btrfs-progs/check/qgroup-verify.c

1681 lines
39 KiB
C

/*
* Copyright (C) 2014 SUSE. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*
* Authors: Mark Fasheh <mfasheh@suse.de>
*/
#include <stdio.h>
#include <stdlib.h>
#include <uuid/uuid.h>
#include "kerncompat.h"
#include "kernel-lib/radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "common/utils.h"
#include "kernel-shared/ulist.h"
#include "common/rbtree-utils.h"
#include "transaction.h"
#include "repair.h"
#include "qgroup-verify.h"
static u64 *qgroup_item_count;
void qgroup_set_item_count_ptr(u64 *item_count_ptr)
{
qgroup_item_count = item_count_ptr;
}
/*#define QGROUP_VERIFY_DEBUG*/
static unsigned long tot_extents_scanned = 0;
struct qgroup_count;
static struct qgroup_count *find_count(u64 qgroupid);
struct qgroup_info {
u64 referenced;
u64 referenced_compressed;
u64 exclusive;
u64 exclusive_compressed;
};
struct qgroup_count {
u64 qgroupid;
int subvol_exists;
struct btrfs_disk_key key;
struct qgroup_info diskinfo;
struct qgroup_info info;
struct rb_node rb_node;
/* Parents when we are a child group */
struct list_head groups;
/*
* Children when we are a parent group (not currently used but
* maintained to mirror kernel handling of qgroups)
*/
struct list_head members;
u64 cur_refcnt;
struct list_head bad_list;
};
static struct counts_tree {
struct rb_root root;
unsigned int num_groups;
unsigned int rescan_running:1;
unsigned int qgroup_inconsist:1;
u64 scan_progress;
} counts = { .root = RB_ROOT };
static LIST_HEAD(bad_qgroups);
static struct rb_root by_bytenr = RB_ROOT;
/*
* Glue structure to represent the relations between qgroups. Mirrored
* from kernel.
*/
struct btrfs_qgroup_list {
struct list_head next_group;
struct list_head next_member;
struct qgroup_count *group; /* Parent group */
struct qgroup_count *member;
};
/* Allow us to reset ref counts during accounting without zeroing each group. */
static u64 qgroup_seq = 1ULL;
static inline void update_cur_refcnt(struct qgroup_count *c)
{
if (c->cur_refcnt < qgroup_seq)
c->cur_refcnt = qgroup_seq;
c->cur_refcnt++;
}
static inline u64 group_get_cur_refcnt(struct qgroup_count *c)
{
if (c->cur_refcnt < qgroup_seq)
return 0;
return c->cur_refcnt - qgroup_seq;
}
static void inc_qgroup_seq(int root_count)
{
qgroup_seq += root_count + 1;
}
/*
* List of interior tree blocks. We walk this list after loading the
* extent tree to resolve implied refs. For each interior node we'll
* place a shared ref in the ref tree against each child object. This
* allows the shared ref resolving code to do the actual work later of
* finding roots to account against.
*
* An implied ref is when a tree block has refs on it that may not
* exist in any of its child nodes. Even though the refs might not
* exist further down the tree, the fact that our interior node has a
* ref means we need to account anything below it to all its roots.
*/
static struct ulist *tree_blocks = NULL; /* unode->val = bytenr, ->aux
* = tree_block pointer */
struct tree_block {
int level;
u64 num_bytes;
};
struct ref {
u64 bytenr;
u64 num_bytes;
u64 parent;
u64 root;
struct rb_node bytenr_node;
};
#ifdef QGROUP_VERIFY_DEBUG
static void print_ref(struct ref *ref)
{
printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
"root: %llu\n", ref->bytenr, ref->num_bytes,
ref->parent, ref->root);
}
static void print_all_refs(void)
{
unsigned long count = 0;
struct ref *ref;
struct rb_node *node;
node = rb_first(&by_bytenr);
while (node) {
ref = rb_entry(node, struct ref, bytenr_node);
print_ref(ref);
count++;
node = rb_next(node);
}
printf("%lu extents scanned with %lu refs in total.\n",
tot_extents_scanned, count);
}
#endif
/*
* Store by bytenr in rbtree
*
* The tree is sorted in ascending order by bytenr, then parent, then
* root. Since full refs have a parent == 0, those will come before
* shared refs.
*/
static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
{
if (bytenr < orig->bytenr)
return -1;
if (bytenr > orig->bytenr)
return 1;
if (parent < orig->parent)
return -1;
if (parent > orig->parent)
return 1;
if (root < orig->root)
return -1;
if (root > orig->root)
return 1;
return 0;
}
/*
* insert a new ref into the tree. returns the existing ref entry
* if one is already there.
*/
static struct ref *insert_ref(struct ref *ref)
{
int ret;
struct rb_node **p = &by_bytenr.rb_node;
struct rb_node *parent = NULL;
struct ref *curr;
while (*p) {
parent = *p;
curr = rb_entry(parent, struct ref, bytenr_node);
ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
if (ret < 0)
p = &(*p)->rb_left;
else if (ret > 0)
p = &(*p)->rb_right;
else
return curr;
}
rb_link_node(&ref->bytenr_node, parent, p);
rb_insert_color(&ref->bytenr_node, &by_bytenr);
return ref;
}
/*
* Partial search, returns the first ref with matching bytenr. Caller
* can walk forward from there.
*
* Leftmost refs will be full refs - this is used to our advantage
* when resolving roots.
*/
static struct ref *find_ref_bytenr(u64 bytenr)
{
struct rb_node *n = by_bytenr.rb_node;
struct ref *ref;
while (n) {
ref = rb_entry(n, struct ref, bytenr_node);
if (bytenr < ref->bytenr)
n = n->rb_left;
else if (bytenr > ref->bytenr)
n = n->rb_right;
else {
/* Walk to the left to find the first item */
struct rb_node *node_left = rb_prev(&ref->bytenr_node);
struct ref *ref_left;
while (node_left) {
ref_left = rb_entry(node_left, struct ref,
bytenr_node);
if (ref_left->bytenr != ref->bytenr)
break;
ref = ref_left;
node_left = rb_prev(node_left);
}
return ref;
}
}
return NULL;
}
static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
{
struct rb_node *n = by_bytenr.rb_node;
struct ref *ref;
int ret;
while (n) {
ref = rb_entry(n, struct ref, bytenr_node);
ret = compare_ref(ref, bytenr, root, parent);
if (ret < 0)
n = n->rb_left;
else if (ret > 0)
n = n->rb_right;
else
return ref;
}
return NULL;
}
static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
{
struct ref *ref = find_ref(bytenr, root, parent);
BUG_ON(parent && root);
if (ref == NULL) {
ref = calloc(1, sizeof(*ref));
if (ref) {
ref->bytenr = bytenr;
ref->root = root;
ref->parent = parent;
ref->num_bytes = num_bytes;
insert_ref(ref);
}
}
return ref;
}
static void free_ref_node(struct rb_node *node)
{
struct ref *ref = rb_entry(node, struct ref, bytenr_node);
free(ref);
}
FREE_RB_BASED_TREE(ref, free_ref_node);
/*
* Resolves all the possible roots for the ref at parent.
*/
static int find_parent_roots(struct ulist *roots, u64 parent)
{
struct ref *ref;
struct rb_node *node;
int ret;
/*
* Search the rbtree for the first ref with bytenr == parent.
* Walk forward so long as bytenr == parent, adding resolved root ids.
* For each unresolved root, we recurse
*/
ref = find_ref_bytenr(parent);
if (!ref) {
error("bytenr ref not found for parent %llu",
(unsigned long long)parent);
return -EIO;
}
node = &ref->bytenr_node;
if (ref->bytenr != parent) {
error("found bytenr ref does not match parent: %llu != %llu",
(unsigned long long)ref->bytenr,
(unsigned long long)parent);
return -EIO;
}
{
/*
* Random sanity check, are we actually getting the
* leftmost node?
*/
struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
struct ref *prev;
if (prev_node) {
prev = rb_entry(prev_node, struct ref, bytenr_node);
if (prev->bytenr == parent) {
error(
"unexpected: prev bytenr same as parent: %llu",
(unsigned long long)parent);
return -EIO;
}
}
}
do {
if (ref->root) {
if (is_fstree(ref->root)) {
ret = ulist_add(roots, ref->root, 0, 0);
if (ret < 0)
goto out;
}
} else if (ref->parent == ref->bytenr) {
/*
* Special loop case for tree reloc tree
*/
ref->root = BTRFS_TREE_RELOC_OBJECTID;
} else {
ret = find_parent_roots(roots, ref->parent);
if (ret < 0)
goto out;
}
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == parent);
ret = 0;
out:
return ret;
}
static int account_one_extent(struct ulist *roots, u64 bytenr, u64 num_bytes)
{
int ret;
u64 id, nr_roots, nr_refs;
struct qgroup_count *count;
struct ulist *counts = ulist_alloc(0);
struct ulist *tmp = ulist_alloc(0);
struct ulist_iterator uiter;
struct ulist_iterator tmp_uiter;
struct ulist_node *unode;
struct ulist_node *tmp_unode;
struct btrfs_qgroup_list *glist;
if (!counts || !tmp) {
ulist_free(counts);
ulist_free(tmp);
return ENOMEM;
}
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
BUG_ON(unode->val == 0ULL);
/*
* For each root, find their corresponding tracking group and
* add it to our qgroups list.
*/
count = find_count(unode->val);
if (!count)
continue;
BUG_ON(!is_fstree(unode->val));
ret = ulist_add(counts, count->qgroupid, ptr_to_u64(count), 0);
if (ret < 0)
goto out;
/*
* Now we look for parents (and parents of those...). Use a tmp
* ulist here to avoid re-walking (and re-incrementing) our
* already added items on every loop iteration.
*/
ulist_reinit(tmp);
ret = ulist_add(tmp, count->qgroupid, ptr_to_u64(count), 0);
if (ret < 0)
goto out;
ULIST_ITER_INIT(&tmp_uiter);
while ((tmp_unode = ulist_next(tmp, &tmp_uiter))) {
/* Bump the refcount on a node every time we see it. */
count = u64_to_ptr(tmp_unode->aux);
update_cur_refcnt(count);
list_for_each_entry(glist, &count->groups, next_group) {
struct qgroup_count *parent;
parent = glist->group;
id = parent->qgroupid;
BUG_ON(!count);
ret = ulist_add(counts, id, ptr_to_u64(parent),
0);
if (ret < 0)
goto out;
ret = ulist_add(tmp, id, ptr_to_u64(parent),
0);
if (ret < 0)
goto out;
}
}
}
/*
* Now that we have gathered up and counted all the groups, we
* can add bytes for this ref.
*/
nr_roots = roots->nnodes;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(counts, &uiter))) {
count = u64_to_ptr(unode->aux);
nr_refs = group_get_cur_refcnt(count);
if (nr_refs) {
count->info.referenced += num_bytes;
count->info.referenced_compressed += num_bytes;
if (nr_refs == nr_roots) {
count->info.exclusive += num_bytes;
count->info.exclusive_compressed += num_bytes;
}
}
#ifdef QGROUP_VERIFY_DEBUG
printf("account (%llu, %llu), qgroup %llu/%llu, rfer %llu,"
" excl %llu, refs %llu, roots %llu\n", bytenr, num_bytes,
btrfs_qgroup_level(count->qgroupid),
btrfs_qgroup_subvid(count->qgroupid),
count->info.referenced, count->info.exclusive, nr_refs,
nr_roots);
#endif
}
inc_qgroup_seq(roots->nnodes);
ret = 0;
out:
ulist_free(counts);
ulist_free(tmp);
return ret;
}
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
struct ulist *roots);
/*
* Account each ref. Walk the refs, for each set of refs in a
* given bytenr:
*
* - add the roots for direct refs to the ref roots ulist
*
* - resolve all possible roots for shared refs, insert each
* of those into ref_roots ulist (this is a recursive process)
*
* - With all roots resolved we can account the ref - this is done in
* account_one_extent().
*/
static int account_all_refs(int do_qgroups, u64 search_subvol)
{
struct ref *ref;
struct rb_node *node;
u64 bytenr, num_bytes;
struct ulist *roots = ulist_alloc(0);
int ret;
node = rb_first(&by_bytenr);
while (node) {
ulist_reinit(roots);
ref = rb_entry(node, struct ref, bytenr_node);
/*
* Walk forward through the list of refs for this
* bytenr, adding roots to our ulist. If it's a full
* ref, then we have the easy case. Otherwise we need
* to search for roots.
*/
bytenr = ref->bytenr;
num_bytes = ref->num_bytes;
do {
BUG_ON(ref->bytenr != bytenr);
BUG_ON(ref->num_bytes != num_bytes);
if (ref->root) {
if (is_fstree(ref->root)) {
if (ulist_add(roots, ref->root, 0, 0) < 0)
goto enomem;
}
} else {
ret = find_parent_roots(roots, ref->parent);
if (ret < 0)
goto enomem;
}
/*
* When we leave this inner loop, node is set
* to next in our tree and will be turned into
* a ref object up top
*/
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == bytenr);
if (search_subvol)
print_subvol_info(search_subvol, bytenr, num_bytes,
roots);
if (!do_qgroups)
continue;
if (account_one_extent(roots, bytenr, num_bytes))
goto enomem;
}
ulist_free(roots);
return 0;
enomem:
error("Out of memory while accounting refs for qgroups");
return -ENOMEM;
}
static u64 resolve_one_root(u64 bytenr)
{
struct ref *ref = find_ref_bytenr(bytenr);
BUG_ON(ref == NULL);
if (ref->root)
return ref->root;
if (ref->parent == bytenr)
return BTRFS_TREE_RELOC_OBJECTID;
return resolve_one_root(ref->parent);
}
static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
{
return u64_to_ptr(unode->aux);
}
static inline u64 unode_bytenr(struct ulist_node *unode)
{
return unode->val;
}
static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
{
struct tree_block *block = calloc(1, sizeof(*block));
if (block) {
block->num_bytes = num_bytes;
block->level = level;
if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
return 0;
free(block);
}
return -ENOMEM;
}
static void free_tree_blocks(void)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
if (!tree_blocks)
return;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter)))
free(unode_tree_block(unode));
ulist_free(tree_blocks);
tree_blocks = NULL;
}
#ifdef QGROUP_VERIFY_DEBUG
static void print_tree_block(u64 bytenr, struct tree_block *block)
{
struct ref *ref;
struct rb_node *node;
printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
block->level);
ref = find_ref_bytenr(bytenr);
node = &ref->bytenr_node;
do {
print_ref(ref);
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == bytenr);
printf("\n");
}
static void print_all_tree_blocks(void)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
if (!tree_blocks)
return;
printf("Listing all found interior tree nodes:\n");
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter)))
print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
}
#endif
static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
{
int nr, i;
int extent_type;
u64 bytenr, num_bytes;
struct btrfs_key key;
struct btrfs_disk_key disk_key;
struct btrfs_file_extent_item *fi;
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
btrfs_item_key(eb, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
/* filter out: inline, disk_bytenr == 0, compressed?
* not if we can avoid it */
extent_type = btrfs_file_extent_type(eb, fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
if (!bytenr)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
return ENOMEM;
}
return 0;
}
static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 ref_parent)
{
int ret, nr, i;
struct extent_buffer *eb;
u64 new_bytenr;
u64 new_num_bytes;
// printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
// bytenr, num_bytes, ref_parent);
eb = read_tree_block(info, bytenr, 0);
if (!extent_buffer_uptodate(eb))
return -EIO;
ret = 0;
/* Don't add a ref for our starting tree block to itself */
if (bytenr != ref_parent) {
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
return ENOMEM;
}
if (btrfs_is_leaf(eb)) {
ret = add_refs_for_leaf_items(eb, ref_parent);
goto out;
}
/*
* Interior nodes are tuples of (key, bytenr) where key is the
* leftmost key in the tree block pointed to by bytenr. We
* don't have to care about key here, just follow the bytenr
* pointer.
*/
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
if (qgroup_item_count)
(*qgroup_item_count)++;
new_bytenr = btrfs_node_blockptr(eb, i);
new_num_bytes = info->nodesize;
ret = travel_tree(info, root, new_bytenr, new_num_bytes,
ref_parent);
}
out:
free_extent_buffer(eb);
return ret;
}
static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
struct tree_block *block)
{
int ret;
u64 root_id = resolve_one_root(bytenr);
struct btrfs_root *root;
struct btrfs_key key;
/* Tree reloc tree doesn't contribute qgroup, skip it */
if (root_id == BTRFS_TREE_RELOC_OBJECTID)
return 0;
key.objectid = root_id;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
/*
* XXX: Don't free the root object as we don't know whether it
* came off our fs_info struct or not.
*/
root = btrfs_read_fs_root(info, &key);
if (!root || IS_ERR(root))
return ENOENT;
ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
if (ret)
return ret;
return 0;
}
/*
* Place shared refs in the ref tree for each child of an interior tree node.
*/
static int map_implied_refs(struct btrfs_fs_info *info)
{
int ret = 0;
struct ulist_iterator uiter;
struct ulist_node *unode;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter))) {
ret = add_refs_for_implied(info, unode_bytenr(unode),
unode_tree_block(unode));
if (ret)
goto out;
}
out:
return ret;
}
/*
* insert a new root into the tree. returns the existing root entry
* if one is already there. qgroupid is used
* as the key
*/
static int insert_count(struct qgroup_count *qc)
{
struct rb_node **p = &counts.root.rb_node;
struct rb_node *parent = NULL;
struct qgroup_count *curr;
while (*p) {
parent = *p;
curr = rb_entry(parent, struct qgroup_count, rb_node);
if (qc->qgroupid < curr->qgroupid)
p = &(*p)->rb_left;
else if (qc->qgroupid > curr->qgroupid)
p = &(*p)->rb_right;
else
return EEXIST;
}
counts.num_groups++;
rb_link_node(&qc->rb_node, parent, p);
rb_insert_color(&qc->rb_node, &counts.root);
return 0;
}
static struct qgroup_count *find_count(u64 qgroupid)
{
struct rb_node *n = counts.root.rb_node;
struct qgroup_count *count;
while (n) {
count = rb_entry(n, struct qgroup_count, rb_node);
if (qgroupid < count->qgroupid)
n = n->rb_left;
else if (qgroupid > count->qgroupid)
n = n->rb_right;
else
return count;
}
return NULL;
}
static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
struct extent_buffer *leaf,
struct btrfs_qgroup_info_item *disk)
{
struct qgroup_count *c = calloc(1, sizeof(*c));
struct qgroup_info *item;
if (c) {
c->qgroupid = btrfs_disk_key_offset(key);
c->key = *key;
item = &c->diskinfo;
item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
item->referenced_compressed =
btrfs_qgroup_info_referenced_compressed(leaf, disk);
item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
item->exclusive_compressed =
btrfs_qgroup_info_exclusive_compressed(leaf, disk);
INIT_LIST_HEAD(&c->groups);
INIT_LIST_HEAD(&c->members);
INIT_LIST_HEAD(&c->bad_list);
if (insert_count(c)) {
free(c);
c = NULL;
}
}
return c;
}
static int add_qgroup_relation(u64 memberid, u64 parentid)
{
struct qgroup_count *member;
struct qgroup_count *parent;
struct btrfs_qgroup_list *list;
if (memberid > parentid)
return 0;
member = find_count(memberid);
parent = find_count(parentid);
if (!member || !parent)
return -ENOENT;
list = calloc(1, sizeof(*list));
if (!list)
return -ENOMEM;
list->group = parent;
list->member = member;
list_add_tail(&list->next_group, &member->groups);
list_add_tail(&list->next_member, &parent->members);
return 0;
}
static void read_qgroup_status(struct extent_buffer *eb, int slot,
struct counts_tree *counts)
{
struct btrfs_qgroup_status_item *status_item;
u64 flags;
status_item = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_status_item);
flags = btrfs_qgroup_status_flags(eb, status_item);
/*
* Since qgroup_inconsist/rescan_running is just one bit,
* assign value directly won't work.
*/
counts->qgroup_inconsist = !!(flags &
BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT);
counts->rescan_running = !!(flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN);
counts->scan_progress = btrfs_qgroup_status_rescan(eb, status_item);
}
static int load_quota_info(struct btrfs_fs_info *info)
{
int ret;
struct btrfs_root *root = info->quota_root;
struct btrfs_root *tmproot;
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_key root_key;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
struct btrfs_qgroup_info_item *item;
struct qgroup_count *count;
int i, nr;
int search_relations = 0;
loop:
/*
* Do 2 passes, the first allocates group counts and reads status
* items. The 2nd pass picks up relation items and glues them to their
* respective count structures.
*/
btrfs_init_path(&path);
key.offset = 0;
key.objectid = search_relations ? 0 : BTRFS_QGROUP_RELATION_KEY;
key.type = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
goto out;
}
while (1) {
leaf = path.nodes[0];
nr = btrfs_header_nritems(leaf);
for(i = 0; i < nr; i++) {
btrfs_item_key(leaf, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (search_relations) {
if (key.type == BTRFS_QGROUP_RELATION_KEY) {
ret = add_qgroup_relation(key.objectid,
key.offset);
if (ret) {
error("out of memory");
goto out;
}
}
continue;
}
if (key.type == BTRFS_QGROUP_STATUS_KEY) {
read_qgroup_status(leaf, i, &counts);
continue;
}
/*
* At this point, we can ignore anything that
* isn't a qgroup info.
*/
if (key.type != BTRFS_QGROUP_INFO_KEY)
continue;
item = btrfs_item_ptr(leaf, i,
struct btrfs_qgroup_info_item);
count = alloc_count(&disk_key, leaf, item);
if (!count) {
ret = ENOMEM;
fprintf(stderr, "ERROR: out of memory\n");
goto out;
}
root_key.objectid = key.offset;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
if (tmproot && !IS_ERR(tmproot)) {
count->subvol_exists = 1;
btrfs_free_fs_root(tmproot);
}
}
ret = btrfs_next_leaf(root, &path);
if (ret != 0)
break;
}
ret = 0;
btrfs_release_path(&path);
if (!search_relations) {
search_relations = 1;
goto loop;
}
out:
return ret;
}
static int add_inline_refs(struct btrfs_fs_info *info,
struct extent_buffer *ei_leaf, int slot,
u64 bytenr, u64 num_bytes, int meta_item)
{
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_data_ref *dref;
u64 flags, root_obj, offset, parent;
u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
int type;
unsigned long end;
unsigned long ptr;
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(ei_leaf, ei);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
struct btrfs_tree_block_info *tbinfo;
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
} else {
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
}
ptr = (unsigned long)iref;
end = (unsigned long)ei + item_size;
while (ptr < end) {
iref = (struct btrfs_extent_inline_ref *)ptr;
parent = root_obj = 0;
offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
type = btrfs_extent_inline_ref_type(ei_leaf, iref);
switch (type) {
case BTRFS_TREE_BLOCK_REF_KEY:
root_obj = offset;
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
break;
case BTRFS_SHARED_DATA_REF_KEY:
case BTRFS_SHARED_BLOCK_REF_KEY:
parent = offset;
break;
default:
return 1;
}
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
return ENOMEM;
ptr += btrfs_extent_inline_ref_size(type);
}
return 0;
}
static int add_keyed_ref(struct btrfs_fs_info *info,
struct btrfs_key *key,
struct extent_buffer *leaf, int slot,
u64 bytenr, u64 num_bytes)
{
u64 root_obj = 0, parent = 0;
struct btrfs_extent_data_ref *dref;
switch(key->type) {
case BTRFS_TREE_BLOCK_REF_KEY:
root_obj = key->offset;
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
root_obj = btrfs_extent_data_ref_root(leaf, dref);
break;
case BTRFS_SHARED_DATA_REF_KEY:
case BTRFS_SHARED_BLOCK_REF_KEY:
parent = key->offset;
break;
default:
return 1;
}
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
return ENOMEM;
return 0;
}
/*
* return value of 0 indicates leaf or not meta data. The code that
* calls this does not need to make a distinction between the two as
* it is only concerned with intermediate blocks which will always
* have level > 0.
*/
static int get_tree_block_level(struct btrfs_key *key,
struct extent_buffer *ei_leaf,
int slot)
{
int level = 0;
int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
u64 flags;
struct btrfs_extent_item *ei;
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(ei_leaf, ei);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
struct btrfs_tree_block_info *tbinfo;
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
level = btrfs_tree_block_level(ei_leaf, tbinfo);
} else if (meta_key) {
/* skinny metadata */
level = (int)key->offset;
}
return level;
}
/*
* Walk the extent tree, allocating a ref item for every ref and
* storing it in the bytenr tree.
*/
static int scan_extents(struct btrfs_fs_info *info,
u64 start, u64 end)
{
int ret, i, nr, level;
struct btrfs_root *root = info->extent_root;
struct btrfs_key key;
struct btrfs_path path;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
u64 bytenr = 0, num_bytes = 0;
btrfs_init_path(&path);
key.objectid = start;
key.type = 0;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
goto out;
}
path.reada = READA_BACK;
while (1) {
leaf = path.nodes[0];
nr = btrfs_header_nritems(leaf);
for(i = 0; i < nr; i++) {
btrfs_item_key(leaf, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.objectid < start)
continue;
if (key.objectid > end)
goto done;
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY) {
int meta = 0;
tot_extents_scanned++;
bytenr = key.objectid;
num_bytes = key.offset;
if (key.type == BTRFS_METADATA_ITEM_KEY) {
num_bytes = info->nodesize;
meta = 1;
}
ret = add_inline_refs(info, leaf, i, bytenr,
num_bytes, meta);
if (ret)
goto out;
level = get_tree_block_level(&key, leaf, i);
if (level) {
if (alloc_tree_block(bytenr, num_bytes,
level))
return ENOMEM;
}
continue;
}
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
continue;
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
continue;
/*
* Keyed refs should come after their extent
* item in the tree. As a result, the value of
* bytenr and num_bytes should be unchanged
* from the above block that catches the
* original extent item.
*/
BUG_ON(key.objectid != bytenr);
ret = add_keyed_ref(info, &key, leaf, i, bytenr,
num_bytes);
if (ret)
goto out;
}
ret = btrfs_next_leaf(root, &path);
if (ret != 0) {
if (ret < 0) {
fprintf(stderr,
"ERROR: Next leaf failed: %d\n", ret);
goto out;
}
break;
}
}
done:
ret = 0;
out:
btrfs_release_path(&path);
return ret;
}
static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
char *type)
{
printf("%s\t\t%s %llu %s compressed %llu\n",
prefix, type, (unsigned long long)bytes, type,
(unsigned long long)bytes_compressed);
}
static void print_fields_signed(long long bytes,
long long bytes_compressed,
char *prefix, char *type)
{
printf("%s\t\t%s %lld %s compressed %lld\n",
prefix, type, bytes, type, bytes_compressed);
}
static inline int qgroup_printable(struct qgroup_count *c)
{
return !!(c->subvol_exists || btrfs_qgroup_level(c->qgroupid));
}
static int report_qgroup_difference(struct qgroup_count *count, int verbose)
{
int is_different;
struct qgroup_info *info = &count->info;
struct qgroup_info *disk = &count->diskinfo;
long long excl_diff = info->exclusive - disk->exclusive;
long long ref_diff = info->referenced - disk->referenced;
is_different = excl_diff || ref_diff;
if (verbose || (is_different && qgroup_printable(count))) {
printf("Counts for qgroup id: %llu/%llu %s\n",
btrfs_qgroup_level(count->qgroupid),
btrfs_qgroup_subvid(count->qgroupid),
is_different ? "are different" : "");
print_fields(info->referenced, info->referenced_compressed,
"our:", "referenced");
print_fields(disk->referenced, disk->referenced_compressed,
"disk:", "referenced");
if (ref_diff)
print_fields_signed(ref_diff, ref_diff,
"diff:", "referenced");
print_fields(info->exclusive, info->exclusive_compressed,
"our:", "exclusive");
print_fields(disk->exclusive, disk->exclusive_compressed,
"disk:", "exclusive");
if (excl_diff)
print_fields_signed(excl_diff, excl_diff,
"diff:", "exclusive");
}
return is_different;
}
/*
* Report qgroups errors
* @all: if set, all qgroup will be checked and reported even already
* inconsistent or under rescan.
*/
void report_qgroups(int all)
{
struct rb_node *node;
struct qgroup_count *c;
if (!repair && counts.rescan_running) {
if (all) {
printf(
"Qgroup rescan is running, a difference in qgroup counts is expected\n");
} else {
printf(
"Qgroup rescan is running, qgroups will not be printed.\n");
return;
}
}
/*
* It's possible that rescan hasn't been initialized yet.
*/
if (counts.qgroup_inconsist && !counts.rescan_running)
printf(
"Rescan hasn't been initialzied, a difference in qgroup accounting is expected\n");
node = rb_first(&counts.root);
while (node) {
c = rb_entry(node, struct qgroup_count, rb_node);
report_qgroup_difference(c, all);
node = rb_next(node);
}
}
void free_qgroup_counts(void)
{
struct rb_node *node;
struct qgroup_count *c;
struct btrfs_qgroup_list *glist, *tmpglist;
node = rb_first(&counts.root);
while (node) {
c = rb_entry(node, struct qgroup_count, rb_node);
list_del(&c->bad_list);
list_for_each_entry_safe(glist, tmpglist, &c->groups,
next_group) {
list_del(&glist->next_group);
list_del(&glist->next_member);
free(glist);
}
list_for_each_entry_safe(glist, tmpglist, &c->members,
next_group) {
list_del(&glist->next_group);
list_del(&glist->next_member);
free(glist);
}
node = rb_next(node);
rb_erase(&c->rb_node, &counts.root);
free(c);
}
}
static bool is_bad_qgroup(struct qgroup_count *count)
{
struct qgroup_info *info = &count->info;
struct qgroup_info *disk = &count->diskinfo;
s64 excl_diff = info->exclusive - disk->exclusive;
s64 ref_diff = info->referenced - disk->referenced;
return (excl_diff || ref_diff);
}
/*
* Verify all qgroup numbers.
*
* Return <0 for fatal errors (e.g. ENOMEM or failed to read quota tree)
* Return 0 if all qgroup numbers are correct or no need to check (under rescan)
* Return >0 if qgroup numbers are inconsistent.
*/
int qgroup_verify_all(struct btrfs_fs_info *info)
{
int ret;
bool found_err = false;
bool skip_err = false;
struct rb_node *node;
if (!info->quota_enabled)
return 0;
tree_blocks = ulist_alloc(0);
if (!tree_blocks) {
fprintf(stderr,
"ERROR: Out of memory while allocating ulist.\n");
return ENOMEM;
}
ret = load_quota_info(info);
if (ret) {
fprintf(stderr, "ERROR: Loading qgroups from disk: %d\n", ret);
goto out;
}
if (counts.rescan_running)
skip_err = true;
if (counts.qgroup_inconsist && !counts.rescan_running &&
counts.rescan_running == 0)
skip_err = true;
/*
* Put all extent refs into our rbtree
*/
ret = scan_extents(info, 0, ~0ULL);
if (ret) {
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
goto out;
}
ret = map_implied_refs(info);
if (ret) {
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
goto out;
}
ret = account_all_refs(1, 0);
/*
* Do the correctness check here, so for callers who don't want
* verbose report can skip calling report_qgroups()
*/
node = rb_first(&counts.root);
while (node) {
struct qgroup_count *c;
c = rb_entry(node, struct qgroup_count, rb_node);
if (is_bad_qgroup(c)) {
list_add_tail(&c->bad_list, &bad_qgroups);
found_err = true;
}
node = rb_next(node);
}
out:
/*
* Don't free the qgroup count records as they will be walked
* later via the print function.
*/
free_tree_blocks();
free_ref_tree(&by_bytenr);
if (!ret && !skip_err && found_err)
ret = 1;
return ret;
}
static void __print_subvol_info(u64 bytenr, u64 num_bytes, struct ulist *roots)
{
int n = roots->nnodes;
struct ulist_iterator uiter;
struct ulist_node *unode;
printf("%llu\t%llu\t%d\t", bytenr, num_bytes, n);
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
printf("%llu ", unode->val);
}
printf("\n");
}
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
struct ulist *roots)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
BUG_ON(unode->val == 0ULL);
if (unode->val == subvolid) {
__print_subvol_info(bytenr, num_bytes, roots);
return;
}
}
}
int print_extent_state(struct btrfs_fs_info *info, u64 subvol)
{
int ret;
tree_blocks = ulist_alloc(0);
if (!tree_blocks) {
fprintf(stderr,
"ERROR: Out of memory while allocating ulist.\n");
return ENOMEM;
}
/*
* Put all extent refs into our rbtree
*/
ret = scan_extents(info, 0, ~0ULL);
if (ret) {
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
goto out;
}
ret = map_implied_refs(info);
if (ret) {
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
goto out;
}
printf("Offset\t\tLen\tRoot Refs\tRoots\n");
ret = account_all_refs(0, subvol);
out:
free_tree_blocks();
free_ref_tree(&by_bytenr);
return ret;
}
static int repair_qgroup_info(struct btrfs_fs_info *info,
struct qgroup_count *count, bool silent)
{
int ret;
struct btrfs_root *root = info->quota_root;
struct btrfs_trans_handle *trans;
struct btrfs_path path;
struct btrfs_qgroup_info_item *info_item;
struct btrfs_key key;
if (!silent)
printf("Repair qgroup %llu/%llu\n",
btrfs_qgroup_level(count->qgroupid),
btrfs_qgroup_subvid(count->qgroupid));
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
btrfs_init_path(&path);
key.objectid = 0;
key.type = BTRFS_QGROUP_INFO_KEY;
key.offset = count->qgroupid;
ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
if (ret) {
error("could not find disk item for qgroup %llu/%llu",
btrfs_qgroup_level(count->qgroupid),
btrfs_qgroup_subvid(count->qgroupid));
if (ret > 0)
ret = -ENOENT;
goto out;
}
info_item = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_qgroup_info_item);
btrfs_set_qgroup_info_generation(path.nodes[0], info_item,
trans->transid);
btrfs_set_qgroup_info_referenced(path.nodes[0], info_item,
count->info.referenced);
btrfs_set_qgroup_info_referenced_compressed(path.nodes[0], info_item,
count->info.referenced_compressed);
btrfs_set_qgroup_info_exclusive(path.nodes[0], info_item,
count->info.exclusive);
btrfs_set_qgroup_info_exclusive_compressed(path.nodes[0], info_item,
count->info.exclusive_compressed);
btrfs_mark_buffer_dirty(path.nodes[0]);
out:
btrfs_commit_transaction(trans, root);
btrfs_release_path(&path);
return ret;
}
static int repair_qgroup_status(struct btrfs_fs_info *info, bool silent)
{
int ret;
struct btrfs_root *root = info->quota_root;
struct btrfs_trans_handle *trans;
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_qgroup_status_item *status_item;
if (!silent)
printf("Repair qgroup status item\n");
trans = btrfs_start_transaction(root, 1);
if (IS_ERR(trans))
return PTR_ERR(trans);
btrfs_init_path(&path);
key.objectid = 0;
key.type = BTRFS_QGROUP_STATUS_KEY;
key.offset = 0;
ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
if (ret) {
error("could not find qgroup status item");
if (ret > 0)
ret = -ENOENT;
goto out;
}
status_item = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_qgroup_status_item);
btrfs_set_qgroup_status_flags(path.nodes[0], status_item,
BTRFS_QGROUP_STATUS_FLAG_ON);
btrfs_set_qgroup_status_rescan(path.nodes[0], status_item, 0);
btrfs_set_qgroup_status_generation(path.nodes[0], status_item,
trans->transid);
btrfs_set_qgroup_status_version(path.nodes[0], status_item,
BTRFS_QGROUP_STATUS_VERSION);
btrfs_mark_buffer_dirty(path.nodes[0]);
out:
btrfs_commit_transaction(trans, root);
btrfs_release_path(&path);
return ret;
}
int repair_qgroups(struct btrfs_fs_info *info, int *repaired, bool silent)
{
int ret = 0;
struct qgroup_count *count, *tmpcount;
*repaired = 0;
if (info->readonly)
return 0;
list_for_each_entry_safe(count, tmpcount, &bad_qgroups, bad_list) {
ret = repair_qgroup_info(info, count, silent);
if (ret) {
goto out;
}
(*repaired)++;
list_del_init(&count->bad_list);
}
/*
* Do this step last as we want the latest transaction id on
* our qgroup status to avoid a (useless) warning after
* mount.
*/
if (*repaired || counts.qgroup_inconsist || counts.rescan_running) {
ret = repair_qgroup_status(info, silent);
if (ret)
goto out;
(*repaired)++;
}
out:
return ret;
}