btrfs-progs/kernel-shared/volumes.c
David Sterba d739e3b73a btrfs-progs: kernel-shared: use kmalloc and kfree
All the code in kernel-shared should use the proper memory allocation
helpers.

Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-03 18:04:37 +01:00

3224 lines
84 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/stat.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <stddef.h>
#include <string.h>
#include "kernel-lib/raid56.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/tree-checker.h"
#include "kernel-shared/zoned.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/extent_io.h"
#include "kernel-shared/messages.h"
#include "common/internal.h"
#include "common/messages.h"
#include "common/utils.h"
#include "common/device-utils.h"
const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
[BTRFS_RAID_RAID10] = {
.sub_stripes = 2,
.dev_stripes = 1,
.devs_max = 0, /* 0 == as many as possible */
.devs_min = 2,
.tolerated_failures = 1,
.devs_increment = 2,
.ncopies = 2,
.nparity = 0,
.lower_name = "raid10",
.upper_name = "RAID10",
.bg_flag = BTRFS_BLOCK_GROUP_RAID10,
.mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
},
[BTRFS_RAID_RAID1] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 2,
.devs_min = 2,
.tolerated_failures = 1,
.devs_increment = 2,
.ncopies = 2,
.nparity = 0,
.lower_name = "raid1",
.upper_name = "RAID1",
.bg_flag = BTRFS_BLOCK_GROUP_RAID1,
.mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
},
[BTRFS_RAID_RAID1C3] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 3,
.devs_min = 3,
.tolerated_failures = 2,
.devs_increment = 3,
.ncopies = 3,
.nparity = 0,
.lower_name = "raid1c3",
.upper_name = "RAID1C3",
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
.mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
},
[BTRFS_RAID_RAID1C4] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 4,
.devs_min = 4,
.tolerated_failures = 3,
.devs_increment = 4,
.ncopies = 4,
.nparity = 0,
.lower_name = "raid1c4",
.upper_name = "RAID1C4",
.bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
.mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
},
[BTRFS_RAID_DUP] = {
.sub_stripes = 1,
.dev_stripes = 2,
.devs_max = 1,
.devs_min = 1,
.tolerated_failures = 0,
.devs_increment = 1,
.ncopies = 2,
.nparity = 0,
.lower_name = "dup",
.upper_name = "DUP",
.bg_flag = BTRFS_BLOCK_GROUP_DUP,
.mindev_error = 0,
},
[BTRFS_RAID_RAID0] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 0,
.devs_min = 1,
.tolerated_failures = 0,
.devs_increment = 1,
.ncopies = 1,
.nparity = 0,
.lower_name = "raid0",
.upper_name = "RAID0",
.bg_flag = BTRFS_BLOCK_GROUP_RAID0,
.mindev_error = 0,
},
[BTRFS_RAID_SINGLE] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 1,
.devs_min = 1,
.tolerated_failures = 0,
.devs_increment = 1,
.ncopies = 1,
.nparity = 0,
.lower_name = "single",
/*
* For historical reasons the single profile is lower case, this
* may change some day.
*/
.upper_name = "single",
.bg_flag = 0,
.mindev_error = 0,
},
[BTRFS_RAID_RAID5] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 0,
.devs_min = 2,
.tolerated_failures = 1,
.devs_increment = 1,
.ncopies = 1,
.nparity = 1,
.lower_name = "raid5",
.upper_name = "RAID5",
.bg_flag = BTRFS_BLOCK_GROUP_RAID5,
.mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
},
[BTRFS_RAID_RAID6] = {
.sub_stripes = 1,
.dev_stripes = 1,
.devs_max = 0,
.devs_min = 3,
.tolerated_failures = 2,
.devs_increment = 1,
.ncopies = 1,
.nparity = 2,
.lower_name = "raid6",
.upper_name = "RAID6",
.bg_flag = BTRFS_BLOCK_GROUP_RAID6,
.mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
},
};
struct alloc_chunk_ctl {
u64 start;
u64 type;
int num_stripes;
int max_stripes;
int min_stripes;
int sub_stripes;
u64 stripe_size;
u64 min_stripe_size;
u64 num_bytes;
u64 max_chunk_size;
int total_devs;
u64 dev_offset;
int nparity;
int ncopies;
};
struct stripe {
struct btrfs_device *dev;
u64 physical;
};
/*
* Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
* can be used as index to access btrfs_raid_array[].
*/
enum btrfs_raid_types btrfs_bg_flags_to_raid_index(u64 flags)
{
if (flags & BTRFS_BLOCK_GROUP_RAID10)
return BTRFS_RAID_RAID10;
else if (flags & BTRFS_BLOCK_GROUP_RAID1)
return BTRFS_RAID_RAID1;
else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
return BTRFS_RAID_RAID1C3;
else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
return BTRFS_RAID_RAID1C4;
else if (flags & BTRFS_BLOCK_GROUP_DUP)
return BTRFS_RAID_DUP;
else if (flags & BTRFS_BLOCK_GROUP_RAID0)
return BTRFS_RAID_RAID0;
else if (flags & BTRFS_BLOCK_GROUP_RAID5)
return BTRFS_RAID_RAID5;
else if (flags & BTRFS_BLOCK_GROUP_RAID6)
return BTRFS_RAID_RAID6;
return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
}
const char *btrfs_bg_type_to_raid_name(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
if (index >= BTRFS_NR_RAID_TYPES)
return NULL;
return btrfs_raid_array[index].upper_name;
}
int btrfs_bg_type_to_tolerated_failures(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
return btrfs_raid_array[index].tolerated_failures;
}
int btrfs_bg_type_to_devs_min(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
return btrfs_raid_array[index].devs_min;
}
int btrfs_bg_type_to_ncopies(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
return btrfs_raid_array[index].ncopies;
}
int btrfs_bg_type_to_nparity(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
return btrfs_raid_array[index].nparity;
}
int btrfs_bg_type_to_sub_stripes(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
return btrfs_raid_array[index].sub_stripes;
}
/*
* Number of stripes is not fixed and depends on the number of devices,
* utilizing as many as possible (RAID0/RAID10/RAID5/RAID6/...).
*/
bool btrfs_bg_type_is_stripey(u64 flags)
{
const int index = btrfs_bg_flags_to_raid_index(flags);
return btrfs_raid_array[index].devs_max == 0;
}
u64 btrfs_bg_flags_for_device_num(int number)
{
int i;
u64 ret = 0;
for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
if (number >= btrfs_raid_array[i].devs_min)
ret |= btrfs_raid_array[i].bg_flag;
}
return ret;
}
static inline int nr_data_stripes(struct map_lookup *map)
{
return map->num_stripes - btrfs_bg_type_to_nparity(map->type);
}
#define is_parity_stripe(x) ( ((x) == BTRFS_RAID5_P_STRIPE) || ((x) == BTRFS_RAID6_Q_STRIPE) )
static LIST_HEAD(fs_uuids);
/*
* Find a device specified by @devid or @uuid in the list of @fs_devices, or
* return NULL.
*
* If devid and uuid are both specified, the match must be exact, otherwise
* only devid is used.
*/
static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
u64 devid, u8 *uuid)
{
struct list_head *head = &fs_devices->devices;
struct btrfs_device *dev;
list_for_each_entry(dev, head, dev_list) {
if (dev->devid == devid &&
(!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
return dev;
}
}
return NULL;
}
static struct btrfs_fs_devices *find_fsid(u8 *fsid, u8 *metadata_uuid)
{
struct btrfs_fs_devices *fs_devices;
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (metadata_uuid && (memcmp(fsid, fs_devices->fsid,
BTRFS_FSID_SIZE) == 0) &&
(memcmp(metadata_uuid, fs_devices->metadata_uuid,
BTRFS_FSID_SIZE) == 0)) {
return fs_devices;
} else if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0){
return fs_devices;
}
}
return NULL;
}
static u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
{
if (btrfs_super_incompat_flags(sb) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
return sb->metadata_uuid;
else
return sb->fsid;
}
static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
const u8 *fsid, const u8 *metadata_fsid)
{
if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
return false;
if (!metadata_fsid)
return true;
if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
return false;
return true;
}
/*
* First check if the metadata_uuid is different from the fsid in the given
* fs_devices. Then check if the given fsid is the same as the metadata_uuid
* in the fs_devices. If it is, return true; otherwise, return false.
*/
static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
const u8 *fsid)
{
return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
BTRFS_FSID_SIZE) != 0 &&
memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
}
static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
/*
* Handle scanned device having completed its fsid change but belonging
* to a fs_devices that was created by first scanning a device which
* didn't have its fsid/metadata_uuid changed at all and the
* CHANGING_FSID_V2 flag set.
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (!fs_devices->changing_fsid)
continue;
if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
fs_devices->fsid))
return fs_devices;
}
/*
* Handle scanned device having completed its fsid change but belonging
* to a fs_devices that was created by a device that has an outdated
* pair of fsid/metadata_uuid and CHANGING_FSID_V2 flag set.
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (!fs_devices->changing_fsid)
continue;
if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
return fs_devices;
}
return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
}
/*
* Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
* being created with a disk that has already completed its fsid change. Such
* disk can belong to an fs which has its fsid changed or to one which doesn't.
* Handle both cases here.
*/
static struct btrfs_fs_devices *find_fsid_inprogress(struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (fs_devices->changing_fsid)
continue;
if (check_fsid_changed(fs_devices, disk_super->fsid))
return fs_devices;
}
return find_fsid(disk_super->fsid, NULL);
}
static struct btrfs_fs_devices *find_fsid_changed(struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
/*
* Handle the case where scanned device is part of an fs that had
* multiple successful changes of FSID but currently device didn't
* observe it. Meaning our fsid will be different than theirs. We need
* to handle two subcases :
*
* 1 - The fs still continues to have different METADATA/FSID uuids.
* 2 - The fs is switched back to its original FSID (METADATA/FSID are equal).
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
/* Changed UUIDs. */
if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
memcmp(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE) != 0)
return fs_devices;
/* Unchanged UUIDs. */
if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
BTRFS_FSID_SIZE) == 0 &&
memcmp(fs_devices->fsid, disk_super->metadata_uuid,
BTRFS_FSID_SIZE) == 0)
return fs_devices;
}
return NULL;
}
static struct btrfs_fs_devices *find_fsid_reverted_metadata(struct btrfs_super_block *disk_super)
{
struct btrfs_fs_devices *fs_devices;
/*
* Handle the case where the scanned device is part of an fs whose last
* metadata UUID change reverted it to the original FSID. At the same
* time fs_devices was first created by another constituent device
* which didn't fully observe the operation. This results in an
* btrfs_fs_devices created with metadata/fsid different AND
* btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
* fs_devices equal to the FSID of the disk.
*/
list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
if (!fs_devices->changing_fsid)
continue;
if (check_fsid_changed(fs_devices, disk_super->fsid))
return fs_devices;
}
return NULL;
}
static int device_list_add(const char *path,
struct btrfs_super_block *disk_super,
struct btrfs_fs_devices **fs_devices_ret)
{
struct btrfs_device *device;
struct btrfs_fs_devices *fs_devices;
u64 found_transid = btrfs_super_generation(disk_super);
u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
bool metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
bool changing_fsid = (btrfs_super_flags(disk_super) &
(BTRFS_SUPER_FLAG_CHANGING_FSID |
BTRFS_SUPER_FLAG_CHANGING_FSID_V2));
if (changing_fsid) {
if (!metadata_uuid)
fs_devices = find_fsid_inprogress(disk_super);
else
fs_devices = find_fsid_changed(disk_super);
} else if (metadata_uuid) {
fs_devices = find_fsid_with_metadata_uuid(disk_super);
} else {
fs_devices = find_fsid_reverted_metadata(disk_super);
if (!fs_devices)
fs_devices = find_fsid(disk_super->fsid, NULL);
}
if (!fs_devices) {
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
if (!fs_devices)
return -ENOMEM;
INIT_LIST_HEAD(&fs_devices->devices);
list_add(&fs_devices->fs_list, &fs_uuids);
memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
if (metadata_uuid)
memcpy(fs_devices->metadata_uuid,
disk_super->metadata_uuid, BTRFS_FSID_SIZE);
else
memcpy(fs_devices->metadata_uuid, fs_devices->fsid,
BTRFS_FSID_SIZE);
fs_devices->latest_devid = devid;
/* Below we would set this to found_transid */
fs_devices->latest_generation = 0;
fs_devices->lowest_devid = (u64)-1;
fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
device = NULL;
} else {
device = find_device(fs_devices, devid,
disk_super->dev_item.uuid);
/*
* If this disk has been pulled into an fs devices created by
* a device which had the CHANGING_FSID_V2 flag then replace the
* metadata_uuid/fsid values of the fs_devices.
*/
if (fs_devices->changing_fsid &&
found_transid > fs_devices->latest_generation) {
memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
memcpy(fs_devices->metadata_uuid,
btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
}
}
if (!device) {
device = kzalloc(sizeof(*device), GFP_NOFS);
if (!device) {
/* we can safely leave the fs_devices entry around */
return -ENOMEM;
}
device->fd = -1;
device->devid = devid;
device->generation = found_transid;
memcpy(device->uuid, disk_super->dev_item.uuid,
BTRFS_UUID_SIZE);
device->name = kstrdup(path, GFP_NOFS);
if (!device->name) {
kfree(device);
return -ENOMEM;
}
device->label = kstrdup(disk_super->label, GFP_NOFS);
if (!device->label) {
kfree(device->name);
kfree(device);
return -ENOMEM;
}
device->total_devs = btrfs_super_num_devices(disk_super);
device->super_bytes_used = btrfs_super_bytes_used(disk_super);
device->total_bytes =
btrfs_stack_device_total_bytes(&disk_super->dev_item);
device->bytes_used =
btrfs_stack_device_bytes_used(&disk_super->dev_item);
list_add(&device->dev_list, &fs_devices->devices);
device->fs_devices = fs_devices;
fs_devices->num_devices++;
} else if (!device->name || strcmp(device->name, path)) {
char *name;
/*
* The existing device has newer generation, so this one could
* be a stale one, don't add it.
*/
if (found_transid < device->generation) {
warning(
"adding device %s gen %llu but found an existing device %s gen %llu",
path, found_transid, device->name,
device->generation);
return -EEXIST;
}
name = strdup(path);
if (!name)
return -ENOMEM;
kfree(device->name);
device->name = name;
}
if (changing_fsid)
fs_devices->inconsistent_super = changing_fsid;
if (found_transid > fs_devices->latest_generation) {
fs_devices->latest_devid = devid;
fs_devices->latest_generation = found_transid;
fs_devices->total_devices = device->total_devs;
fs_devices->active_metadata_uuid = metadata_uuid;
fs_devices->changing_fsid = changing_fsid;
}
if (fs_devices->lowest_devid > devid) {
fs_devices->lowest_devid = devid;
}
*fs_devices_ret = fs_devices;
return 0;
}
int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
{
struct btrfs_fs_devices *seed_devices;
struct btrfs_device *device;
int ret = 0;
again:
if (!fs_devices)
return 0;
while (!list_empty(&fs_devices->devices)) {
device = list_entry(fs_devices->devices.next,
struct btrfs_device, dev_list);
if (device->fd != -1) {
if (device->writeable && fsync(device->fd) == -1) {
warning("fsync on device %llu failed: %m",
device->devid);
ret = -errno;
}
if (posix_fadvise(device->fd, 0, 0, POSIX_FADV_DONTNEED))
fprintf(stderr, "Warning, could not drop caches\n");
close(device->fd);
device->fd = -1;
}
device->writeable = 0;
list_del(&device->dev_list);
/* free the memory */
kfree(device->name);
kfree(device->label);
kfree(device->zone_info);
kfree(device);
}
seed_devices = fs_devices->seed;
fs_devices->seed = NULL;
if (seed_devices) {
struct btrfs_fs_devices *orig;
orig = fs_devices;
fs_devices = seed_devices;
list_del(&orig->fs_list);
kfree(orig);
goto again;
} else {
list_del(&fs_devices->fs_list);
kfree(fs_devices);
}
return ret;
}
void btrfs_close_all_devices(void)
{
struct btrfs_fs_devices *fs_devices;
while (!list_empty(&fs_uuids)) {
fs_devices = list_entry(fs_uuids.next, struct btrfs_fs_devices,
fs_list);
btrfs_close_devices(fs_devices);
}
}
int btrfs_open_devices(struct btrfs_fs_info *fs_info,
struct btrfs_fs_devices *fs_devices, int flags)
{
int fd;
struct btrfs_device *device;
int ret;
list_for_each_entry(device, &fs_devices->devices, dev_list) {
if (!device->fs_info)
device->fs_info = fs_info;
if (!device->name) {
printk("no name for device %llu, skip it now\n", device->devid);
continue;
}
if ((flags & O_RDWR) && zoned_model(device->name) == ZONED_HOST_MANAGED)
flags |= O_DIRECT;
fd = open(device->name, flags);
if (fd < 0) {
ret = -errno;
error("cannot open device '%s': %m", device->name);
goto fail;
}
if (posix_fadvise(fd, 0, 0, POSIX_FADV_DONTNEED))
fprintf(stderr, "Warning, could not drop caches\n");
if (device->devid == fs_devices->latest_devid)
fs_devices->latest_bdev = fd;
if (device->devid == fs_devices->lowest_devid)
fs_devices->lowest_bdev = fd;
device->fd = fd;
if (flags & O_RDWR)
device->writeable = 1;
}
return 0;
fail:
btrfs_close_devices(fs_devices);
return ret;
}
int btrfs_scan_one_device(int fd, const char *path,
struct btrfs_fs_devices **fs_devices_ret,
u64 *total_devs, u64 super_offset, unsigned sbflags)
{
struct btrfs_super_block disk_super;
int ret;
ret = btrfs_read_dev_super(fd, &disk_super, super_offset, sbflags);
if (ret < 0)
return -EIO;
if (btrfs_super_flags(&disk_super) & BTRFS_SUPER_FLAG_METADUMP)
*total_devs = 1;
else
*total_devs = btrfs_super_num_devices(&disk_super);
ret = device_list_add(path, &disk_super, fs_devices_ret);
return ret;
}
static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
{
u64 zone_size;
switch (device->fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
/*
* We don't want to overwrite the superblock on the drive nor
* any area used by the boot loader (grub for example), so we
* make sure to start at an offset of at least 1MB.
*/
return max(start, BTRFS_BLOCK_RESERVED_1M_FOR_SUPER);
case BTRFS_CHUNK_ALLOC_ZONED:
zone_size = device->zone_info->zone_size;
return ALIGN(max_t(u64, start, zone_size), zone_size);
default:
BUG();
}
}
static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
u64 *hole_start, u64 *hole_size,
u64 num_bytes)
{
u64 pos;
ASSERT(IS_ALIGNED(*hole_start, device->zone_info->zone_size));
pos = btrfs_find_allocatable_zones(device, *hole_start,
*hole_start + *hole_size, num_bytes);
if (pos != *hole_start) {
*hole_size = *hole_start + *hole_size - pos;
*hole_start = pos;
return true;
}
return false;
}
/**
* Check if specified hole is suitable for allocation
*
* @device: the device which we have the hole
* @hole_start: starting position of the hole
* @hole_size: the size of the hole
* @num_bytes: the size of the free space that we need
*
* This function may modify @hole_start and @hole_size to reflect the suitable
* position for allocation. Returns true if hole position is updated, false
* otherwise.
*/
static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
u64 *hole_size, u64 num_bytes)
{
switch (device->fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
/* No check */
break;
case BTRFS_CHUNK_ALLOC_ZONED:
return dev_extent_hole_check_zoned(device, hole_start,
hole_size, num_bytes);
default:
BUG();
}
return false;
}
/*
* find_free_dev_extent_start - find free space in the specified device
* @device: the device which we search the free space in
* @num_bytes: the size of the free space that we need
* @search_start: the position from which to begin the search
* @start: store the start of the free space.
* @len: the size of the free space. that we find, or the size
* of the max free space if we don't find suitable free space
*
* this uses a pretty simple search, the expectation is that it is
* called very infrequently and that a given device has a small number
* of extents
*
* @start is used to store the start of the free space if we find. But if we
* don't find suitable free space, it will be used to store the start position
* of the max free space.
*
* @len is used to store the size of the free space that we find.
* But if we don't find suitable free space, it is used to store the size of
* the max free space.
*/
static int find_free_dev_extent_start(struct btrfs_device *device,
u64 num_bytes, u64 search_start,
u64 *start, u64 *len)
{
struct btrfs_key key;
struct btrfs_root *root = device->dev_root;
struct btrfs_dev_extent *dev_extent;
struct btrfs_path *path;
u64 hole_size;
u64 max_hole_start;
u64 max_hole_size;
u64 extent_end;
u64 search_end = device->total_bytes;
int ret;
int slot;
struct extent_buffer *l;
u64 zone_size = 0;
if (device->zone_info)
zone_size = device->zone_info->zone_size;
search_start = dev_extent_search_start(device, search_start);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
max_hole_start = search_start;
max_hole_size = 0;
again:
if (search_start >= search_end) {
ret = -ENOSPC;
goto out;
}
path->reada = READA_FORWARD;
key.objectid = device->devid;
key.offset = search_start;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
if (ret > 0) {
ret = btrfs_previous_item(root, path, key.objectid, key.type);
if (ret < 0)
goto out;
}
while (1) {
l = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(l)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto out;
break;
}
btrfs_item_key_to_cpu(l, &key, slot);
if (key.objectid < device->devid)
goto next;
if (key.objectid > device->devid)
break;
if (key.type != BTRFS_DEV_EXTENT_KEY)
goto next;
if (key.offset > search_start) {
hole_size = key.offset - search_start;
dev_extent_hole_check(device, &search_start, &hole_size,
num_bytes);
if (hole_size > max_hole_size) {
max_hole_start = search_start;
max_hole_size = hole_size;
}
/*
* If this free space is greater than which we need,
* it must be the max free space that we have found
* until now, so max_hole_start must point to the start
* of this free space and the length of this free space
* is stored in max_hole_size. Thus, we return
* max_hole_start and max_hole_size and go back to the
* caller.
*/
if (hole_size >= num_bytes) {
ret = 0;
goto out;
}
}
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
extent_end = key.offset + btrfs_dev_extent_length(l,
dev_extent);
if (extent_end > search_start)
search_start = extent_end;
next:
path->slots[0]++;
cond_resched();
}
/*
* At this point, search_start should be the end of
* allocated dev extents, and when shrinking the device,
* search_end may be smaller than search_start.
*/
if (search_end > search_start) {
hole_size = search_end - search_start;
if (dev_extent_hole_check(device, &search_start, &hole_size,
num_bytes)) {
btrfs_release_path(path);
goto again;
}
if (hole_size > max_hole_size) {
max_hole_start = search_start;
max_hole_size = hole_size;
}
}
/* See above. */
if (max_hole_size < num_bytes)
ret = -ENOSPC;
else
ret = 0;
out:
ASSERT(zone_size == 0 || IS_ALIGNED(max_hole_start, zone_size));
btrfs_free_path(path);
*start = max_hole_start;
if (len)
*len = max_hole_size;
return ret;
}
static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
u64 *start, u64 *len)
{
/* FIXME use last free of some kind */
return find_free_dev_extent_start(device, num_bytes, 0, start, len);
}
/*
* Insert one device extent into the fs.
*/
int btrfs_insert_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 chunk_offset, u64 num_bytes, u64 start)
{
int ret;
struct btrfs_path *path;
struct btrfs_root *root = device->dev_root;
struct btrfs_dev_extent *extent;
struct extent_buffer *leaf;
struct btrfs_key key;
/* Check alignment to zone for a zoned block device */
ASSERT(!device->zone_info ||
device->zone_info->model != ZONED_HOST_MANAGED ||
IS_ALIGNED(start, device->zone_info->zone_size));
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = device->devid;
key.offset = start;
key.type = BTRFS_DEV_EXTENT_KEY;
ret = btrfs_insert_empty_item(trans, root, path, &key,
sizeof(*extent));
if (ret < 0)
goto err;
leaf = path->nodes[0];
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_dev_extent);
btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_objectid(leaf, extent,
BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
BTRFS_UUID_SIZE);
btrfs_set_dev_extent_length(leaf, extent, num_bytes);
btrfs_mark_buffer_dirty(leaf);
err:
btrfs_free_path(path);
return ret;
}
/*
* Allocate one free dev extent and insert it into the fs.
*/
static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 chunk_offset, u64 num_bytes, u64 *start)
{
int ret;
ret = find_free_dev_extent(device, num_bytes, start, NULL);
if (ret)
return ret;
return btrfs_insert_dev_extent(trans, device, chunk_offset, num_bytes,
*start);
}
static int find_next_chunk(struct btrfs_fs_info *fs_info, u64 *offset)
{
struct btrfs_root *root = fs_info->chunk_root;
struct btrfs_path *path;
int ret;
struct btrfs_key key;
struct btrfs_chunk *chunk;
struct btrfs_key found_key;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.offset = (u64)-1;
key.type = BTRFS_CHUNK_ITEM_KEY;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto error;
BUG_ON(ret == 0);
ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
if (ret) {
*offset = 0;
} else {
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)
*offset = 0;
else {
chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_chunk);
*offset = found_key.offset +
btrfs_chunk_length(path->nodes[0], chunk);
}
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
static int find_next_devid(struct btrfs_root *root, struct btrfs_path *path,
u64 *objectid)
{
int ret;
struct btrfs_key key;
struct btrfs_key found_key;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto error;
BUG_ON(ret == 0);
ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
BTRFS_DEV_ITEM_KEY);
if (ret) {
*objectid = 1;
} else {
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
*objectid = found_key.offset + 1;
}
ret = 0;
error:
btrfs_release_path(path);
return ret;
}
/*
* the device information is stored in the chunk root
* the btrfs_device struct should be fully filled in
*/
int btrfs_add_device(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info,
struct btrfs_device *device)
{
int ret;
struct btrfs_path *path;
struct btrfs_dev_item *dev_item;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_root *root = fs_info->chunk_root;
unsigned long ptr;
u64 free_devid = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = find_next_devid(root, path, &free_devid);
if (ret)
goto out;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = free_devid;
ret = btrfs_insert_empty_item(trans, root, path, &key,
sizeof(*dev_item));
if (ret)
goto out;
leaf = path->nodes[0];
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
device->devid = free_devid;
btrfs_set_device_id(leaf, dev_item, device->devid);
btrfs_set_device_generation(leaf, dev_item, 0);
btrfs_set_device_type(leaf, dev_item, device->type);
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
btrfs_set_device_group(leaf, dev_item, 0);
btrfs_set_device_seek_speed(leaf, dev_item, 0);
btrfs_set_device_bandwidth(leaf, dev_item, 0);
btrfs_set_device_start_offset(leaf, dev_item, 0);
ptr = (unsigned long)btrfs_device_uuid(dev_item);
write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
ptr = (unsigned long)btrfs_device_fsid(dev_item);
write_extent_buffer(leaf, fs_info->fs_devices->metadata_uuid, ptr,
BTRFS_UUID_SIZE);
btrfs_mark_buffer_dirty(leaf);
fs_info->fs_devices->total_rw_bytes += device->total_bytes;
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
int btrfs_update_device(struct btrfs_trans_handle *trans,
struct btrfs_device *device)
{
int ret;
struct btrfs_path *path;
struct btrfs_root *root;
struct btrfs_dev_item *dev_item;
struct extent_buffer *leaf;
struct btrfs_key key;
root = device->dev_root->fs_info->chunk_root;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
btrfs_set_device_id(leaf, dev_item, device->devid);
btrfs_set_device_type(leaf, dev_item, device->type);
btrfs_set_device_io_align(leaf, dev_item, device->io_align);
btrfs_set_device_io_width(leaf, dev_item, device->io_width);
btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
btrfs_mark_buffer_dirty(leaf);
out:
btrfs_free_path(path);
return ret;
}
int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
struct btrfs_chunk *chunk, int item_size)
{
struct btrfs_super_block *super_copy = fs_info->super_copy;
struct btrfs_disk_key disk_key;
u32 array_size;
u8 *ptr;
array_size = btrfs_super_sys_array_size(super_copy);
if (array_size + item_size + sizeof(disk_key)
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
return -EFBIG;
ptr = super_copy->sys_chunk_array + array_size;
btrfs_cpu_key_to_disk(&disk_key, key);
memcpy(ptr, &disk_key, sizeof(disk_key));
ptr += sizeof(disk_key);
memcpy(ptr, chunk, item_size);
item_size += sizeof(disk_key);
btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
return 0;
}
static u64 chunk_bytes_by_type(struct alloc_chunk_ctl *ctl)
{
u64 type = ctl->type;
u64 stripe_size = ctl->stripe_size;
if (type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_DUP))
return stripe_size;
else if (type & BTRFS_BLOCK_GROUP_RAID10)
return stripe_size * (ctl->num_stripes / ctl->sub_stripes);
else if (type & BTRFS_BLOCK_GROUP_RAID56_MASK)
return stripe_size * (ctl->num_stripes - btrfs_bg_type_to_nparity(type));
else
return stripe_size * ctl->num_stripes;
}
/*
* btrfs_device_avail_bytes - count bytes available for alloc_chunk
*
* It is not equal to "device->total_bytes - device->bytes_used".
* We do not allocate any chunk in 1M at beginning of device, and not
* allowed to allocate any chunk before alloc_start if it is specified.
* So search holes from 1M to device->total_bytes.
*/
static int btrfs_device_avail_bytes(struct btrfs_trans_handle *trans,
struct btrfs_device *device,
u64 *avail_bytes)
{
struct btrfs_path *path;
struct btrfs_root *root = device->dev_root;
struct btrfs_key key;
struct btrfs_dev_extent *dev_extent = NULL;
struct extent_buffer *l;
u64 search_start = BTRFS_BLOCK_RESERVED_1M_FOR_SUPER;;
u64 search_end = device->total_bytes;
u64 extent_end = 0;
u64 free_bytes = 0;
int ret;
int slot = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
key.objectid = device->devid;
key.offset = search_start;
key.type = BTRFS_DEV_EXTENT_KEY;
path->reada = READA_FORWARD;
ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
if (ret < 0)
goto error;
ret = btrfs_previous_item(root, path, 0, key.type);
if (ret < 0)
goto error;
while (1) {
l = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(l)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
break;
}
btrfs_item_key_to_cpu(l, &key, slot);
if (key.objectid < device->devid)
goto next;
if (key.objectid > device->devid)
break;
if (key.type != BTRFS_DEV_EXTENT_KEY)
goto next;
if (key.offset > search_end)
break;
if (key.offset > search_start)
free_bytes += key.offset - search_start;
dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
extent_end = key.offset + btrfs_dev_extent_length(l,
dev_extent);
if (extent_end > search_start)
search_start = extent_end;
if (search_start > search_end)
break;
next:
path->slots[0]++;
cond_resched();
}
if (search_start < search_end)
free_bytes += search_end - search_start;
*avail_bytes = free_bytes;
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
#define BTRFS_MAX_DEVS(info) ((BTRFS_LEAF_DATA_SIZE(info) \
- sizeof(struct btrfs_item) \
- sizeof(struct btrfs_chunk)) \
/ sizeof(struct btrfs_stripe) + 1)
#define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
- 2 * sizeof(struct btrfs_disk_key) \
- 2 * sizeof(struct btrfs_chunk)) \
/ sizeof(struct btrfs_stripe) + 1)
static void init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_info *info,
struct alloc_chunk_ctl *ctl)
{
u64 type = ctl->type;
u64 percent_max;
if (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ctl->stripe_size = SZ_8M;
ctl->max_chunk_size = ctl->stripe_size * 2;
ctl->min_stripe_size = SZ_1M;
ctl->max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
} else if (type & BTRFS_BLOCK_GROUP_DATA) {
ctl->stripe_size = SZ_1G;
ctl->max_chunk_size = 10 * ctl->stripe_size;
ctl->min_stripe_size = SZ_64M;
ctl->max_stripes = BTRFS_MAX_DEVS(info);
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
/* For larger filesystems, use larger metadata chunks */
if (info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
ctl->max_chunk_size = SZ_1G;
else
ctl->max_chunk_size = SZ_256M;
ctl->stripe_size = ctl->max_chunk_size;
ctl->min_stripe_size = SZ_32M;
ctl->max_stripes = BTRFS_MAX_DEVS(info);
}
}
/* We don't want a chunk larger than 10% of the FS */
percent_max = div_factor(btrfs_super_total_bytes(info->super_copy), 1);
ctl->max_chunk_size = min(percent_max, ctl->max_chunk_size);
}
static void init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_info *info,
struct alloc_chunk_ctl *ctl)
{
u64 type = ctl->type;
u64 zone_size = info->zone_size;
int min_num_stripes = ctl->min_stripes * ctl->num_stripes;
int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
u64 min_chunk_size = min_data_stripes * zone_size;
ctl->stripe_size = zone_size;
ctl->min_stripe_size = zone_size;
if (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
ctl->max_chunk_size = SZ_16M;
ctl->max_stripes = BTRFS_MAX_DEVS_SYS_CHUNK;
} else if (type & BTRFS_BLOCK_GROUP_DATA) {
ctl->max_chunk_size = 10ULL * SZ_1G;
ctl->max_stripes = BTRFS_MAX_DEVS(info);
} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
/* For larger filesystems, use larger metadata chunks */
if (info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
ctl->max_chunk_size = SZ_1G;
else
ctl->max_chunk_size = SZ_256M;
ctl->max_stripes = BTRFS_MAX_DEVS(info);
}
}
ctl->max_chunk_size = round_down(ctl->max_chunk_size, zone_size);
ctl->max_chunk_size = max(ctl->max_chunk_size, min_chunk_size);
}
static void init_alloc_chunk_ctl(struct btrfs_fs_info *info,
struct alloc_chunk_ctl *ctl)
{
enum btrfs_raid_types type = btrfs_bg_flags_to_raid_index(ctl->type);
ctl->num_stripes = btrfs_raid_array[type].dev_stripes;
ctl->min_stripes = btrfs_raid_array[type].devs_min;
ctl->max_stripes = 0;
ctl->sub_stripes = btrfs_raid_array[type].sub_stripes;
ctl->stripe_size = SZ_8M;
ctl->min_stripe_size = SZ_1M;
ctl->max_chunk_size = 4 * ctl->stripe_size;
ctl->total_devs = btrfs_super_num_devices(info->super_copy);
ctl->dev_offset = 0;
ctl->nparity = btrfs_raid_array[type].nparity;
ctl->ncopies = btrfs_raid_array[type].ncopies;
switch (info->fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
init_alloc_chunk_ctl_policy_regular(info, ctl);
break;
case BTRFS_CHUNK_ALLOC_ZONED:
init_alloc_chunk_ctl_policy_zoned(info, ctl);
break;
default:
BUG();
}
switch (type) {
case BTRFS_RAID_DUP:
ctl->min_stripes = 2;
break;
case BTRFS_RAID_RAID1:
case BTRFS_RAID_RAID1C3:
case BTRFS_RAID_RAID1C4:
ctl->num_stripes = min(ctl->min_stripes, ctl->total_devs);
break;
case BTRFS_RAID_RAID0:
case BTRFS_RAID_RAID10:
case BTRFS_RAID_RAID5:
case BTRFS_RAID_RAID6:
ctl->num_stripes = min(ctl->max_stripes, ctl->total_devs);
if (type == BTRFS_RAID_RAID10)
ctl->num_stripes &= ~(u32)1;
break;
default:
break;
}
}
static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl)
{
if (chunk_bytes_by_type(ctl) > ctl->max_chunk_size) {
ctl->stripe_size = ctl->max_chunk_size;
ctl->stripe_size /= ctl->num_stripes;
ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
}
/* We don't want tiny stripes */
ctl->stripe_size = max_t(u64, ctl->stripe_size, ctl->min_stripe_size);
/* Align to the stripe length */
ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
return 0;
}
static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl)
{
if (chunk_bytes_by_type(ctl) > ctl->max_chunk_size) {
/* stripe_size is fixed in ZONED, reduce num_stripes instead */
ctl->num_stripes = ctl->max_chunk_size * ctl->ncopies /
ctl->stripe_size;
if (ctl->num_stripes < ctl->min_stripes)
return -ENOSPC;
}
return 0;
}
static int decide_stripe_size(struct btrfs_fs_info *info,
struct alloc_chunk_ctl *ctl)
{
switch (info->fs_devices->chunk_alloc_policy) {
case BTRFS_CHUNK_ALLOC_REGULAR:
return decide_stripe_size_regular(ctl);
case BTRFS_CHUNK_ALLOC_ZONED:
return decide_stripe_size_zoned(ctl);
default:
BUG();
}
}
static int create_chunk(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *info, struct alloc_chunk_ctl *ctl,
struct list_head *private_devs)
{
struct btrfs_root *chunk_root = info->chunk_root;
struct btrfs_stripe *stripes;
struct btrfs_device *device = NULL;
struct btrfs_chunk *chunk;
struct list_head *dev_list = &info->fs_devices->devices;
struct list_head *cur;
struct map_lookup *map;
int ret;
int index;
struct btrfs_key key;
u64 offset;
u64 zone_size = info->zone_size;
if (!ctl->start) {
ret = find_next_chunk(info, &offset);
if (ret)
return ret;
} else {
offset = ctl->start;
}
key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
key.type = BTRFS_CHUNK_ITEM_KEY;
key.offset = offset;
chunk = kmalloc(btrfs_chunk_item_size(ctl->num_stripes), GFP_NOFS);
if (!chunk)
return -ENOMEM;
map = kmalloc(btrfs_map_lookup_size(ctl->num_stripes), GFP_NOFS);
if (!map) {
kfree(chunk);
return -ENOMEM;
}
stripes = &chunk->stripe;
ctl->num_bytes = chunk_bytes_by_type(ctl);
index = 0;
while (index < ctl->num_stripes) {
u64 dev_offset;
struct btrfs_stripe *stripe;
BUG_ON(list_empty(private_devs));
cur = private_devs->next;
device = list_entry(cur, struct btrfs_device, dev_list);
/* loop over this device again if we're doing a dup group */
if (!(ctl->type & BTRFS_BLOCK_GROUP_DUP) ||
(index == ctl->num_stripes - 1))
list_move(&device->dev_list, dev_list);
if (!ctl->dev_offset) {
ret = btrfs_alloc_dev_extent(trans, device, key.offset,
ctl->stripe_size, &dev_offset);
if (ret < 0)
goto out_chunk_map;
} else {
dev_offset = ctl->dev_offset;
ret = btrfs_insert_dev_extent(trans, device, key.offset,
ctl->stripe_size,
ctl->dev_offset);
BUG_ON(ret);
}
ASSERT(!zone_size || IS_ALIGNED(dev_offset, zone_size));
device->bytes_used += ctl->stripe_size;
ret = btrfs_update_device(trans, device);
if (ret < 0)
goto out_chunk_map;
map->stripes[index].dev = device;
map->stripes[index].physical = dev_offset;
stripe = stripes + index;
btrfs_set_stack_stripe_devid(stripe, device->devid);
btrfs_set_stack_stripe_offset(stripe, dev_offset);
memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
index++;
}
BUG_ON(!list_empty(private_devs));
/* key was set above */
btrfs_set_stack_chunk_length(chunk, ctl->num_bytes);
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_type(chunk, ctl->type);
btrfs_set_stack_chunk_num_stripes(chunk, ctl->num_stripes);
btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_sector_size(chunk, info->sectorsize);
btrfs_set_stack_chunk_sub_stripes(chunk, ctl->sub_stripes);
map->sector_size = info->sectorsize;
map->stripe_len = BTRFS_STRIPE_LEN;
map->io_align = BTRFS_STRIPE_LEN;
map->io_width = BTRFS_STRIPE_LEN;
map->type = ctl->type;
map->num_stripes = ctl->num_stripes;
map->sub_stripes = ctl->sub_stripes;
ret = btrfs_insert_item(trans, chunk_root, &key, chunk,
btrfs_chunk_item_size(ctl->num_stripes));
BUG_ON(ret);
ctl->start = key.offset;
map->ce.start = key.offset;
map->ce.size = ctl->num_bytes;
ret = insert_cache_extent(&info->mapping_tree.cache_tree, &map->ce);
if (ret < 0)
goto out_chunk_map;
if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) {
ret = btrfs_add_system_chunk(info, &key,
chunk, btrfs_chunk_item_size(ctl->num_stripes));
if (ret < 0)
goto out_chunk;
}
kfree(chunk);
return ret;
out_chunk_map:
kfree(map);
out_chunk:
kfree(chunk);
return ret;
}
int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *info, u64 *start,
u64 *num_bytes, u64 type)
{
struct btrfs_device *device = NULL;
struct list_head private_devs;
struct list_head *dev_list = &info->fs_devices->devices;
struct list_head *cur;
u64 min_free;
u64 avail = 0;
u64 max_avail = 0;
struct alloc_chunk_ctl ctl;
int looped = 0;
int ret;
int index;
if (list_empty(dev_list))
return -ENOSPC;
ctl.type = type;
/* start and num_bytes will be set by create_chunk() */
ctl.start = 0;
ctl.num_bytes = 0;
init_alloc_chunk_ctl(info, &ctl);
if (ctl.num_stripes < ctl.min_stripes)
return -ENOSPC;
again:
ret = decide_stripe_size(info, &ctl);
if (ret < 0)
return ret;
INIT_LIST_HEAD(&private_devs);
cur = dev_list->next;
index = 0;
if (type & BTRFS_BLOCK_GROUP_DUP)
min_free = ctl.stripe_size * 2;
else
min_free = ctl.stripe_size;
/* Build a private list of devices we will allocate from */
while (index < ctl.num_stripes) {
device = list_entry(cur, struct btrfs_device, dev_list);
ret = btrfs_device_avail_bytes(trans, device, &avail);
if (ret)
return ret;
cur = cur->next;
if (avail >= min_free) {
list_move(&device->dev_list, &private_devs);
index++;
if (type & BTRFS_BLOCK_GROUP_DUP)
index++;
} else if (avail > max_avail)
max_avail = avail;
if (cur == dev_list)
break;
}
if (index < ctl.num_stripes) {
list_splice(&private_devs, dev_list);
if (index >= ctl.min_stripes) {
ctl.num_stripes = index;
if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
/* We know this should be 2, but just in case */
ASSERT(is_power_of_2(ctl.sub_stripes));
ctl.num_stripes = round_down(ctl.num_stripes,
ctl.sub_stripes);
}
looped = 1;
goto again;
}
if (!looped && max_avail > 0) {
looped = 1;
if (ctl.type & BTRFS_BLOCK_GROUP_DUP)
ctl.stripe_size = max_avail / 2;
else
ctl.stripe_size = max_avail;
goto again;
}
return -ENOSPC;
}
ret = create_chunk(trans, info, &ctl, &private_devs);
/*
* This can happen if above create_chunk() failed, we need to move all
* devices back to dev_list.
*/
while (!list_empty(&private_devs)) {
device = list_entry(private_devs.next, struct btrfs_device,
dev_list);
list_move(&device->dev_list, dev_list);
}
/*
* All private devs moved back to @dev_list, now dev_list should not be
* empty.
*/
ASSERT(!list_empty(dev_list));
*start = ctl.start;
*num_bytes = ctl.num_bytes;
return ret;
}
/*
* Alloc a DATA chunk with SINGLE profile.
*
* It allocates a chunk with 1:1 mapping (btrfs logical bytenr == on-disk bytenr)
* Caller must make sure the chunk and dev_extent are not occupied.
*/
int btrfs_alloc_data_chunk(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *info, u64 *start, u64 num_bytes)
{
struct list_head *dev_list = &info->fs_devices->devices;
struct list_head private_devs;
struct btrfs_device *device;
struct alloc_chunk_ctl ctl;
if (*start != round_down(*start, info->sectorsize)) {
error("DATA chunk start not sectorsize aligned: %llu",
(unsigned long long)*start);
return -EINVAL;
}
ctl.start = *start;
ctl.type = BTRFS_BLOCK_GROUP_DATA;
ctl.num_stripes = 1;
ctl.max_stripes = 1;
ctl.min_stripes = 1;
ctl.sub_stripes = 1;
ctl.stripe_size = num_bytes;
ctl.min_stripe_size = num_bytes;
ctl.num_bytes = num_bytes;
ctl.max_chunk_size = num_bytes;
ctl.total_devs = btrfs_super_num_devices(info->super_copy);
ctl.dev_offset = *start;
INIT_LIST_HEAD(&private_devs);
/* Build a list containing one device */
device = list_entry(dev_list->next, struct btrfs_device, dev_list);
list_move(&device->dev_list, &private_devs);
return create_chunk(trans, info, &ctl, &private_devs);
}
int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
{
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct cache_extent *ce;
struct map_lookup *map;
int ret;
ce = search_cache_extent(&map_tree->cache_tree, logical);
if (!ce) {
fprintf(stderr, "No mapping for %llu-%llu\n",
(unsigned long long)logical,
(unsigned long long)logical+len);
return 1;
}
if (ce->start > logical || ce->start + ce->size < logical) {
fprintf(stderr, "Invalid mapping for %llu-%llu, got "
"%llu-%llu\n", (unsigned long long)logical,
(unsigned long long)logical+len,
(unsigned long long)ce->start,
(unsigned long long)ce->start + ce->size);
return 1;
}
map = container_of(ce, struct map_lookup, ce);
if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
ret = map->num_stripes;
else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
ret = map->sub_stripes;
else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
ret = 2;
else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
ret = 3;
else
ret = 1;
return ret;
}
int btrfs_next_bg(struct btrfs_fs_info *fs_info, u64 *logical,
u64 *size, u64 type)
{
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct cache_extent *ce;
struct map_lookup *map;
u64 cur = *logical;
ce = search_cache_extent(&map_tree->cache_tree, cur);
while (ce) {
/*
* only jump to next bg if our cur is not 0
* As the initial logical for btrfs_next_bg() is 0, and
* if we jump to next bg, we skipped a valid bg.
*/
if (cur) {
ce = next_cache_extent(ce);
if (!ce)
return -ENOENT;
}
cur = ce->start;
map = container_of(ce, struct map_lookup, ce);
if (map->type & type) {
*logical = ce->start;
*size = ce->size;
return 0;
}
if (!cur)
ce = next_cache_extent(ce);
}
return -ENOENT;
}
int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
u64 physical, u64 **logical, int *naddrs, int *stripe_len)
{
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct cache_extent *ce;
struct map_lookup *map;
u64 *buf;
u64 bytenr;
u64 length;
u64 stripe_nr;
u64 rmap_len;
int i, j, nr = 0;
ce = search_cache_extent(&map_tree->cache_tree, chunk_start);
BUG_ON(!ce);
map = container_of(ce, struct map_lookup, ce);
length = ce->size;
rmap_len = map->stripe_len;
if (map->type & BTRFS_BLOCK_GROUP_RAID10)
length = ce->size / (map->num_stripes / map->sub_stripes);
else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
length = ce->size / map->num_stripes;
else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
length = ce->size / nr_data_stripes(map);
rmap_len = map->stripe_len * nr_data_stripes(map);
}
buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
for (i = 0; i < map->num_stripes; i++) {
if (map->stripes[i].physical > physical ||
map->stripes[i].physical + length <= physical)
continue;
stripe_nr = (physical - map->stripes[i].physical) /
map->stripe_len;
if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
stripe_nr = (stripe_nr * map->num_stripes + i) /
map->sub_stripes;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
stripe_nr = stripe_nr * map->num_stripes + i;
} /* else if RAID[56], multiply by nr_data_stripes().
* Alternatively, just use rmap_len below instead of
* map->stripe_len */
bytenr = ce->start + stripe_nr * rmap_len;
for (j = 0; j < nr; j++) {
if (buf[j] == bytenr)
break;
}
if (j == nr)
buf[nr++] = bytenr;
}
*logical = buf;
*naddrs = nr;
*stripe_len = rmap_len;
return 0;
}
static inline int parity_smaller(u64 a, u64 b)
{
return a > b;
}
/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
static void sort_parity_stripes(struct btrfs_multi_bio *bbio, u64 *raid_map)
{
struct btrfs_bio_stripe s;
int i;
u64 l;
int again = 1;
while (again) {
again = 0;
for (i = 0; i < bbio->num_stripes - 1; i++) {
if (parity_smaller(raid_map[i], raid_map[i+1])) {
s = bbio->stripes[i];
l = raid_map[i];
bbio->stripes[i] = bbio->stripes[i+1];
raid_map[i] = raid_map[i+1];
bbio->stripes[i+1] = s;
raid_map[i+1] = l;
again = 1;
}
}
}
}
int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
u64 logical, u64 *length,
struct btrfs_multi_bio **multi_ret, int mirror_num,
u64 **raid_map_ret)
{
return __btrfs_map_block(fs_info, rw, logical, length, NULL,
multi_ret, mirror_num, raid_map_ret);
}
static bool btrfs_need_stripe_tree_update(struct btrfs_fs_info *fs_info, u64 map_type)
{
#if EXPERIMENTAL
const bool is_data = (map_type & BTRFS_BLOCK_GROUP_DATA);
if (!btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE))
return false;
if (!fs_info->stripe_root)
return false;
if (!is_data)
return false;
if (map_type & BTRFS_BLOCK_GROUP_DUP)
return true;
if (map_type & BTRFS_BLOCK_GROUP_RAID1_MASK)
return true;
if (map_type & BTRFS_BLOCK_GROUP_RAID0)
return true;
if (map_type & BTRFS_BLOCK_GROUP_RAID10)
return true;
#endif
return false;
}
static int btrfs_stripe_tree_logical_to_physical(struct btrfs_fs_info *fs_info,
u64 logical,
struct btrfs_bio_stripe *stripe)
{
struct btrfs_root *root = fs_info->stripe_root;
struct btrfs_path path = { 0 };
struct btrfs_key key;
struct extent_buffer *leaf;
int slot;
int ret;
key.objectid = logical;
key.type = BTRFS_RAID_STRIPE_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
return ret;
while (1) {
struct btrfs_key found_key;
struct btrfs_stripe_extent *extent;
int num_stripes;
u32 item_size;
leaf = path.nodes[0];
slot = path.slots[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, &path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.type != BTRFS_RAID_STRIPE_KEY)
goto next;
extent = btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent);
item_size = btrfs_item_size(leaf, slot);
num_stripes = (item_size -
offsetof(struct btrfs_stripe_extent, strides)) /
sizeof(struct btrfs_raid_stride);
for (int i = 0; i < num_stripes; i++) {
if (stripe->dev->devid !=
btrfs_raid_stride_devid_nr(leaf, extent, i))
continue;
stripe->physical = btrfs_raid_stride_offset_nr(leaf, extent, i);
btrfs_release_path(&path);
return 0;
}
next:
path.slots[0]++;
}
btrfs_release_path(&path);
error:
return ret;
}
int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
u64 logical, u64 *length, u64 *type,
struct btrfs_multi_bio **multi_ret, int mirror_num,
u64 **raid_map_ret)
{
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct cache_extent *ce;
struct map_lookup *map;
u64 offset;
u64 stripe_offset;
u64 stripe_nr;
u64 *raid_map = NULL;
int stripes_allocated = 8;
int stripes_required = 1;
int stripe_index;
int i;
bool need_raid_map = false;
struct btrfs_multi_bio *multi = NULL;
if (multi_ret && rw == READ) {
stripes_allocated = 1;
}
again:
ce = search_cache_extent(&map_tree->cache_tree, logical);
if (!ce) {
kfree(multi);
*length = (u64)-1;
return -ENOENT;
}
if (ce->start > logical) {
kfree(multi);
*length = ce->start - logical;
return -ENOENT;
}
if (multi_ret) {
multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
GFP_NOFS);
if (!multi)
return -ENOMEM;
}
map = container_of(ce, struct map_lookup, ce);
offset = logical - ce->start;
if (rw == WRITE) {
if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
BTRFS_BLOCK_GROUP_DUP)) {
stripes_required = map->num_stripes;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
stripes_required = map->sub_stripes;
}
}
if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK
&& multi_ret && ((rw & WRITE) || mirror_num > 1) && raid_map_ret) {
need_raid_map = true;
/* RAID[56] write or recovery. Return all stripes */
stripes_required = map->num_stripes;
/* Only allocate the map if we've already got a large enough multi_ret */
if (stripes_allocated >= stripes_required) {
raid_map = kmalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
if (!raid_map) {
kfree(multi);
return -ENOMEM;
}
}
}
/* if our multi bio struct is too small, back off and try again */
if (multi_ret && stripes_allocated < stripes_required) {
stripes_allocated = stripes_required;
kfree(multi);
multi = NULL;
goto again;
}
stripe_nr = offset;
/*
* stripe_nr counts the total number of stripes we have to stride
* to get to this block
*/
stripe_nr = stripe_nr / map->stripe_len;
stripe_offset = stripe_nr * map->stripe_len;
BUG_ON(offset < stripe_offset);
/* stripe_offset is the offset of this block in its stripe*/
stripe_offset = offset - stripe_offset;
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1_MASK |
BTRFS_BLOCK_GROUP_RAID56_MASK |
BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_DUP)) {
/* we limit the length of each bio to what fits in a stripe */
*length = min_t(u64, ce->size - offset,
map->stripe_len - stripe_offset);
} else {
*length = ce->size - offset;
}
if (!multi_ret)
goto out;
multi->num_stripes = 1;
multi->type = map->type;
stripe_index = 0;
if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
if (rw == WRITE)
multi->num_stripes = map->num_stripes;
else if (mirror_num)
stripe_index = mirror_num - 1;
else
stripe_index = stripe_nr % map->num_stripes;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
int factor = map->num_stripes / map->sub_stripes;
stripe_index = stripe_nr % factor;
stripe_index *= map->sub_stripes;
if (rw == WRITE)
multi->num_stripes = map->sub_stripes;
else if (mirror_num)
stripe_index += mirror_num - 1;
stripe_nr = stripe_nr / factor;
} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
if (rw == WRITE)
multi->num_stripes = map->num_stripes;
else if (mirror_num)
stripe_index = mirror_num - 1;
} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
if (need_raid_map && raid_map) {
int rot;
u64 tmp;
u64 raid56_full_stripe_start;
u64 full_stripe_len = nr_data_stripes(map) * map->stripe_len;
/*
* align the start of our data stripe in the logical
* address space
*/
raid56_full_stripe_start = offset / full_stripe_len;
raid56_full_stripe_start *= full_stripe_len;
/* get the data stripe number */
stripe_nr = raid56_full_stripe_start / map->stripe_len;
stripe_nr = stripe_nr / nr_data_stripes(map);
/* Work out the disk rotation on this stripe-set */
rot = stripe_nr % map->num_stripes;
/* Fill in the logical address of each stripe */
tmp = stripe_nr * nr_data_stripes(map);
for (i = 0; i < nr_data_stripes(map); i++)
raid_map[(i+rot) % map->num_stripes] =
ce->start + (tmp + i) * map->stripe_len;
raid_map[(i+rot) % map->num_stripes] = BTRFS_RAID5_P_STRIPE;
if (map->type & BTRFS_BLOCK_GROUP_RAID6)
raid_map[(i+rot+1) % map->num_stripes] = BTRFS_RAID6_Q_STRIPE;
*length = map->stripe_len;
stripe_index = 0;
stripe_offset = 0;
multi->num_stripes = map->num_stripes;
} else {
stripe_index = stripe_nr % nr_data_stripes(map);
stripe_nr = stripe_nr / nr_data_stripes(map);
/*
* Mirror #0 or #1 means the original data block.
* Mirror #2 is RAID5 parity block.
* Mirror #3 is RAID6 Q block.
*/
if (mirror_num > 1)
stripe_index = nr_data_stripes(map) + mirror_num - 2;
/* We distribute the parity blocks across stripes */
stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
}
} else {
/*
* after this do_div call, stripe_nr is the number of stripes
* on this device we have to walk to find the data, and
* stripe_index is the number of our device in the stripe array
*/
stripe_index = stripe_nr % map->num_stripes;
stripe_nr = stripe_nr / map->num_stripes;
}
BUG_ON(stripe_index >= map->num_stripes);
for (i = 0; i < multi->num_stripes; i++) {
multi->stripes[i].dev = map->stripes[stripe_index].dev;
if (stripes_allocated &&
btrfs_need_stripe_tree_update(fs_info, map->type)) {
int ret;
ret = btrfs_stripe_tree_logical_to_physical(fs_info, logical,
&multi->stripes[i]);
if (ret)
return ret;
} else {
multi->stripes[i].physical =
map->stripes[stripe_index].physical +
stripe_offset + stripe_nr * map->stripe_len;
}
stripe_index++;
}
*multi_ret = multi;
if (type)
*type = map->type;
if (raid_map) {
sort_parity_stripes(multi, raid_map);
*raid_map_ret = raid_map;
}
out:
return 0;
}
struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
u8 *uuid, u8 *fsid)
{
struct btrfs_device *device;
struct btrfs_fs_devices *cur_devices;
cur_devices = fs_info->fs_devices;
while (cur_devices) {
if (!fsid ||
(!memcmp(cur_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) ||
fs_info->ignore_fsid_mismatch)) {
device = find_device(cur_devices, devid, uuid);
if (device)
return device;
}
cur_devices = cur_devices->seed;
}
return NULL;
}
struct btrfs_device *
btrfs_find_device_by_devid(struct btrfs_fs_devices *fs_devices,
u64 devid, int instance)
{
struct list_head *head = &fs_devices->devices;
struct btrfs_device *dev;
int num_found = 0;
list_for_each_entry(dev, head, dev_list) {
if (dev->devid == devid && num_found++ == instance)
return dev;
}
return NULL;
}
/*
* Return 0 if the chunk at @chunk_offset exists and is not read-only.
* Return 1 if the chunk at @chunk_offset exists and is read-only.
* Return <0 if we can't find chunk at @chunk_offset.
*/
int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
{
struct cache_extent *ce;
struct map_lookup *map;
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
int readonly = 0;
int i;
/*
* During chunk recovering, we may fail to find block group's
* corresponding chunk, we will rebuild it later
*/
if (fs_info->is_chunk_recover)
return 0;
ce = search_cache_extent(&map_tree->cache_tree, chunk_offset);
if (!ce)
return -ENOENT;
map = container_of(ce, struct map_lookup, ce);
for (i = 0; i < map->num_stripes; i++) {
if (!map->stripes[i].dev->writeable) {
readonly = 1;
break;
}
}
return readonly;
}
static struct btrfs_device *fill_missing_device(u64 devid, const u8 *uuid)
{
struct btrfs_device *device;
device = kzalloc(sizeof(*device), GFP_NOFS);
device->devid = devid;
memcpy(device->uuid, uuid, BTRFS_UUID_SIZE);
device->fd = -1;
return device;
}
/*
* Slot is used to verify the chunk item is valid
*
* For sys chunk in superblock, pass -1 to indicate sys chunk.
*/
static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
struct extent_buffer *leaf,
struct btrfs_chunk *chunk, int slot)
{
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct map_lookup *map;
struct cache_extent *ce;
u64 logical;
u64 length;
u64 devid;
u8 uuid[BTRFS_UUID_SIZE];
int num_stripes;
int ret;
int i;
logical = key->offset;
length = btrfs_chunk_length(leaf, chunk);
num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
/* Validation check */
ret = btrfs_check_chunk_valid(leaf, chunk, logical);
if (ret) {
error("%s checksums match, but it has an invalid chunk, %s",
(slot == -1) ? "Superblock" : "Metadata",
(slot == -1) ? "try btrfsck --repair -s <superblock> ie, 0,1,2" : "");
return ret;
}
ce = search_cache_extent(&map_tree->cache_tree, logical);
/* already mapped? */
if (ce && ce->start <= logical && ce->start + ce->size > logical) {
return 0;
}
map = kmalloc(btrfs_map_lookup_size(num_stripes), GFP_NOFS);
if (!map)
return -ENOMEM;
map->ce.start = logical;
map->ce.size = length;
map->num_stripes = num_stripes;
map->io_width = btrfs_chunk_io_width(leaf, chunk);
map->io_align = btrfs_chunk_io_align(leaf, chunk);
map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
map->type = btrfs_chunk_type(leaf, chunk);
map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
for (i = 0; i < num_stripes; i++) {
map->stripes[i].physical =
btrfs_stripe_offset_nr(leaf, chunk, i);
devid = btrfs_stripe_devid_nr(leaf, chunk, i);
read_extent_buffer(leaf, uuid, (unsigned long)
btrfs_stripe_dev_uuid_nr(chunk, i),
BTRFS_UUID_SIZE);
map->stripes[i].dev = btrfs_find_device(fs_info, devid, uuid,
NULL);
if (!map->stripes[i].dev) {
map->stripes[i].dev = fill_missing_device(devid, uuid);
printf("warning, device %llu is missing\n",
(unsigned long long)devid);
list_add(&map->stripes[i].dev->dev_list,
&fs_info->fs_devices->devices);
fs_info->fs_devices->missing_devices++;
}
}
ret = insert_cache_extent(&map_tree->cache_tree, &map->ce);
if (ret < 0) {
errno = -ret;
error("failed to add chunk map start=%llu len=%llu: %d (%m)",
map->ce.start, map->ce.size, ret);
}
return ret;
}
static int fill_device_from_item(struct extent_buffer *leaf,
struct btrfs_dev_item *dev_item,
struct btrfs_device *device)
{
unsigned long ptr;
device->devid = btrfs_device_id(leaf, dev_item);
device->total_bytes = btrfs_device_total_bytes(leaf, dev_item);
device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
device->type = btrfs_device_type(leaf, dev_item);
device->io_align = btrfs_device_io_align(leaf, dev_item);
device->io_width = btrfs_device_io_width(leaf, dev_item);
device->sector_size = btrfs_device_sector_size(leaf, dev_item);
ptr = (unsigned long)btrfs_device_uuid(dev_item);
read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
return 0;
}
static int open_seed_devices(struct btrfs_fs_info *fs_info, u8 *fsid)
{
struct btrfs_fs_devices *fs_devices;
int ret;
fs_devices = fs_info->fs_devices->seed;
while (fs_devices) {
if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
ret = 0;
goto out;
}
fs_devices = fs_devices->seed;
}
fs_devices = find_fsid(fsid, NULL);
if (!fs_devices) {
/* missing all seed devices */
fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
if (!fs_devices) {
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&fs_devices->devices);
list_add(&fs_devices->fs_list, &fs_uuids);
memcpy(fs_devices->fsid, fsid, BTRFS_FSID_SIZE);
}
ret = btrfs_open_devices(fs_info, fs_devices, O_RDONLY);
if (ret)
goto out;
fs_devices->seed = fs_info->fs_devices->seed;
fs_info->fs_devices->seed = fs_devices;
out:
return ret;
}
static int read_one_dev(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_dev_item *dev_item)
{
struct btrfs_device *device;
u64 devid;
int ret = 0;
u8 fs_uuid[BTRFS_UUID_SIZE];
u8 dev_uuid[BTRFS_UUID_SIZE];
devid = btrfs_device_id(leaf, dev_item);
read_extent_buffer(leaf, dev_uuid,
(unsigned long)btrfs_device_uuid(dev_item),
BTRFS_UUID_SIZE);
read_extent_buffer(leaf, fs_uuid,
(unsigned long)btrfs_device_fsid(dev_item),
BTRFS_FSID_SIZE);
if (memcmp(fs_uuid, fs_info->fs_devices->fsid, BTRFS_UUID_SIZE)) {
ret = open_seed_devices(fs_info, fs_uuid);
if (ret)
return ret;
}
device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
if (!device) {
device = kzalloc(sizeof(*device), GFP_NOFS);
if (!device)
return -ENOMEM;
device->fd = -1;
list_add(&device->dev_list,
&fs_info->fs_devices->devices);
fs_info->fs_devices->missing_devices++;
}
fill_device_from_item(leaf, dev_item, device);
device->dev_root = fs_info->dev_root;
fs_info->fs_devices->total_rw_bytes +=
btrfs_device_total_bytes(leaf, dev_item);
return ret;
}
int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
{
struct btrfs_super_block *super_copy = fs_info->super_copy;
struct extent_buffer *sb;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u8 *array_ptr;
unsigned long sb_array_offset;
int ret = 0;
u32 num_stripes;
u32 array_size;
u32 len = 0;
u32 cur_offset;
struct btrfs_key key;
if (fs_info->nodesize < BTRFS_SUPER_INFO_SIZE) {
printf("ERROR: nodesize %u too small to read superblock\n",
fs_info->nodesize);
return -EINVAL;
}
sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET,
BTRFS_SUPER_INFO_SIZE);
if (!sb)
return -ENOMEM;
btrfs_set_buffer_uptodate(sb);
write_extent_buffer(sb, super_copy, 0, sizeof(*super_copy));
array_size = btrfs_super_sys_array_size(super_copy);
array_ptr = super_copy->sys_chunk_array;
sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
cur_offset = 0;
while (cur_offset < array_size) {
disk_key = (struct btrfs_disk_key *)array_ptr;
len = sizeof(*disk_key);
if (cur_offset + len > array_size)
goto out_short_read;
btrfs_disk_key_to_cpu(&key, disk_key);
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
chunk = (struct btrfs_chunk *)sb_array_offset;
/*
* At least one btrfs_chunk with one stripe must be
* present, exact stripe count check comes afterwards
*/
len = btrfs_chunk_item_size(1);
if (cur_offset + len > array_size)
goto out_short_read;
num_stripes = btrfs_chunk_num_stripes(sb, chunk);
if (!num_stripes) {
printk(
"ERROR: invalid number of stripes %u in sys_array at offset %u\n",
num_stripes, cur_offset);
ret = -EIO;
break;
}
len = btrfs_chunk_item_size(num_stripes);
if (cur_offset + len > array_size)
goto out_short_read;
ret = read_one_chunk(fs_info, &key, sb, chunk, -1);
if (ret)
break;
} else {
printk(
"ERROR: unexpected item type %u in sys_array at offset %u\n",
(u32)key.type, cur_offset);
ret = -EIO;
break;
}
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
}
free_extent_buffer(sb);
return ret;
out_short_read:
printk("ERROR: sys_array too short to read %u bytes at offset %u\n",
len, cur_offset);
free_extent_buffer(sb);
return -EIO;
}
int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_root *root = fs_info->chunk_root;
int ret;
int slot;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
/*
* Read all device items, and then all the chunk items. All
* device items are found before any chunk item (their object id
* is smaller than the lowest possible object id for a chunk
* item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
*/
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.offset = 0;
key.type = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto error;
while(1) {
leaf = path->nodes[0];
slot = path->slots[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
break;
}
btrfs_item_key_to_cpu(leaf, &found_key, slot);
if (found_key.type == BTRFS_DEV_ITEM_KEY) {
struct btrfs_dev_item *dev_item;
dev_item = btrfs_item_ptr(leaf, slot,
struct btrfs_dev_item);
ret = read_one_dev(fs_info, leaf, dev_item);
if (ret < 0)
goto error;
} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
struct btrfs_chunk *chunk;
chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
ret = read_one_chunk(fs_info, &found_key, leaf, chunk,
slot);
if (ret < 0)
goto error;
}
path->slots[0]++;
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
struct list_head *btrfs_scanned_uuids(void)
{
return &fs_uuids;
}
static int rmw_eb(struct btrfs_fs_info *info,
struct extent_buffer *eb, struct extent_buffer *orig_eb)
{
int ret;
unsigned long orig_off = 0;
unsigned long dest_off = 0;
unsigned long copy_len = eb->len;
ret = read_whole_eb(info, eb, 0);
if (ret)
return ret;
if (eb->start + eb->len <= orig_eb->start ||
eb->start >= orig_eb->start + orig_eb->len)
return 0;
/*
* | ----- orig_eb ------- |
* | ----- stripe ------- |
* | ----- orig_eb ------- |
* | ----- orig_eb ------- |
*/
if (eb->start > orig_eb->start)
orig_off = eb->start - orig_eb->start;
if (orig_eb->start > eb->start)
dest_off = orig_eb->start - eb->start;
if (copy_len > orig_eb->len - orig_off)
copy_len = orig_eb->len - orig_off;
if (copy_len > eb->len - dest_off)
copy_len = eb->len - dest_off;
memcpy(eb->data + dest_off, orig_eb->data + orig_off, copy_len);
return 0;
}
static int split_eb_for_raid56(struct btrfs_fs_info *info,
struct extent_buffer *orig_eb,
struct extent_buffer **ebs,
u64 stripe_len, u64 *raid_map,
int num_stripes)
{
struct extent_buffer **tmp_ebs;
u64 start = orig_eb->start;
u64 this_eb_start;
int i;
int ret = 0;
tmp_ebs = calloc(num_stripes, sizeof(*tmp_ebs));
if (!tmp_ebs)
return -ENOMEM;
/* Alloc memory in a row for data stripes */
for (i = 0; i < num_stripes; i++) {
if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
break;
tmp_ebs[i] = calloc(1, sizeof(**tmp_ebs) + stripe_len);
if (!tmp_ebs[i]) {
ret = -ENOMEM;
goto clean_up;
}
}
for (i = 0; i < num_stripes; i++) {
struct extent_buffer *eb = tmp_ebs[i];
if (raid_map[i] >= BTRFS_RAID5_P_STRIPE)
break;
eb->start = raid_map[i];
eb->len = stripe_len;
eb->refs = 1;
eb->flags = 0;
eb->fs_info = info;
this_eb_start = raid_map[i];
if (start > this_eb_start ||
start + orig_eb->len < this_eb_start + stripe_len) {
ret = rmw_eb(info, eb, orig_eb);
if (ret)
goto clean_up;
} else {
memcpy(eb->data, orig_eb->data + eb->start - start,
stripe_len);
}
ebs[i] = eb;
}
kfree(tmp_ebs);
return ret;
clean_up:
for (i = 0; i < num_stripes; i++)
kfree(tmp_ebs[i]);
kfree(tmp_ebs);
return ret;
}
int write_raid56_with_parity(struct btrfs_fs_info *info,
struct extent_buffer *eb,
struct btrfs_multi_bio *multi,
u64 stripe_len, u64 *raid_map)
{
struct extent_buffer **ebs, *p_eb = NULL, *q_eb = NULL;
int i;
int ret;
int alloc_size = eb->len;
void **pointers;
ebs = kmalloc(sizeof(*ebs) * multi->num_stripes, GFP_KERNEL);
pointers = kmalloc(sizeof(*pointers) * multi->num_stripes, GFP_KERNEL);
if (!ebs || !pointers) {
kfree(ebs);
kfree(pointers);
return -ENOMEM;
}
if (stripe_len > alloc_size)
alloc_size = stripe_len;
ret = split_eb_for_raid56(info, eb, ebs, stripe_len, raid_map,
multi->num_stripes);
if (ret)
goto out;
for (i = 0; i < multi->num_stripes; i++) {
struct extent_buffer *new_eb;
if (raid_map[i] < BTRFS_RAID5_P_STRIPE) {
if (ebs[i]->start != raid_map[i]) {
ret = -EINVAL;
goto out_free_split;
}
continue;
}
new_eb = kmalloc(sizeof(*eb) + alloc_size, GFP_KERNEL);
if (!new_eb) {
ret = -ENOMEM;
goto out_free_split;
}
multi->stripes[i].dev->total_ios++;
new_eb->len = stripe_len;
new_eb->fs_info = info;
if (raid_map[i] == BTRFS_RAID5_P_STRIPE)
p_eb = new_eb;
else if (raid_map[i] == BTRFS_RAID6_Q_STRIPE)
q_eb = new_eb;
}
if (q_eb) {
ebs[multi->num_stripes - 2] = p_eb;
ebs[multi->num_stripes - 1] = q_eb;
for (i = 0; i < multi->num_stripes; i++)
pointers[i] = ebs[i]->data;
raid6_gen_syndrome(multi->num_stripes, stripe_len, pointers);
} else {
ebs[multi->num_stripes - 1] = p_eb;
for (i = 0; i < multi->num_stripes; i++)
pointers[i] = ebs[i]->data;
ret = raid5_gen_result(multi->num_stripes, stripe_len,
multi->num_stripes - 1, pointers);
if (ret < 0)
goto out_free_split;
}
for (i = 0; i < multi->num_stripes; i++) {
multi->stripes[i].dev->total_ios++;
ret = btrfs_pwrite(multi->stripes[i].dev->fd, ebs[i]->data, ebs[i]->len,
multi->stripes[i].physical, info->zoned);
if (ret < 0)
goto out_free_split;
}
out_free_split:
for (i = 0; i < multi->num_stripes; i++) {
if (ebs[i] != eb)
kfree(ebs[i]);
}
out:
kfree(ebs);
kfree(pointers);
return ret;
}
/*
* Get stripe length from chunk item and its stripe items
*
* Caller should only call this function after validating the chunk item
* by using btrfs_check_chunk_valid().
*/
u64 btrfs_stripe_length(struct btrfs_fs_info *fs_info,
struct extent_buffer *leaf,
struct btrfs_chunk *chunk)
{
u64 stripe_len;
u64 chunk_len;
u32 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
u64 profile = btrfs_chunk_type(leaf, chunk) &
BTRFS_BLOCK_GROUP_PROFILE_MASK;
chunk_len = btrfs_chunk_length(leaf, chunk);
stripe_len = chunk_len;
switch (profile) {
case 0: /* Single profile */
case BTRFS_BLOCK_GROUP_RAID1:
case BTRFS_BLOCK_GROUP_RAID1C3:
case BTRFS_BLOCK_GROUP_RAID1C4:
case BTRFS_BLOCK_GROUP_DUP:
/* The default value is already fine. */
break;
case BTRFS_BLOCK_GROUP_RAID0:
stripe_len = chunk_len / num_stripes;
break;
case BTRFS_BLOCK_GROUP_RAID5:
case BTRFS_BLOCK_GROUP_RAID6:
stripe_len = chunk_len / (num_stripes - btrfs_bg_type_to_nparity(profile));
break;
case BTRFS_BLOCK_GROUP_RAID10:
stripe_len = chunk_len / (num_stripes /
btrfs_chunk_sub_stripes(leaf, chunk));
break;
default:
/* Invalid chunk profile found */
BUG_ON(1);
}
return stripe_len;
}
/*
* Return <0 for error.
* Return >0 if we can not find any dev extent beyond @physical
* REturn 0 if we can find any dev extent beyond @physical or covers @physical.
*/
static int check_dev_extent_beyond_bytenr(struct btrfs_fs_info *fs_info,
struct btrfs_device *device,
u64 physical)
{
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_path path = { 0 };
struct btrfs_dev_extent *dext;
struct btrfs_key key;
u64 dext_len;
u64 last_dev_extent_end = 0;
int ret;
key.objectid = device->devid;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
return ret;
if (ret == 0) {
ret = -EUCLEAN;
error("invalid dev extent found for devid %llu", device->devid);
goto out;
}
ret = btrfs_previous_item(root, &path, device->devid, BTRFS_DEV_EXTENT_KEY);
/*
* Either <0 we error out, or ret > 0 we can not find any dev extent
* for this device, then last_dev_extent_end will be 0 and we will
* return 1.
*/
if (ret)
goto out;
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
dext = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_dev_extent);
dext_len = btrfs_dev_extent_length(path.nodes[0], dext);
last_dev_extent_end = dext_len + key.offset;
out:
btrfs_release_path(&path);
if (ret < 0)
return ret;
if (last_dev_extent_end <= physical)
return 1;
return 0;
}
static int reset_device_item_total_bytes(struct btrfs_fs_info *fs_info,
struct btrfs_device *device,
u64 new_size)
{
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_path path = { 0 };
struct btrfs_root *chunk_root = fs_info->chunk_root;
struct btrfs_dev_item *di;
u64 old_bytes = device->total_bytes;
int ret;
ASSERT(IS_ALIGNED(new_size, fs_info->sectorsize));
/* Align the in-memory total_bytes first, and use it as correct size */
device->total_bytes = new_size;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = device->devid;
trans = btrfs_start_transaction(chunk_root, 1);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
errno = -ret;
error_msg(ERROR_MSG_START_TRANS, "%m");
return ret;
}
ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
if (ret > 0) {
error("failed to find DEV_ITEM for devid %llu", device->devid);
ret = -ENOENT;
goto err;
}
if (ret < 0) {
errno = -ret;
error("failed to search chunk root: %d (%m)", ret);
goto err;
}
di = btrfs_item_ptr(path.nodes[0], path.slots[0], struct btrfs_dev_item);
btrfs_set_device_total_bytes(path.nodes[0], di, device->total_bytes);
btrfs_mark_buffer_dirty(path.nodes[0]);
ret = btrfs_commit_transaction(trans, chunk_root);
if (ret < 0) {
errno = -ret;
error_msg(ERROR_MSG_COMMIT_TRANS, "%m");
btrfs_release_path(&path);
return ret;
}
btrfs_release_path(&path);
printf("Fixed device size for devid %llu, old size: %llu new size: %llu\n",
device->devid, old_bytes, device->total_bytes);
return 1;
err:
/* We haven't modified anything, it's OK to commit current trans */
btrfs_commit_transaction(trans, chunk_root);
btrfs_release_path(&path);
return ret;
}
static int btrfs_fix_block_device_size(struct btrfs_fs_info *fs_info,
struct btrfs_device *device)
{
struct stat st;
u64 block_dev_size;
int ret;
if (device->fd < 0 || !device->writeable) {
error("devid %llu is missing or not writable", device->devid);
return -EINVAL;
}
ret = fstat(device->fd, &st);
if (ret < 0) {
error("failed to get block device size for devid %llu: %m",
device->devid);
return -errno;
}
block_dev_size = round_down(device_get_partition_size_fd_stat(device->fd, &st),
fs_info->sectorsize);
/*
* Total_bytes in device item is no larger than the device block size,
* already the correct case.
*/
if (device->total_bytes <= block_dev_size)
return 0;
/*
* Now we need to check if there is any device extent beyond
* @block_dev_size.
*/
ret = check_dev_extent_beyond_bytenr(fs_info, device, block_dev_size);
if (ret < 0)
return ret;
if (ret == 0) {
error(
"found dev extents covering or beyond bytenr %llu, can not shrink the device without losing data",
device->devid);
return -EINVAL;
}
/* Now we can shrink the device item total_bytes to @block_dev_size. */
return reset_device_item_total_bytes(fs_info, device, block_dev_size);
}
/*
* Return 0 if size of @device is already good
* Return >0 if size of @device is not aligned but fixed without problems
* Return <0 if something wrong happened when aligning the size of @device
*/
int btrfs_fix_device_size(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
{
u64 old_bytes = device->total_bytes;
/*
* Our value is already good, then check if it's device item mismatch against
* block device size.
*/
if (IS_ALIGNED(old_bytes, fs_info->sectorsize))
return btrfs_fix_block_device_size(fs_info, device);
return reset_device_item_total_bytes(fs_info, device,
round_down(old_bytes, fs_info->sectorsize));
}
/*
* Return 0 if super block total_bytes matches all devices' total_bytes
* Return >0 if super block total_bytes mismatch but fixed without problem
* Return <0 if we failed to fix super block total_bytes
*/
int btrfs_fix_super_size(struct btrfs_fs_info *fs_info)
{
struct btrfs_device *device;
struct list_head *dev_list = &fs_info->fs_devices->devices;
u64 total_bytes = 0;
u64 old_bytes = btrfs_super_total_bytes(fs_info->super_copy);
int ret;
list_for_each_entry(device, dev_list, dev_list) {
/*
* Caller should ensure this function is called after aligning
* all devices' total_bytes.
*/
if (!IS_ALIGNED(device->total_bytes, fs_info->sectorsize)) {
error("device %llu total_bytes %llu not aligned to %u",
device->devid, device->total_bytes,
fs_info->sectorsize);
return -EUCLEAN;
}
total_bytes += device->total_bytes;
}
if (total_bytes == old_bytes)
return 0;
btrfs_set_super_total_bytes(fs_info->super_copy, total_bytes);
/* Do not use transaction for overwriting only the super block */
ret = write_all_supers(fs_info);
if (ret < 0) {
errno = -ret;
error("failed to write super blocks: %d (%m)", ret);
return ret;
}
printf("Fixed super total bytes, old size: %llu new size: %llu\n",
old_bytes, total_bytes);
return 1;
}
/*
* Return 0 if all devices and super block sizes are good
* Return >0 if any device/super size problem was found, but fixed
* Return <0 if something wrong happened during fixing
*/
int btrfs_fix_device_and_super_size(struct btrfs_fs_info *fs_info)
{
struct btrfs_device *device;
struct list_head *dev_list = &fs_info->fs_devices->devices;
bool have_bad_value = false;
int ret;
/* Seed device is not supported yet */
if (fs_info->fs_devices->seed) {
error("fixing device size with seed device is not supported yet");
return -EOPNOTSUPP;
}
/* All devices must be set up before repairing */
if (list_empty(dev_list)) {
error("no device found");
return -ENODEV;
}
list_for_each_entry(device, dev_list, dev_list) {
if (device->fd == -1 || !device->writeable) {
error("devid %llu is missing or not writeable",
device->devid);
error(
"fixing device size needs all device(s) to be present and writeable");
return -ENODEV;
}
}
/* Repair total_bytes of each device */
list_for_each_entry(device, dev_list, dev_list) {
ret = btrfs_fix_device_size(fs_info, device);
if (ret < 0)
return ret;
if (ret > 0)
have_bad_value = true;
}
/* Repair super total_byte */
ret = btrfs_fix_super_size(fs_info);
if (ret > 0)
have_bad_value = true;
if (have_bad_value) {
printf(
"Fixed unaligned/mismatched total_bytes for super block and device items\n");
ret = 1;
} else {
printf("No device size related problem found\n");
ret = 0;
}
return ret;
}