[blk], cfg->blocks[blocks[i - 1]]);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* create extent item */
|
|
itemoff -= item_size;
|
|
btrfs_set_disk_key_objectid(&disk_key, cfg->blocks[blk]);
|
|
if (skinny_metadata) {
|
|
btrfs_set_disk_key_type(&disk_key,
|
|
BTRFS_METADATA_ITEM_KEY);
|
|
btrfs_set_disk_key_offset(&disk_key, 0);
|
|
} else {
|
|
btrfs_set_disk_key_type(&disk_key,
|
|
BTRFS_EXTENT_ITEM_KEY);
|
|
btrfs_set_disk_key_offset(&disk_key, cfg->nodesize);
|
|
}
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, item_size);
|
|
extent_item = btrfs_item_ptr(buf, nritems,
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(buf, extent_item, 1);
|
|
btrfs_set_extent_generation(buf, extent_item, 1);
|
|
btrfs_set_extent_flags(buf, extent_item,
|
|
BTRFS_EXTENT_FLAG_TREE_BLOCK);
|
|
nritems++;
|
|
|
|
/* create extent ref */
|
|
ref_root = reference_root_table[blk];
|
|
btrfs_set_disk_key_objectid(&disk_key, cfg->blocks[blk]);
|
|
btrfs_set_disk_key_offset(&disk_key, ref_root);
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_TREE_BLOCK_REF_KEY);
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, 0);
|
|
nritems++;
|
|
}
|
|
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_EXTENT_TREE]);
|
|
btrfs_set_header_owner(buf, BTRFS_EXTENT_TREE_OBJECTID);
|
|
btrfs_set_header_nritems(buf, nritems);
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
|
|
cfg->blocks[MKFS_EXTENT_TREE], cfg->zone_size);
|
|
if (ret != cfg->nodesize) {
|
|
ret = (ret < 0 ? -errno : -EIO);
|
|
goto out;
|
|
}
|
|
|
|
/* create the chunk tree */
|
|
memset(buf->data + sizeof(struct btrfs_header), 0,
|
|
cfg->nodesize - sizeof(struct btrfs_header));
|
|
nritems = 0;
|
|
item_size = sizeof(*dev_item);
|
|
itemoff = cfg->leaf_data_size - item_size;
|
|
|
|
/* first device 1 (there is no device 0) */
|
|
btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID);
|
|
btrfs_set_disk_key_offset(&disk_key, 1);
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY);
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, item_size);
|
|
|
|
dev_item = btrfs_item_ptr(buf, nritems, struct btrfs_dev_item);
|
|
btrfs_set_device_id(buf, dev_item, 1);
|
|
btrfs_set_device_generation(buf, dev_item, 0);
|
|
btrfs_set_device_total_bytes(buf, dev_item, num_bytes);
|
|
btrfs_set_device_bytes_used(buf, dev_item, system_group_size);
|
|
btrfs_set_device_io_align(buf, dev_item, cfg->sectorsize);
|
|
btrfs_set_device_io_width(buf, dev_item, cfg->sectorsize);
|
|
btrfs_set_device_sector_size(buf, dev_item, cfg->sectorsize);
|
|
btrfs_set_device_type(buf, dev_item, 0);
|
|
|
|
write_extent_buffer(buf, super.dev_item.uuid,
|
|
(unsigned long)btrfs_device_uuid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
write_extent_buffer(buf, super.fsid,
|
|
(unsigned long)btrfs_device_fsid(dev_item),
|
|
BTRFS_UUID_SIZE);
|
|
read_extent_buffer(buf, &super.dev_item, (unsigned long)dev_item,
|
|
sizeof(*dev_item));
|
|
|
|
nritems++;
|
|
item_size = btrfs_chunk_item_size(1);
|
|
itemoff = itemoff - item_size;
|
|
|
|
/* then we have chunk 0 */
|
|
btrfs_set_disk_key_objectid(&disk_key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_disk_key_offset(&disk_key, system_group_offset);
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_CHUNK_ITEM_KEY);
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, item_size);
|
|
|
|
chunk = btrfs_item_ptr(buf, nritems, struct btrfs_chunk);
|
|
btrfs_set_chunk_length(buf, chunk, system_group_size);
|
|
btrfs_set_chunk_owner(buf, chunk, BTRFS_EXTENT_TREE_OBJECTID);
|
|
btrfs_set_chunk_stripe_len(buf, chunk, BTRFS_STRIPE_LEN);
|
|
btrfs_set_chunk_type(buf, chunk, BTRFS_BLOCK_GROUP_SYSTEM);
|
|
btrfs_set_chunk_io_align(buf, chunk, cfg->sectorsize);
|
|
btrfs_set_chunk_io_width(buf, chunk, cfg->sectorsize);
|
|
btrfs_set_chunk_sector_size(buf, chunk, cfg->sectorsize);
|
|
btrfs_set_chunk_num_stripes(buf, chunk, 1);
|
|
btrfs_set_stripe_devid_nr(buf, chunk, 0, 1);
|
|
btrfs_set_stripe_offset_nr(buf, chunk, 0,
|
|
system_group_offset);
|
|
nritems++;
|
|
|
|
write_extent_buffer(buf, super.dev_item.uuid,
|
|
(unsigned long)btrfs_stripe_dev_uuid(&chunk->stripe),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
/* copy the key for the chunk to the system array */
|
|
ptr = super.sys_chunk_array;
|
|
array_size = sizeof(disk_key);
|
|
|
|
memcpy(ptr, &disk_key, sizeof(disk_key));
|
|
ptr += sizeof(disk_key);
|
|
|
|
/* copy the chunk to the system array */
|
|
read_extent_buffer(buf, ptr, (unsigned long)chunk, item_size);
|
|
array_size += item_size;
|
|
ptr += item_size;
|
|
btrfs_set_super_sys_array_size(&super, array_size);
|
|
|
|
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_CHUNK_TREE]);
|
|
btrfs_set_header_owner(buf, BTRFS_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_header_nritems(buf, nritems);
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
|
|
cfg->blocks[MKFS_CHUNK_TREE], cfg->zone_size);
|
|
if (ret != cfg->nodesize) {
|
|
ret = (ret < 0 ? -errno : -EIO);
|
|
goto out;
|
|
}
|
|
|
|
/* create the device tree */
|
|
memset(buf->data + sizeof(struct btrfs_header), 0,
|
|
cfg->nodesize - sizeof(struct btrfs_header));
|
|
nritems = 0;
|
|
itemoff = cfg->leaf_data_size - sizeof(struct btrfs_dev_extent);
|
|
|
|
btrfs_set_disk_key_objectid(&disk_key, 1);
|
|
btrfs_set_disk_key_offset(&disk_key, system_group_offset);
|
|
btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_EXTENT_KEY);
|
|
btrfs_set_item_key(buf, &disk_key, nritems);
|
|
btrfs_set_item_offset(buf, nritems, itemoff);
|
|
btrfs_set_item_size(buf, nritems, sizeof(struct btrfs_dev_extent));
|
|
dev_extent = btrfs_item_ptr(buf, nritems, struct btrfs_dev_extent);
|
|
btrfs_set_dev_extent_chunk_tree(buf, dev_extent,
|
|
BTRFS_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_dev_extent_chunk_objectid(buf, dev_extent,
|
|
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
|
|
btrfs_set_dev_extent_chunk_offset(buf, dev_extent,
|
|
system_group_offset);
|
|
|
|
write_extent_buffer(buf, chunk_tree_uuid,
|
|
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent),
|
|
BTRFS_UUID_SIZE);
|
|
|
|
btrfs_set_dev_extent_length(buf, dev_extent, system_group_size);
|
|
nritems++;
|
|
|
|
btrfs_set_header_bytenr(buf, cfg->blocks[MKFS_DEV_TREE]);
|
|
btrfs_set_header_owner(buf, BTRFS_DEV_TREE_OBJECTID);
|
|
btrfs_set_header_nritems(buf, nritems);
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
ret = btrfs_pwrite(fd, buf->data, cfg->nodesize,
|
|
cfg->blocks[MKFS_DEV_TREE], cfg->zone_size);
|
|
if (ret != cfg->nodesize) {
|
|
ret = (ret < 0 ? -errno : -EIO);
|
|
goto out;
|
|
}
|
|
|
|
/* create the FS root */
|
|
ret = btrfs_write_empty_tree(fd, cfg, buf, BTRFS_FS_TREE_OBJECTID,
|
|
cfg->blocks[MKFS_FS_TREE]);
|
|
if (ret)
|
|
goto out;
|
|
/* finally create the csum root */
|
|
ret = btrfs_write_empty_tree(fd, cfg, buf, BTRFS_CSUM_TREE_OBJECTID,
|
|
cfg->blocks[MKFS_CSUM_TREE]);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (free_space_tree) {
|
|
ret = create_free_space_tree(fd, cfg, buf, system_group_offset,
|
|
system_group_size,
|
|
system_group_offset + total_used);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (block_group_tree) {
|
|
ret = create_block_group_tree(fd, cfg, buf,
|
|
system_group_offset,
|
|
system_group_size, total_used);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* and write out the super block */
|
|
memset(buf->data, 0, BTRFS_SUPER_INFO_SIZE);
|
|
memcpy(buf->data, &super, sizeof(super));
|
|
buf->len = BTRFS_SUPER_INFO_SIZE;
|
|
csum_tree_block_size(buf, btrfs_csum_type_size(cfg->csum_type), 0,
|
|
cfg->csum_type);
|
|
ret = sbwrite(fd, buf->data, BTRFS_SUPER_INFO_OFFSET);
|
|
if (ret != BTRFS_SUPER_INFO_SIZE) {
|
|
ret = (ret < 0 ? -errno : -EIO);
|
|
goto out;
|
|
}
|
|
|
|
ret = fsync(fd);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
free(buf);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_make_root_dir(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 objectid)
|
|
{
|
|
int ret;
|
|
struct btrfs_inode_item inode_item;
|
|
time_t now = time(NULL);
|
|
|
|
memset(&inode_item, 0, sizeof(inode_item));
|
|
btrfs_set_stack_inode_generation(&inode_item, trans->transid);
|
|
btrfs_set_stack_inode_size(&inode_item, 0);
|
|
btrfs_set_stack_inode_nlink(&inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(&inode_item, root->fs_info->nodesize);
|
|
btrfs_set_stack_inode_mode(&inode_item, S_IFDIR | 0755);
|
|
btrfs_set_stack_timespec_sec(&inode_item.atime, now);
|
|
btrfs_set_stack_timespec_nsec(&inode_item.atime, 0);
|
|
btrfs_set_stack_timespec_sec(&inode_item.ctime, now);
|
|
btrfs_set_stack_timespec_nsec(&inode_item.ctime, 0);
|
|
btrfs_set_stack_timespec_sec(&inode_item.mtime, now);
|
|
btrfs_set_stack_timespec_nsec(&inode_item.mtime, 0);
|
|
btrfs_set_stack_timespec_sec(&inode_item.otime, now);
|
|
btrfs_set_stack_timespec_nsec(&inode_item.otime, 0);
|
|
|
|
if (root->fs_info->tree_root == root)
|
|
btrfs_set_super_root_dir(root->fs_info->super_copy, objectid);
|
|
|
|
ret = btrfs_insert_inode(trans, root, objectid, &inode_item);
|
|
if (ret)
|
|
goto error;
|
|
|
|
ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0);
|
|
if (ret)
|
|
goto error;
|
|
|
|
btrfs_set_root_dirid(&root->root_item, objectid);
|
|
ret = 0;
|
|
error:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Btrfs minimum size calculation is complicated, it should include at least:
|
|
* 1. system group size
|
|
* 2. minimum global block reserve
|
|
* 3. metadata used at mkfs
|
|
* 4. space reservation to create uuid for first mount.
|
|
* Also, raid factor should also be taken into consideration.
|
|
* To avoid the overkill calculation, (system group + global block rsv) * 2
|
|
* for *EACH* device should be good enough.
|
|
*/
|
|
static u64 btrfs_min_global_blk_rsv_size(u32 nodesize)
|
|
{
|
|
return (u64)nodesize << 10;
|
|
}
|
|
|
|
u64 btrfs_min_dev_size(u32 nodesize, int mixed, u64 meta_profile,
|
|
u64 data_profile)
|
|
{
|
|
u64 reserved = 0;
|
|
u64 meta_size;
|
|
u64 data_size;
|
|
|
|
if (mixed)
|
|
return 2 * (BTRFS_MKFS_SYSTEM_GROUP_SIZE +
|
|
btrfs_min_global_blk_rsv_size(nodesize));
|
|
|
|
/*
|
|
* Minimal size calculation is complex due to several factors:
|
|
* 0) Reserved 1M range.
|
|
*
|
|
* 1) Temporary chunk reuse
|
|
* If specified chunk profile is SINGLE, we can reuse
|
|
* temporary chunks, no need to allocate new chunks.
|
|
*
|
|
* 2) Different minimal chunk size for different profiles:
|
|
* For initial sys chunk, chunk size is fixed to 4M.
|
|
* For single profile, minimal chunk size is 8M for all.
|
|
* For other profiles, minimal chunk and stripe size ranges from 8M
|
|
* to 64M.
|
|
*
|
|
* To calculate it a little easier, here we assume we don't reuse any
|
|
* temporary chunk, and calculate the size completely by ourselves.
|
|
*
|
|
* Temporary chunks sizes are always fixed:
|
|
* One initial sys chunk, one SINGLE meta, and one SINGLE data.
|
|
* The latter two are all 8M, according to @calc_size of
|
|
* btrfs_alloc_chunk().
|
|
*/
|
|
reserved += BTRFS_BLOCK_RESERVED_1M_FOR_SUPER +
|
|
BTRFS_MKFS_SYSTEM_GROUP_SIZE + SZ_8M * 2;
|
|
|
|
/*
|
|
* For real chunks, we need to select different sizes:
|
|
* For SINGLE, it's still fixed to 8M (@calc_size).
|
|
* For other profiles, refer to max(@min_stripe_size, @calc_size).
|
|
*
|
|
* And use the stripe size to calculate its physical used space.
|
|
*/
|
|
if (meta_profile & BTRFS_BLOCK_GROUP_PROFILE_MASK)
|
|
meta_size = SZ_8M + SZ_32M;
|
|
else
|
|
meta_size = SZ_8M + SZ_8M;
|
|
/* For DUP/metadata, 2 stripes on one disk */
|
|
if (meta_profile & BTRFS_BLOCK_GROUP_DUP)
|
|
meta_size *= 2;
|
|
reserved += meta_size;
|
|
|
|
if (data_profile & BTRFS_BLOCK_GROUP_PROFILE_MASK)
|
|
data_size = SZ_64M;
|
|
else
|
|
data_size = SZ_8M;
|
|
/* For DUP/data, 2 stripes on one disk */
|
|
if (data_profile & BTRFS_BLOCK_GROUP_DUP)
|
|
data_size *= 2;
|
|
reserved += data_size;
|
|
|
|
return reserved;
|
|
}
|
|
|
|
#define isoctal(c) (((c) & ~7) == '0')
|
|
|
|
static inline void translate(char *f, char *t)
|
|
{
|
|
while (*f != '\0') {
|
|
if (*f == '\\' &&
|
|
isoctal(f[1]) && isoctal(f[2]) && isoctal(f[3])) {
|
|
*t++ = 64*(f[1] & 7) + 8*(f[2] & 7) + (f[3] & 7);
|
|
f += 4;
|
|
} else
|
|
*t++ = *f++;
|
|
}
|
|
*t = '\0';
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Checks if the swap device.
|
|
* Returns 1 if swap device, < 0 on error or 0 if not swap device.
|
|
*/
|
|
static int is_swap_device(const char *file)
|
|
{
|
|
FILE *f;
|
|
struct stat st_buf;
|
|
dev_t dev;
|
|
ino_t ino = 0;
|
|
char tmp[PATH_MAX];
|
|
char buf[PATH_MAX];
|
|
char *cp;
|
|
int ret = 0;
|
|
|
|
if (stat(file, &st_buf) < 0)
|
|
return -errno;
|
|
if (S_ISBLK(st_buf.st_mode))
|
|
dev = st_buf.st_rdev;
|
|
else if (S_ISREG(st_buf.st_mode)) {
|
|
dev = st_buf.st_dev;
|
|
ino = st_buf.st_ino;
|
|
} else
|
|
return 0;
|
|
|
|
if ((f = fopen("/proc/swaps", "r")) == NULL)
|
|
return 0;
|
|
|
|
/* skip the first line */
|
|
if (fgets(tmp, sizeof(tmp), f) == NULL)
|
|
goto out;
|
|
|
|
while (fgets(tmp, sizeof(tmp), f) != NULL) {
|
|
if ((cp = strchr(tmp, ' ')) != NULL)
|
|
*cp = '\0';
|
|
if ((cp = strchr(tmp, '\t')) != NULL)
|
|
*cp = '\0';
|
|
translate(tmp, buf);
|
|
if (stat(buf, &st_buf) != 0)
|
|
continue;
|
|
if (S_ISBLK(st_buf.st_mode)) {
|
|
if (dev == st_buf.st_rdev) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
} else if (S_ISREG(st_buf.st_mode)) {
|
|
if (dev == st_buf.st_dev && ino == st_buf.st_ino) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
fclose(f);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check for signature at the offset 0 that would be present in case of zoned
|
|
* device. Workaround for old blkid that do not recognize the format to avoid
|
|
* accidental overwrites.
|
|
*/
|
|
static int check_btrfs_signature_zoned(const char *device)
|
|
{
|
|
int fd;
|
|
int ret;
|
|
struct btrfs_super_block sb;
|
|
|
|
fd = open(device, O_RDONLY);
|
|
if (fd < 0)
|
|
return -1;
|
|
ret = pread(fd, &sb, BTRFS_SUPER_INFO_SIZE, 0);
|
|
if (ret < 0) {
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
if (btrfs_super_magic(&sb) == BTRFS_MAGIC)
|
|
ret = 1;
|
|
else
|
|
ret = 0;
|
|
out:
|
|
close(fd);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check for existing filesystem or partition table on device.
|
|
* Returns:
|
|
* 1 for existing fs or partition
|
|
* 0 for nothing found
|
|
* -1 for internal error
|
|
*/
|
|
static int check_overwrite(const char *device)
|
|
{
|
|
const char *type;
|
|
blkid_probe pr = NULL;
|
|
int ret;
|
|
blkid_loff_t size;
|
|
|
|
if (!device || !*device)
|
|
return 0;
|
|
|
|
ret = -1; /* will reset on success of all setup calls */
|
|
|
|
pr = blkid_new_probe_from_filename(device);
|
|
if (!pr)
|
|
goto out;
|
|
|
|
size = blkid_probe_get_size(pr);
|
|
if (size < 0)
|
|
goto out;
|
|
|
|
/* nothing to overwrite on a 0-length device */
|
|
if (size == 0) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
ret = blkid_probe_enable_partitions(pr, 1);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = blkid_do_fullprobe(pr);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Blkid returns 1 for nothing found and 0 when it finds a signature,
|
|
* but we want the exact opposite, so reverse the return value here.
|
|
*
|
|
* In addition print some useful diagnostics about what actually is
|
|
* on the device.
|
|
*/
|
|
if (ret) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!blkid_probe_lookup_value(pr, "TYPE", &type, NULL)) {
|
|
error("%s appears to contain an existing filesystem (%s)", device, type);
|
|
} else if (!blkid_probe_lookup_value(pr, "PTTYPE", &type, NULL)) {
|
|
error("%s appears to contain a partition table (%s)", device, type);
|
|
} else {
|
|
error("%s appears to contain something weird according to blkid", device);
|
|
}
|
|
ret = 1;
|
|
|
|
out:
|
|
if (pr)
|
|
blkid_free_probe(pr);
|
|
if (ret == -1)
|
|
error("probe of %s failed, cannot detect existing filesystem", device);
|
|
|
|
/* Either nothing found or there was an error is a reason to double check */
|
|
if (ret == 0 || ret == -1) {
|
|
ret = check_btrfs_signature_zoned(device);
|
|
if (ret > 0) {
|
|
warning(
|
|
"%s contains zoned btrfs signature but was not detected by blkid, please update",
|
|
device);
|
|
ret = 1;
|
|
} else if (ret < 0) {
|
|
warning(
|
|
"cannot read superblock on %s, please check manually\n",
|
|
device);
|
|
ret = -1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check if a device is suitable for btrfs
|
|
* returns:
|
|
* 1: something is wrong, an error is printed
|
|
* 0: all is fine
|
|
*/
|
|
int test_dev_for_mkfs(const char *file, int force_overwrite)
|
|
{
|
|
int ret, fd;
|
|
struct stat st;
|
|
|
|
ret = is_swap_device(file);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("checking status of %s: %m", file);
|
|
return 1;
|
|
}
|
|
if (ret == 1) {
|
|
error("%s is a swap device", file);
|
|
return 1;
|
|
}
|
|
ret = test_status_for_mkfs(file, force_overwrite);
|
|
if (ret)
|
|
return 1;
|
|
/* check if the device is busy */
|
|
fd = open(file, O_RDWR|O_EXCL);
|
|
if (fd < 0) {
|
|
error("unable to open %s: %m", file);
|
|
return 1;
|
|
}
|
|
if (fstat(fd, &st)) {
|
|
error("unable to stat %s: %m", file);
|
|
close(fd);
|
|
return 1;
|
|
}
|
|
if (!S_ISBLK(st.st_mode)) {
|
|
error("%s is not a block device", file);
|
|
close(fd);
|
|
return 1;
|
|
}
|
|
close(fd);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* check if the file (device) is formatted or mounted
|
|
*/
|
|
int test_status_for_mkfs(const char *file, bool force_overwrite)
|
|
{
|
|
int ret;
|
|
|
|
if (!force_overwrite) {
|
|
if (check_overwrite(file)) {
|
|
error("use the -f option to force overwrite of %s",
|
|
file);
|
|
return 1;
|
|
}
|
|
}
|
|
ret = check_mounted(file);
|
|
if (ret < 0) {
|
|
errno = -ret;
|
|
error("cannot check mount status of %s: %m", file);
|
|
return 1;
|
|
}
|
|
if (ret == 1) {
|
|
error("%s is mounted", file);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int is_vol_small(const char *file)
|
|
{
|
|
int fd = -1;
|
|
int e;
|
|
struct stat st;
|
|
u64 size;
|
|
|
|
fd = open(file, O_RDONLY);
|
|
if (fd < 0)
|
|
return -errno;
|
|
if (fstat(fd, &st) < 0) {
|
|
e = -errno;
|
|
close(fd);
|
|
return e;
|
|
}
|
|
size = device_get_partition_size_fd_stat(fd, &st);
|
|
if (size == 0) {
|
|
close(fd);
|
|
return -1;
|
|
}
|
|
if (size < BTRFS_MKFS_SMALL_VOLUME_SIZE) {
|
|
close(fd);
|
|
return 1;
|
|
} else {
|
|
close(fd);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int test_minimum_size(const char *file, u64 min_dev_size)
|
|
{
|
|
int fd;
|
|
struct stat statbuf;
|
|
|
|
fd = open(file, O_RDONLY);
|
|
if (fd < 0)
|
|
return -errno;
|
|
if (stat(file, &statbuf) < 0) {
|
|
close(fd);
|
|
return -errno;
|
|
}
|
|
if (device_get_partition_size_fd_stat(fd, &statbuf) < min_dev_size) {
|
|
close(fd);
|
|
return 1;
|
|
}
|
|
close(fd);
|
|
return 0;
|
|
}
|
|
|
|
|