btrfs-progs/convert/main.c

1991 lines
50 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <linux/limits.h>
#include <getopt.h>
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "transaction.h"
#include "crc32c.h"
#include "utils.h"
#include "task-utils.h"
#include "help.h"
#include "mkfs/common.h"
#include "convert/common.h"
#include "convert/source-fs.h"
#include "fsfeatures.h"
static void *print_copied_inodes(void *p)
{
struct task_ctx *priv = p;
const char work_indicator[] = { '.', 'o', 'O', 'o' };
uint32_t count = 0;
task_period_start(priv->info, 1000 /* 1s */);
while (1) {
count++;
printf("copy inodes [%c] [%10d/%10d]\r",
work_indicator[count % 4], priv->cur_copy_inodes,
priv->max_copy_inodes);
fflush(stdout);
task_period_wait(priv->info);
}
return NULL;
}
static int after_copied_inodes(void *p)
{
printf("\n");
fflush(stdout);
return 0;
}
static inline int copy_inodes(struct btrfs_convert_context *cctx,
struct btrfs_root *root, int datacsum,
int packing, int noxattr, struct task_ctx *p)
{
return cctx->convert_ops->copy_inodes(cctx, root, datacsum, packing,
noxattr, p);
}
static inline void convert_close_fs(struct btrfs_convert_context *cctx)
{
cctx->convert_ops->close_fs(cctx);
}
static inline int convert_check_state(struct btrfs_convert_context *cctx)
{
return cctx->convert_ops->check_state(cctx);
}
static int csum_disk_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 disk_bytenr, u64 num_bytes)
{
u32 blocksize = root->sectorsize;
u64 offset;
char *buffer;
int ret = 0;
buffer = malloc(blocksize);
if (!buffer)
return -ENOMEM;
for (offset = 0; offset < num_bytes; offset += blocksize) {
ret = read_disk_extent(root, disk_bytenr + offset,
blocksize, buffer);
if (ret)
break;
ret = btrfs_csum_file_block(trans,
root->fs_info->csum_root,
disk_bytenr + num_bytes,
disk_bytenr + offset,
buffer, blocksize);
if (ret)
break;
}
free(buffer);
return ret;
}
static int create_image_file_range(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct cache_tree *used,
struct btrfs_inode_item *inode,
u64 ino, u64 bytenr, u64 *ret_len,
int datacsum)
{
struct cache_extent *cache;
struct btrfs_block_group_cache *bg_cache;
u64 len = *ret_len;
u64 disk_bytenr;
int i;
int ret;
if (bytenr != round_down(bytenr, root->sectorsize)) {
error("bytenr not sectorsize aligned: %llu",
(unsigned long long)bytenr);
return -EINVAL;
}
if (len != round_down(len, root->sectorsize)) {
error("length not sectorsize aligned: %llu",
(unsigned long long)len);
return -EINVAL;
}
len = min_t(u64, len, BTRFS_MAX_EXTENT_SIZE);
/*
* Skip sb ranges first
* [0, 1M), [sb_offset(1), +64K), [sb_offset(2), +64K].
*
* Or we will insert a hole into current image file, and later
* migrate block will fail as there is already a file extent.
*/
if (bytenr < 1024 * 1024) {
*ret_len = 1024 * 1024 - bytenr;
return 0;
}
for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
u64 cur = btrfs_sb_offset(i);
if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
*ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
return 0;
}
}
for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
u64 cur = btrfs_sb_offset(i);
/*
* |--reserved--|
* |----range-------|
* May still need to go through file extent inserts
*/
if (bytenr < cur && bytenr + len >= cur) {
len = min_t(u64, len, cur - bytenr);
break;
}
/*
* |--reserved--|
* |---range---|
* Drop out, no need to insert anything
*/
if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
*ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
return 0;
}
}
cache = search_cache_extent(used, bytenr);
if (cache) {
if (cache->start <= bytenr) {
/*
* |///////Used///////|
* |<--insert--->|
* bytenr
*/
len = min_t(u64, len, cache->start + cache->size -
bytenr);
disk_bytenr = bytenr;
} else {
/*
* |//Used//|
* |<-insert-->|
* bytenr
*/
len = min(len, cache->start - bytenr);
disk_bytenr = 0;
datacsum = 0;
}
} else {
/*
* |//Used//| |EOF
* |<-insert-->|
* bytenr
*/
disk_bytenr = 0;
datacsum = 0;
}
if (disk_bytenr) {
/* Check if the range is in a data block group */
bg_cache = btrfs_lookup_block_group(root->fs_info, bytenr);
if (!bg_cache)
return -ENOENT;
if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA))
return -EINVAL;
/* The extent should never cross block group boundary */
len = min_t(u64, len, bg_cache->key.objectid +
bg_cache->key.offset - bytenr);
}
if (len != round_down(len, root->sectorsize)) {
error("remaining length not sectorsize aligned: %llu",
(unsigned long long)len);
return -EINVAL;
}
ret = btrfs_record_file_extent(trans, root, ino, inode, bytenr,
disk_bytenr, len);
if (ret < 0)
return ret;
if (datacsum)
ret = csum_disk_extent(trans, root, bytenr, len);
*ret_len = len;
return ret;
}
/*
* Relocate old fs data in one reserved ranges
*
* Since all old fs data in reserved range is not covered by any chunk nor
* data extent, we don't need to handle any reference but add new
* extent/reference, which makes codes more clear
*/
static int migrate_one_reserved_range(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct cache_tree *used,
struct btrfs_inode_item *inode, int fd,
u64 ino, u64 start, u64 len, int datacsum)
{
u64 cur_off = start;
u64 cur_len = len;
u64 hole_start = start;
u64 hole_len;
struct cache_extent *cache;
struct btrfs_key key;
struct extent_buffer *eb;
int ret = 0;
while (cur_off < start + len) {
cache = lookup_cache_extent(used, cur_off, cur_len);
if (!cache)
break;
cur_off = max(cache->start, cur_off);
cur_len = min(cache->start + cache->size, start + len) -
cur_off;
BUG_ON(cur_len < root->sectorsize);
/* reserve extent for the data */
ret = btrfs_reserve_extent(trans, root, cur_len, 0, 0, (u64)-1,
&key, 1);
if (ret < 0)
break;
eb = malloc(sizeof(*eb) + cur_len);
if (!eb) {
ret = -ENOMEM;
break;
}
ret = pread(fd, eb->data, cur_len, cur_off);
if (ret < cur_len) {
ret = (ret < 0 ? ret : -EIO);
free(eb);
break;
}
eb->start = key.objectid;
eb->len = key.offset;
/* Write the data */
ret = write_and_map_eb(trans, root, eb);
free(eb);
if (ret < 0)
break;
/* Now handle extent item and file extent things */
ret = btrfs_record_file_extent(trans, root, ino, inode, cur_off,
key.objectid, key.offset);
if (ret < 0)
break;
/* Finally, insert csum items */
if (datacsum)
ret = csum_disk_extent(trans, root, key.objectid,
key.offset);
/* Don't forget to insert hole */
hole_len = cur_off - hole_start;
if (hole_len) {
ret = btrfs_record_file_extent(trans, root, ino, inode,
hole_start, 0, hole_len);
if (ret < 0)
break;
}
cur_off += key.offset;
hole_start = cur_off;
cur_len = start + len - cur_off;
}
/* Last hole */
if (start + len - hole_start > 0)
ret = btrfs_record_file_extent(trans, root, ino, inode,
hole_start, 0, start + len - hole_start);
return ret;
}
/*
* Relocate the used ext2 data in reserved ranges
* [0,1M)
* [btrfs_sb_offset(1), +BTRFS_STRIPE_LEN)
* [btrfs_sb_offset(2), +BTRFS_STRIPE_LEN)
*/
static int migrate_reserved_ranges(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct cache_tree *used,
struct btrfs_inode_item *inode, int fd,
u64 ino, u64 total_bytes, int datacsum)
{
u64 cur_off;
u64 cur_len;
int ret = 0;
/* 0 ~ 1M */
cur_off = 0;
cur_len = 1024 * 1024;
ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
cur_off, cur_len, datacsum);
if (ret < 0)
return ret;
/* second sb(fisrt sb is included in 0~1M) */
cur_off = btrfs_sb_offset(1);
cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
if (cur_off > total_bytes)
return ret;
ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
cur_off, cur_len, datacsum);
if (ret < 0)
return ret;
/* Last sb */
cur_off = btrfs_sb_offset(2);
cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
if (cur_off > total_bytes)
return ret;
ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
cur_off, cur_len, datacsum);
return ret;
}
/*
* Helper for expand and merge extent_cache for wipe_one_reserved_range() to
* handle wiping a range that exists in cache.
*/
static int _expand_extent_cache(struct cache_tree *tree,
struct cache_extent *entry,
u64 min_stripe_size, int backward)
{
struct cache_extent *ce;
int diff;
if (entry->size >= min_stripe_size)
return 0;
diff = min_stripe_size - entry->size;
if (backward) {
ce = prev_cache_extent(entry);
if (!ce)
goto expand_back;
if (ce->start + ce->size >= entry->start - diff) {
/* Directly merge with previous extent */
ce->size = entry->start + entry->size - ce->start;
remove_cache_extent(tree, entry);
free(entry);
return 0;
}
expand_back:
/* No overlap, normal extent */
if (entry->start < diff) {
error("cannot find space for data chunk layout");
return -ENOSPC;
}
entry->start -= diff;
entry->size += diff;
return 0;
}
ce = next_cache_extent(entry);
if (!ce)
goto expand_after;
if (entry->start + entry->size + diff >= ce->start) {
/* Directly merge with next extent */
entry->size = ce->start + ce->size - entry->start;
remove_cache_extent(tree, ce);
free(ce);
return 0;
}
expand_after:
entry->size += diff;
return 0;
}
/*
* Remove one reserve range from given cache tree
* if min_stripe_size is non-zero, it will ensure for split case,
* all its split cache extent is no smaller than @min_strip_size / 2.
*/
static int wipe_one_reserved_range(struct cache_tree *tree,
u64 start, u64 len, u64 min_stripe_size,
int ensure_size)
{
struct cache_extent *cache;
int ret;
BUG_ON(ensure_size && min_stripe_size == 0);
/*
* The logical here is simplified to handle special cases only
* So we don't need to consider merge case for ensure_size
*/
BUG_ON(min_stripe_size && (min_stripe_size < len * 2 ||
min_stripe_size / 2 < BTRFS_STRIPE_LEN));
/* Also, wipe range should already be aligned */
BUG_ON(start != round_down(start, BTRFS_STRIPE_LEN) ||
start + len != round_up(start + len, BTRFS_STRIPE_LEN));
min_stripe_size /= 2;
cache = lookup_cache_extent(tree, start, len);
if (!cache)
return 0;
if (start <= cache->start) {
/*
* |--------cache---------|
* |-wipe-|
*/
BUG_ON(start + len <= cache->start);
/*
* The wipe size is smaller than min_stripe_size / 2,
* so the result length should still meet min_stripe_size
* And no need to do alignment
*/
cache->size -= (start + len - cache->start);
if (cache->size == 0) {
remove_cache_extent(tree, cache);
free(cache);
return 0;
}
BUG_ON(ensure_size && cache->size < min_stripe_size);
cache->start = start + len;
return 0;
} else if (start > cache->start && start + len < cache->start +
cache->size) {
/*
* |-------cache-----|
* |-wipe-|
*/
u64 old_start = cache->start;
u64 old_len = cache->size;
u64 insert_start = start + len;
u64 insert_len;
cache->size = start - cache->start;
/* Expand the leading half part if needed */
if (ensure_size && cache->size < min_stripe_size) {
ret = _expand_extent_cache(tree, cache,
min_stripe_size, 1);
if (ret < 0)
return ret;
}
/* And insert the new one */
insert_len = old_start + old_len - start - len;
ret = add_merge_cache_extent(tree, insert_start, insert_len);
if (ret < 0)
return ret;
/* Expand the last half part if needed */
if (ensure_size && insert_len < min_stripe_size) {
cache = lookup_cache_extent(tree, insert_start,
insert_len);
if (!cache || cache->start != insert_start ||
cache->size != insert_len)
return -ENOENT;
ret = _expand_extent_cache(tree, cache,
min_stripe_size, 0);
}
return ret;
}
/*
* |----cache-----|
* |--wipe-|
* Wipe len should be small enough and no need to expand the
* remaining extent
*/
cache->size = start - cache->start;
BUG_ON(ensure_size && cache->size < min_stripe_size);
return 0;
}
/*
* Remove reserved ranges from given cache_tree
*
* It will remove the following ranges
* 1) 0~1M
* 2) 2nd superblock, +64K (make sure chunks are 64K aligned)
* 3) 3rd superblock, +64K
*
* @min_stripe must be given for safety check
* and if @ensure_size is given, it will ensure affected cache_extent will be
* larger than min_stripe_size
*/
static int wipe_reserved_ranges(struct cache_tree *tree, u64 min_stripe_size,
int ensure_size)
{
int ret;
ret = wipe_one_reserved_range(tree, 0, 1024 * 1024, min_stripe_size,
ensure_size);
if (ret < 0)
return ret;
ret = wipe_one_reserved_range(tree, btrfs_sb_offset(1),
BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
if (ret < 0)
return ret;
ret = wipe_one_reserved_range(tree, btrfs_sb_offset(2),
BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
return ret;
}
static int calculate_available_space(struct btrfs_convert_context *cctx)
{
struct cache_tree *used = &cctx->used;
struct cache_tree *data_chunks = &cctx->data_chunks;
struct cache_tree *free = &cctx->free;
struct cache_extent *cache;
u64 cur_off = 0;
/*
* Twice the minimal chunk size, to allow later wipe_reserved_ranges()
* works without need to consider overlap
*/
u64 min_stripe_size = 2 * 16 * 1024 * 1024;
int ret;
/* Calculate data_chunks */
for (cache = first_cache_extent(used); cache;
cache = next_cache_extent(cache)) {
u64 cur_len;
if (cache->start + cache->size < cur_off)
continue;
if (cache->start > cur_off + min_stripe_size)
cur_off = cache->start;
cur_len = max(cache->start + cache->size - cur_off,
min_stripe_size);
ret = add_merge_cache_extent(data_chunks, cur_off, cur_len);
if (ret < 0)
goto out;
cur_off += cur_len;
}
/*
* remove reserved ranges, so we won't ever bother relocating an old
* filesystem extent to other place.
*/
ret = wipe_reserved_ranges(data_chunks, min_stripe_size, 1);
if (ret < 0)
goto out;
cur_off = 0;
/*
* Calculate free space
* Always round up the start bytenr, to avoid metadata extent corss
* stripe boundary, as later mkfs_convert() won't have all the extent
* allocation check
*/
for (cache = first_cache_extent(data_chunks); cache;
cache = next_cache_extent(cache)) {
if (cache->start < cur_off)
continue;
if (cache->start > cur_off) {
u64 insert_start;
u64 len;
len = cache->start - round_up(cur_off,
BTRFS_STRIPE_LEN);
insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
ret = add_merge_cache_extent(free, insert_start, len);
if (ret < 0)
goto out;
}
cur_off = cache->start + cache->size;
}
/* Don't forget the last range */
if (cctx->total_bytes > cur_off) {
u64 len = cctx->total_bytes - cur_off;
u64 insert_start;
insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
ret = add_merge_cache_extent(free, insert_start, len);
if (ret < 0)
goto out;
}
/* Remove reserved bytes */
ret = wipe_reserved_ranges(free, min_stripe_size, 0);
out:
return ret;
}
/*
* Read used space, and since we have the used space,
* calcuate data_chunks and free for later mkfs
*/
static int convert_read_used_space(struct btrfs_convert_context *cctx)
{
int ret;
ret = cctx->convert_ops->read_used_space(cctx);
if (ret)
return ret;
ret = calculate_available_space(cctx);
return ret;
}
/*
* Create the fs image file of old filesystem.
*
* This is completely fs independent as we have cctx->used, only
* need to create file extents pointing to all the positions.
*/
static int create_image(struct btrfs_root *root,
struct btrfs_mkfs_config *cfg,
struct btrfs_convert_context *cctx, int fd,
u64 size, char *name, int datacsum)
{
struct btrfs_inode_item buf;
struct btrfs_trans_handle *trans;
struct btrfs_path path;
struct btrfs_key key;
struct cache_extent *cache;
struct cache_tree used_tmp;
u64 cur;
u64 ino;
u64 flags = BTRFS_INODE_READONLY;
int ret;
if (!datacsum)
flags |= BTRFS_INODE_NODATASUM;
trans = btrfs_start_transaction(root, 1);
if (!trans)
return -ENOMEM;
cache_tree_init(&used_tmp);
btrfs_init_path(&path);
ret = btrfs_find_free_objectid(trans, root, BTRFS_FIRST_FREE_OBJECTID,
&ino);
if (ret < 0)
goto out;
ret = btrfs_new_inode(trans, root, ino, 0400 | S_IFREG);
if (ret < 0)
goto out;
ret = btrfs_change_inode_flags(trans, root, ino, flags);
if (ret < 0)
goto out;
ret = btrfs_add_link(trans, root, ino, BTRFS_FIRST_FREE_OBJECTID, name,
strlen(name), BTRFS_FT_REG_FILE, NULL, 1);
if (ret < 0)
goto out;
key.objectid = ino;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
if (ret) {
ret = (ret > 0 ? -ENOENT : ret);
goto out;
}
read_extent_buffer(path.nodes[0], &buf,
btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
sizeof(buf));
btrfs_release_path(&path);
/*
* Create a new used space cache, which doesn't contain the reserved
* range
*/
for (cache = first_cache_extent(&cctx->used); cache;
cache = next_cache_extent(cache)) {
ret = add_cache_extent(&used_tmp, cache->start, cache->size);
if (ret < 0)
goto out;
}
ret = wipe_reserved_ranges(&used_tmp, 0, 0);
if (ret < 0)
goto out;
/*
* Start from 1M, as 0~1M is reserved, and create_image_file_range()
* can't handle bytenr 0(will consider it as a hole)
*/
cur = 1024 * 1024;
while (cur < size) {
u64 len = size - cur;
ret = create_image_file_range(trans, root, &used_tmp,
&buf, ino, cur, &len, datacsum);
if (ret < 0)
goto out;
cur += len;
}
/* Handle the reserved ranges */
ret = migrate_reserved_ranges(trans, root, &cctx->used, &buf, fd, ino,
cfg->num_bytes, datacsum);
key.objectid = ino;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
if (ret) {
ret = (ret > 0 ? -ENOENT : ret);
goto out;
}
btrfs_set_stack_inode_size(&buf, cfg->num_bytes);
write_extent_buffer(path.nodes[0], &buf,
btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
sizeof(buf));
out:
free_extent_cache_tree(&used_tmp);
btrfs_release_path(&path);
btrfs_commit_transaction(trans, root);
return ret;
}
static struct btrfs_root* link_subvol(struct btrfs_root *root,
const char *base, u64 root_objectid)
{
struct btrfs_trans_handle *trans;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *new_root = NULL;
struct btrfs_path path;
struct btrfs_inode_item *inode_item;
struct extent_buffer *leaf;
struct btrfs_key key;
u64 dirid = btrfs_root_dirid(&root->root_item);
u64 index = 2;
char buf[BTRFS_NAME_LEN + 1]; /* for snprintf null */
int len;
int i;
int ret;
len = strlen(base);
if (len == 0 || len > BTRFS_NAME_LEN)
return NULL;
btrfs_init_path(&path);
key.objectid = dirid;
key.type = BTRFS_DIR_INDEX_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret <= 0) {
error("search for DIR_INDEX dirid %llu failed: %d",
(unsigned long long)dirid, ret);
goto fail;
}
if (path.slots[0] > 0) {
path.slots[0]--;
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
if (key.objectid == dirid && key.type == BTRFS_DIR_INDEX_KEY)
index = key.offset + 1;
}
btrfs_release_path(&path);
trans = btrfs_start_transaction(root, 1);
if (!trans) {
error("unable to start transaction");
goto fail;
}
key.objectid = dirid;
key.offset = 0;
key.type = BTRFS_INODE_ITEM_KEY;
ret = btrfs_lookup_inode(trans, root, &path, &key, 1);
if (ret) {
error("search for INODE_ITEM %llu failed: %d",
(unsigned long long)dirid, ret);
goto fail;
}
leaf = path.nodes[0];
inode_item = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_inode_item);
key.objectid = root_objectid;
key.offset = (u64)-1;
key.type = BTRFS_ROOT_ITEM_KEY;
memcpy(buf, base, len);
for (i = 0; i < 1024; i++) {
ret = btrfs_insert_dir_item(trans, root, buf, len,
dirid, &key, BTRFS_FT_DIR, index);
if (ret != -EEXIST)
break;
len = snprintf(buf, ARRAY_SIZE(buf), "%s%d", base, i);
if (len < 1 || len > BTRFS_NAME_LEN) {
ret = -EINVAL;
break;
}
}
if (ret)
goto fail;
btrfs_set_inode_size(leaf, inode_item, len * 2 +
btrfs_inode_size(leaf, inode_item));
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(&path);
/* add the backref first */
ret = btrfs_add_root_ref(trans, tree_root, root_objectid,
BTRFS_ROOT_BACKREF_KEY,
root->root_key.objectid,
dirid, index, buf, len);
if (ret) {
error("unable to add root backref for %llu: %d",
root->root_key.objectid, ret);
goto fail;
}
/* now add the forward ref */
ret = btrfs_add_root_ref(trans, tree_root, root->root_key.objectid,
BTRFS_ROOT_REF_KEY, root_objectid,
dirid, index, buf, len);
if (ret) {
error("unable to add root ref for %llu: %d",
root->root_key.objectid, ret);
goto fail;
}
ret = btrfs_commit_transaction(trans, root);
if (ret) {
error("transaction commit failed: %d", ret);
goto fail;
}
new_root = btrfs_read_fs_root(fs_info, &key);
if (IS_ERR(new_root)) {
error("unable to fs read root: %lu", PTR_ERR(new_root));
new_root = NULL;
}
fail:
btrfs_init_path(&path);
return new_root;
}
static int create_subvol(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 root_objectid)
{
struct extent_buffer *tmp;
struct btrfs_root *new_root;
struct btrfs_key key;
struct btrfs_root_item root_item;
int ret;
ret = btrfs_copy_root(trans, root, root->node, &tmp,
root_objectid);
if (ret)
return ret;
memcpy(&root_item, &root->root_item, sizeof(root_item));
btrfs_set_root_bytenr(&root_item, tmp->start);
btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
btrfs_set_root_generation(&root_item, trans->transid);
free_extent_buffer(tmp);
key.objectid = root_objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = trans->transid;
ret = btrfs_insert_root(trans, root->fs_info->tree_root,
&key, &root_item);
key.offset = (u64)-1;
new_root = btrfs_read_fs_root(root->fs_info, &key);
if (!new_root || IS_ERR(new_root)) {
error("unable to fs read root: %lu", PTR_ERR(new_root));
return PTR_ERR(new_root);
}
ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID);
return ret;
}
/*
* New make_btrfs() has handle system and meta chunks quite well.
* So only need to add remaining data chunks.
*/
static int make_convert_data_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info,
struct btrfs_mkfs_config *cfg,
struct btrfs_convert_context *cctx)
{
struct btrfs_root *extent_root = fs_info->extent_root;
struct cache_tree *data_chunks = &cctx->data_chunks;
struct cache_extent *cache;
u64 max_chunk_size;
int ret = 0;
/*
* Don't create data chunk over 10% of the convert device
* And for single chunk, don't create chunk larger than 1G.
*/
max_chunk_size = cfg->num_bytes / 10;
max_chunk_size = min((u64)(1024 * 1024 * 1024), max_chunk_size);
max_chunk_size = round_down(max_chunk_size, extent_root->sectorsize);
for (cache = first_cache_extent(data_chunks); cache;
cache = next_cache_extent(cache)) {
u64 cur = cache->start;
while (cur < cache->start + cache->size) {
u64 len;
u64 cur_backup = cur;
len = min(max_chunk_size,
cache->start + cache->size - cur);
ret = btrfs_alloc_data_chunk(trans, extent_root,
&cur_backup, len,
BTRFS_BLOCK_GROUP_DATA, 1);
if (ret < 0)
break;
ret = btrfs_make_block_group(trans, extent_root, 0,
BTRFS_BLOCK_GROUP_DATA,
BTRFS_FIRST_CHUNK_TREE_OBJECTID,
cur, len);
if (ret < 0)
break;
cur += len;
}
}
return ret;
}
/*
* Init the temp btrfs to a operational status.
*
* It will fix the extent usage accounting(XXX: Do we really need?) and
* insert needed data chunks, to ensure all old fs data extents are covered
* by DATA chunks, preventing wrong chunks are allocated.
*
* And also create convert image subvolume and relocation tree.
* (XXX: Not need again?)
* But the convert image subvolume is *NOT* linked to fs tree yet.
*/
static int init_btrfs(struct btrfs_mkfs_config *cfg, struct btrfs_root *root,
struct btrfs_convert_context *cctx, int datacsum,
int packing, int noxattr)
{
struct btrfs_key location;
struct btrfs_trans_handle *trans;
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
/*
* Don't alloc any metadata/system chunk, as we don't want
* any meta/sys chunk allcated before all data chunks are inserted.
* Or we screw up the chunk layout just like the old implement.
*/
fs_info->avoid_sys_chunk_alloc = 1;
fs_info->avoid_meta_chunk_alloc = 1;
trans = btrfs_start_transaction(root, 1);
if (!trans) {
error("unable to start transaction");
ret = -EINVAL;
goto err;
}
ret = btrfs_fix_block_accounting(trans, root);
if (ret)
goto err;
ret = make_convert_data_block_groups(trans, fs_info, cfg, cctx);
if (ret)
goto err;
ret = btrfs_make_root_dir(trans, fs_info->tree_root,
BTRFS_ROOT_TREE_DIR_OBJECTID);
if (ret)
goto err;
memcpy(&location, &root->root_key, sizeof(location));
location.offset = (u64)-1;
ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7,
btrfs_super_root_dir(fs_info->super_copy),
&location, BTRFS_FT_DIR, 0);
if (ret)
goto err;
ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7,
location.objectid,
btrfs_super_root_dir(fs_info->super_copy), 0);
if (ret)
goto err;
btrfs_set_root_dirid(&fs_info->fs_root->root_item,
BTRFS_FIRST_FREE_OBJECTID);
/* subvol for fs image file */
ret = create_subvol(trans, root, CONV_IMAGE_SUBVOL_OBJECTID);
if (ret < 0) {
error("failed to create subvolume image root: %d", ret);
goto err;
}
/* subvol for data relocation tree */
ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID);
if (ret < 0) {
error("failed to create DATA_RELOC root: %d", ret);
goto err;
}
ret = btrfs_commit_transaction(trans, root);
fs_info->avoid_sys_chunk_alloc = 0;
fs_info->avoid_meta_chunk_alloc = 0;
err:
return ret;
}
/*
* Migrate super block to its default position and zero 0 ~ 16k
*/
static int migrate_super_block(int fd, u64 old_bytenr)
{
int ret;
struct extent_buffer *buf;
struct btrfs_super_block *super;
u32 len;
u32 bytenr;
buf = malloc(sizeof(*buf) + BTRFS_SUPER_INFO_SIZE);
if (!buf)
return -ENOMEM;
buf->len = BTRFS_SUPER_INFO_SIZE;
ret = pread(fd, buf->data, BTRFS_SUPER_INFO_SIZE, old_bytenr);
if (ret != BTRFS_SUPER_INFO_SIZE)
goto fail;
super = (struct btrfs_super_block *)buf->data;
BUG_ON(btrfs_super_bytenr(super) != old_bytenr);
btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET);
csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
ret = pwrite(fd, buf->data, BTRFS_SUPER_INFO_SIZE,
BTRFS_SUPER_INFO_OFFSET);
if (ret != BTRFS_SUPER_INFO_SIZE)
goto fail;
ret = fsync(fd);
if (ret)
goto fail;
memset(buf->data, 0, BTRFS_SUPER_INFO_SIZE);
for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) {
len = BTRFS_SUPER_INFO_OFFSET - bytenr;
if (len > BTRFS_SUPER_INFO_SIZE)
len = BTRFS_SUPER_INFO_SIZE;
ret = pwrite(fd, buf->data, len, bytenr);
if (ret != len) {
fprintf(stderr, "unable to zero fill device\n");
break;
}
bytenr += len;
}
ret = 0;
fsync(fd);
fail:
free(buf);
if (ret > 0)
ret = -1;
return ret;
}
static int prepare_system_chunk_sb(struct btrfs_super_block *super)
{
struct btrfs_chunk *chunk;
struct btrfs_disk_key *key;
u32 sectorsize = btrfs_super_sectorsize(super);
key = (struct btrfs_disk_key *)(super->sys_chunk_array);
chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
sizeof(struct btrfs_disk_key));
btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
btrfs_set_disk_key_offset(key, 0);
btrfs_set_stack_chunk_length(chunk, btrfs_super_total_bytes(super));
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
btrfs_set_stack_chunk_io_align(chunk, sectorsize);
btrfs_set_stack_chunk_io_width(chunk, sectorsize);
btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
btrfs_set_stack_chunk_num_stripes(chunk, 1);
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
chunk->stripe.devid = super->dev_item.devid;
btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
return 0;
}
const struct btrfs_convert_operations ext2_convert_ops;
static const struct btrfs_convert_operations *convert_operations[] = {
#if BTRFSCONVERT_EXT2
&ext2_convert_ops,
#endif
};
static int convert_open_fs(const char *devname,
struct btrfs_convert_context *cctx)
{
int i;
memset(cctx, 0, sizeof(*cctx));
for (i = 0; i < ARRAY_SIZE(convert_operations); i++) {
int ret = convert_operations[i]->open_fs(cctx, devname);
if (ret == 0) {
cctx->convert_ops = convert_operations[i];
return ret;
}
}
error("no file system found to convert");
return -1;
}
static int do_convert(const char *devname, int datacsum, int packing,
int noxattr, u32 nodesize, int copylabel, const char *fslabel,
int progress, u64 features)
{
int ret;
int fd = -1;
u32 blocksize;
u64 total_bytes;
struct btrfs_root *root;
struct btrfs_root *image_root;
struct btrfs_convert_context cctx;
struct btrfs_key key;
char *subvol_name = NULL;
struct task_ctx ctx;
char features_buf[64];
struct btrfs_mkfs_config mkfs_cfg;
init_convert_context(&cctx);
ret = convert_open_fs(devname, &cctx);
if (ret)
goto fail;
ret = convert_check_state(&cctx);
if (ret)
warning(
"source filesystem is not clean, running filesystem check is recommended");
ret = convert_read_used_space(&cctx);
if (ret)
goto fail;
blocksize = cctx.blocksize;
total_bytes = (u64)blocksize * (u64)cctx.block_count;
if (blocksize < 4096) {
error("block size is too small: %u < 4096", blocksize);
goto fail;
}
if (btrfs_check_nodesize(nodesize, blocksize, features))
goto fail;
fd = open(devname, O_RDWR);
if (fd < 0) {
error("unable to open %s: %s", devname, strerror(errno));
goto fail;
}
btrfs_parse_features_to_string(features_buf, features);
if (features == BTRFS_MKFS_DEFAULT_FEATURES)
strcat(features_buf, " (default)");
printf("create btrfs filesystem:\n");
printf("\tblocksize: %u\n", blocksize);
printf("\tnodesize: %u\n", nodesize);
printf("\tfeatures: %s\n", features_buf);
mkfs_cfg.label = cctx.volume_name;
mkfs_cfg.num_bytes = total_bytes;
mkfs_cfg.nodesize = nodesize;
mkfs_cfg.sectorsize = blocksize;
mkfs_cfg.stripesize = blocksize;
mkfs_cfg.features = features;
/* New convert need these space */
memset(mkfs_cfg.chunk_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
memset(mkfs_cfg.fs_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
ret = make_convert_btrfs(fd, &mkfs_cfg, &cctx);
if (ret) {
error("unable to create initial ctree: %s", strerror(-ret));
goto fail;
}
root = open_ctree_fd(fd, devname, mkfs_cfg.super_bytenr,
OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
if (!root) {
error("unable to open ctree");
goto fail;
}
ret = init_btrfs(&mkfs_cfg, root, &cctx, datacsum, packing, noxattr);
if (ret) {
error("unable to setup the root tree: %d", ret);
goto fail;
}
printf("creating %s image file\n", cctx.convert_ops->name);
ret = asprintf(&subvol_name, "%s_saved", cctx.convert_ops->name);
if (ret < 0) {
error("memory allocation failure for subvolume name: %s_saved",
cctx.convert_ops->name);
goto fail;
}
key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
key.offset = (u64)-1;
key.type = BTRFS_ROOT_ITEM_KEY;
image_root = btrfs_read_fs_root(root->fs_info, &key);
if (!image_root) {
error("unable to create image subvolume");
goto fail;
}
ret = create_image(image_root, &mkfs_cfg, &cctx, fd,
mkfs_cfg.num_bytes, "image", datacsum);
if (ret) {
error("failed to create %s/image: %d", subvol_name, ret);
goto fail;
}
printf("creating btrfs metadata");
ctx.max_copy_inodes = (cctx.inodes_count - cctx.free_inodes_count);
ctx.cur_copy_inodes = 0;
if (progress) {
ctx.info = task_init(print_copied_inodes, after_copied_inodes,
&ctx);
task_start(ctx.info);
}
ret = copy_inodes(&cctx, root, datacsum, packing, noxattr, &ctx);
if (ret) {
error("error during copy_inodes %d", ret);
goto fail;
}
if (progress) {
task_stop(ctx.info);
task_deinit(ctx.info);
}
image_root = link_subvol(root, subvol_name, CONV_IMAGE_SUBVOL_OBJECTID);
if (!image_root) {
error("unable to link subvolume %s", subvol_name);
goto fail;
}
free(subvol_name);
memset(root->fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
if (copylabel == 1) {
__strncpy_null(root->fs_info->super_copy->label,
cctx.volume_name, BTRFS_LABEL_SIZE - 1);
printf("copy label '%s'\n", root->fs_info->super_copy->label);
} else if (copylabel == -1) {
strcpy(root->fs_info->super_copy->label, fslabel);
printf("set label to '%s'\n", fslabel);
}
ret = close_ctree(root);
if (ret) {
error("close_ctree failed: %d", ret);
goto fail;
}
convert_close_fs(&cctx);
clean_convert_context(&cctx);
/*
* If this step succeed, we get a mountable btrfs. Otherwise
* the source fs is left unchanged.
*/
ret = migrate_super_block(fd, mkfs_cfg.super_bytenr);
if (ret) {
error("unable to migrate super block: %d", ret);
goto fail;
}
root = open_ctree_fd(fd, devname, 0,
OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
if (!root) {
error("unable to open ctree for finalization");
goto fail;
}
root->fs_info->finalize_on_close = 1;
close_ctree(root);
close(fd);
printf("conversion complete");
return 0;
fail:
clean_convert_context(&cctx);
if (fd != -1)
close(fd);
warning(
"an error occurred during conversion, filesystem is partially created but not finalized and not mountable");
return -1;
}
/*
* Check if a non 1:1 mapped chunk can be rolled back.
* For new convert, it's OK while for old convert it's not.
*/
static int may_rollback_chunk(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group_cache *bg;
struct btrfs_key key;
struct btrfs_path path;
struct btrfs_root *extent_root = fs_info->extent_root;
u64 bg_start;
u64 bg_end;
int ret;
bg = btrfs_lookup_first_block_group(fs_info, bytenr);
if (!bg)
return -ENOENT;
bg_start = bg->key.objectid;
bg_end = bg->key.objectid + bg->key.offset;
key.objectid = bg_end;
key.type = BTRFS_METADATA_ITEM_KEY;
key.offset = 0;
btrfs_init_path(&path);
ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0);
if (ret < 0)
return ret;
while (1) {
struct btrfs_extent_item *ei;
ret = btrfs_previous_extent_item(extent_root, &path, bg_start);
if (ret > 0) {
ret = 0;
break;
}
if (ret < 0)
break;
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
if (key.type == BTRFS_METADATA_ITEM_KEY)
continue;
/* Now it's EXTENT_ITEM_KEY only */
ei = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_extent_item);
/*
* Found data extent, means this is old convert must follow 1:1
* mapping.
*/
if (btrfs_extent_flags(path.nodes[0], ei)
& BTRFS_EXTENT_FLAG_DATA) {
ret = -EINVAL;
break;
}
}
btrfs_release_path(&path);
return ret;
}
static int may_rollback(struct btrfs_root *root)
{
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_multi_bio *multi = NULL;
u64 bytenr;
u64 length;
u64 physical;
u64 total_bytes;
int num_stripes;
int ret;
if (btrfs_super_num_devices(info->super_copy) != 1)
goto fail;
bytenr = BTRFS_SUPER_INFO_OFFSET;
total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
while (1) {
ret = btrfs_map_block(&info->mapping_tree, WRITE, bytenr,
&length, &multi, 0, NULL);
if (ret) {
if (ret == -ENOENT) {
/* removed block group at the tail */
if (length == (u64)-1)
break;
/* removed block group in the middle */
goto next;
}
goto fail;
}
num_stripes = multi->num_stripes;
physical = multi->stripes[0].physical;
free(multi);
if (num_stripes != 1) {
error("num stripes for bytenr %llu is not 1", bytenr);
goto fail;
}
/*
* Extra check for new convert, as metadata chunk from new
* convert is much more free than old convert, it doesn't need
* to do 1:1 mapping.
*/
if (physical != bytenr) {
/*
* Check if it's a metadata chunk and has only metadata
* extent.
*/
ret = may_rollback_chunk(info, bytenr);
if (ret < 0)
goto fail;
}
next:
bytenr += length;
if (bytenr >= total_bytes)
break;
}
return 0;
fail:
return -1;
}
static int do_rollback(const char *devname)
{
int fd = -1;
int ret;
int i;
struct btrfs_root *root;
struct btrfs_root *image_root;
struct btrfs_root *chunk_root;
struct btrfs_dir_item *dir;
struct btrfs_inode_item *inode;
struct btrfs_file_extent_item *fi;
struct btrfs_trans_handle *trans;
struct extent_buffer *leaf;
struct btrfs_block_group_cache *cache1;
struct btrfs_block_group_cache *cache2;
struct btrfs_key key;
struct btrfs_path path;
struct extent_io_tree io_tree;
char *buf = NULL;
char *name;
u64 bytenr;
u64 num_bytes;
u64 root_dir;
u64 objectid;
u64 offset;
u64 start;
u64 end;
u64 sb_bytenr;
u64 first_free;
u64 total_bytes;
u32 sectorsize;
extent_io_tree_init(&io_tree);
fd = open(devname, O_RDWR);
if (fd < 0) {
error("unable to open %s: %s", devname, strerror(errno));
goto fail;
}
root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES);
if (!root) {
error("unable to open ctree");
goto fail;
}
ret = may_rollback(root);
if (ret < 0) {
error("unable to do rollback: %d", ret);
goto fail;
}
sectorsize = root->sectorsize;
buf = malloc(sectorsize);
if (!buf) {
error("unable to allocate memory");
goto fail;
}
btrfs_init_path(&path);
key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
key.type = BTRFS_ROOT_BACKREF_KEY;
key.offset = BTRFS_FS_TREE_OBJECTID;
ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0,
0);
btrfs_release_path(&path);
if (ret > 0) {
error("unable to convert ext2 image subvolume, is it deleted?");
goto fail;
} else if (ret < 0) {
error("unable to open ext2_saved, id %llu: %s",
(unsigned long long)key.objectid, strerror(-ret));
goto fail;
}
key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
image_root = btrfs_read_fs_root(root->fs_info, &key);
if (!image_root || IS_ERR(image_root)) {
error("unable to open subvolume %llu: %ld",
(unsigned long long)key.objectid, PTR_ERR(image_root));
goto fail;
}
name = "image";
root_dir = btrfs_root_dirid(&root->root_item);
dir = btrfs_lookup_dir_item(NULL, image_root, &path,
root_dir, name, strlen(name), 0);
if (!dir || IS_ERR(dir)) {
error("unable to find file %s: %ld", name, PTR_ERR(dir));
goto fail;
}
leaf = path.nodes[0];
btrfs_dir_item_key_to_cpu(leaf, dir, &key);
btrfs_release_path(&path);
objectid = key.objectid;
ret = btrfs_lookup_inode(NULL, image_root, &path, &key, 0);
if (ret) {
error("unable to find inode item: %d", ret);
goto fail;
}
leaf = path.nodes[0];
inode = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item);
total_bytes = btrfs_inode_size(leaf, inode);
btrfs_release_path(&path);
key.objectid = objectid;
key.offset = 0;
key.type = BTRFS_EXTENT_DATA_KEY;
ret = btrfs_search_slot(NULL, image_root, &key, &path, 0, 0);
if (ret != 0) {
error("unable to find first file extent: %d", ret);
btrfs_release_path(&path);
goto fail;
}
/* build mapping tree for the relocated blocks */
for (offset = 0; offset < total_bytes; ) {
leaf = path.nodes[0];
if (path.slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, &path);
if (ret != 0)
break;
continue;
}
btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
if (key.objectid != objectid || key.offset != offset ||
key.type != BTRFS_EXTENT_DATA_KEY)
break;
fi = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
break;
if (btrfs_file_extent_compression(leaf, fi) ||
btrfs_file_extent_encryption(leaf, fi) ||
btrfs_file_extent_other_encoding(leaf, fi))
break;
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
/* skip holes and direct mapped extents */
if (bytenr == 0 || bytenr == offset)
goto next_extent;
bytenr += btrfs_file_extent_offset(leaf, fi);
num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
cache1 = btrfs_lookup_block_group(root->fs_info, offset);
cache2 = btrfs_lookup_block_group(root->fs_info,
offset + num_bytes - 1);
/*
* Here we must take consideration of old and new convert
* behavior.
* For old convert case, sign, there is no consist chunk type
* that will cover the extent. META/DATA/SYS are all possible.
* Just ensure relocate one is in SYS chunk.
* For new convert case, they are all covered by DATA chunk.
*
* So, there is not valid chunk type check for it now.
*/
if (cache1 != cache2)
break;
set_extent_bits(&io_tree, offset, offset + num_bytes - 1,
EXTENT_LOCKED, GFP_NOFS);
set_state_private(&io_tree, offset, bytenr);
next_extent:
offset += btrfs_file_extent_num_bytes(leaf, fi);
path.slots[0]++;
}
btrfs_release_path(&path);
if (offset < total_bytes) {
error("unable to build extent mapping (offset %llu, total_bytes %llu)",
(unsigned long long)offset,
(unsigned long long)total_bytes);
error("converted filesystem after balance is unable to rollback");
goto fail;
}
first_free = BTRFS_SUPER_INFO_OFFSET + 2 * sectorsize - 1;
first_free &= ~((u64)sectorsize - 1);
/* backup for extent #0 should exist */
if(!test_range_bit(&io_tree, 0, first_free - 1, EXTENT_LOCKED, 1)) {
error("no backup for the first extent");
goto fail;
}
/* force no allocation from system block group */
root->fs_info->system_allocs = -1;
trans = btrfs_start_transaction(root, 1);
if (!trans) {
error("unable to start transaction");
goto fail;
}
/*
* recow the whole chunk tree, this will remove all chunk tree blocks
* from system block group
*/
chunk_root = root->fs_info->chunk_root;
memset(&key, 0, sizeof(key));
while (1) {
ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
if (ret < 0)
break;
ret = btrfs_next_leaf(chunk_root, &path);
if (ret)
break;
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
btrfs_release_path(&path);
}
btrfs_release_path(&path);
offset = 0;
num_bytes = 0;
while(1) {
cache1 = btrfs_lookup_block_group(root->fs_info, offset);
if (!cache1)
break;
if (cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM)
num_bytes += btrfs_block_group_used(&cache1->item);
offset = cache1->key.objectid + cache1->key.offset;
}
/* only extent #0 left in system block group? */
if (num_bytes > first_free) {
error(
"unable to empty system block group (num_bytes %llu, first_free %llu",
(unsigned long long)num_bytes,
(unsigned long long)first_free);
goto fail;
}
/* create a system chunk that maps the whole device */
ret = prepare_system_chunk_sb(root->fs_info->super_copy);
if (ret) {
error("unable to update system chunk: %d", ret);
goto fail;
}
ret = btrfs_commit_transaction(trans, root);
if (ret) {
error("transaction commit failed: %d", ret);
goto fail;
}
ret = close_ctree(root);
if (ret) {
error("close_ctree failed: %d", ret);
goto fail;
}
/* zero btrfs super block mirrors */
memset(buf, 0, sectorsize);
for (i = 1 ; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
if (bytenr >= total_bytes)
break;
ret = pwrite(fd, buf, sectorsize, bytenr);
if (ret != sectorsize) {
error("zeroing superblock mirror %d failed: %d",
i, ret);
goto fail;
}
}
sb_bytenr = (u64)-1;
/* copy all relocated blocks back */
while(1) {
ret = find_first_extent_bit(&io_tree, 0, &start, &end,
EXTENT_LOCKED);
if (ret)
break;
ret = get_state_private(&io_tree, start, &bytenr);
BUG_ON(ret);
clear_extent_bits(&io_tree, start, end, EXTENT_LOCKED,
GFP_NOFS);
while (start <= end) {
if (start == BTRFS_SUPER_INFO_OFFSET) {
sb_bytenr = bytenr;
goto next_sector;
}
ret = pread(fd, buf, sectorsize, bytenr);
if (ret < 0) {
error("reading superblock at %llu failed: %d",
(unsigned long long)bytenr, ret);
goto fail;
}
BUG_ON(ret != sectorsize);
ret = pwrite(fd, buf, sectorsize, start);
if (ret < 0) {
error("writing superblock at %llu failed: %d",
(unsigned long long)start, ret);
goto fail;
}
BUG_ON(ret != sectorsize);
next_sector:
start += sectorsize;
bytenr += sectorsize;
}
}
ret = fsync(fd);
if (ret < 0) {
error("fsync failed: %s", strerror(errno));
goto fail;
}
/*
* finally, overwrite btrfs super block.
*/
ret = pread(fd, buf, sectorsize, sb_bytenr);
if (ret < 0) {
error("reading primary superblock failed: %s",
strerror(errno));
goto fail;
}
BUG_ON(ret != sectorsize);
ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET);
if (ret < 0) {
error("writing primary superblock failed: %s",
strerror(errno));
goto fail;
}
BUG_ON(ret != sectorsize);
ret = fsync(fd);
if (ret < 0) {
error("fsync failed: %s", strerror(errno));
goto fail;
}
close(fd);
free(buf);
extent_io_tree_cleanup(&io_tree);
printf("rollback complete\n");
return 0;
fail:
if (fd != -1)
close(fd);
free(buf);
error("rollback aborted");
return -1;
}
static void print_usage(void)
{
printf("usage: btrfs-convert [options] device\n");
printf("options:\n");
printf("\t-d|--no-datasum disable data checksum, sets NODATASUM\n");
printf("\t-i|--no-xattr ignore xattrs and ACLs\n");
printf("\t-n|--no-inline disable inlining of small files to metadata\n");
printf("\t-N|--nodesize SIZE set filesystem metadata nodesize\n");
printf("\t-r|--rollback roll back to the original filesystem\n");
printf("\t-l|--label LABEL set filesystem label\n");
printf("\t-L|--copy-label use label from converted filesystem\n");
printf("\t-p|--progress show converting progress (default)\n");
printf("\t-O|--features LIST comma separated list of filesystem features\n");
printf("\t--no-progress show only overview, not the detailed progress\n");
printf("\n");
printf("Supported filesystems:\n");
printf("\text2/3/4: %s\n", BTRFSCONVERT_EXT2 ? "yes" : "no");
}
int main(int argc, char *argv[])
{
int ret;
int packing = 1;
int noxattr = 0;
int datacsum = 1;
u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
BTRFS_MKFS_DEFAULT_NODE_SIZE);
int rollback = 0;
int copylabel = 0;
int usage_error = 0;
int progress = 1;
char *file;
char fslabel[BTRFS_LABEL_SIZE];
u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
while(1) {
enum { GETOPT_VAL_NO_PROGRESS = 256 };
static const struct option long_options[] = {
{ "no-progress", no_argument, NULL,
GETOPT_VAL_NO_PROGRESS },
{ "no-datasum", no_argument, NULL, 'd' },
{ "no-inline", no_argument, NULL, 'n' },
{ "no-xattr", no_argument, NULL, 'i' },
{ "rollback", no_argument, NULL, 'r' },
{ "features", required_argument, NULL, 'O' },
{ "progress", no_argument, NULL, 'p' },
{ "label", required_argument, NULL, 'l' },
{ "copy-label", no_argument, NULL, 'L' },
{ "nodesize", required_argument, NULL, 'N' },
{ "help", no_argument, NULL, GETOPT_VAL_HELP},
{ NULL, 0, NULL, 0 }
};
int c = getopt_long(argc, argv, "dinN:rl:LpO:", long_options, NULL);
if (c < 0)
break;
switch(c) {
case 'd':
datacsum = 0;
break;
case 'i':
noxattr = 1;
break;
case 'n':
packing = 0;
break;
case 'N':
nodesize = parse_size(optarg);
break;
case 'r':
rollback = 1;
break;
case 'l':
copylabel = -1;
if (strlen(optarg) >= BTRFS_LABEL_SIZE) {
warning(
"label too long, trimmed to %d bytes",
BTRFS_LABEL_SIZE - 1);
}
__strncpy_null(fslabel, optarg, BTRFS_LABEL_SIZE - 1);
break;
case 'L':
copylabel = 1;
break;
case 'p':
progress = 1;
break;
case 'O': {
char *orig = strdup(optarg);
char *tmp = orig;
tmp = btrfs_parse_fs_features(tmp, &features);
if (tmp) {
error("unrecognized filesystem feature: %s",
tmp);
free(orig);
exit(1);
}
free(orig);
if (features & BTRFS_FEATURE_LIST_ALL) {
btrfs_list_all_fs_features(
~BTRFS_CONVERT_ALLOWED_FEATURES);
exit(0);
}
if (features & ~BTRFS_CONVERT_ALLOWED_FEATURES) {
char buf[64];
btrfs_parse_features_to_string(buf,
features & ~BTRFS_CONVERT_ALLOWED_FEATURES);
error("features not allowed for convert: %s",
buf);
exit(1);
}
break;
}
case GETOPT_VAL_NO_PROGRESS:
progress = 0;
break;
case GETOPT_VAL_HELP:
default:
print_usage();
return c != GETOPT_VAL_HELP;
}
}
set_argv0(argv);
if (check_argc_exact(argc - optind, 1)) {
print_usage();
return 1;
}
if (rollback && (!datacsum || noxattr || !packing)) {
fprintf(stderr,
"Usage error: -d, -i, -n options do not apply to rollback\n");
usage_error++;
}
if (usage_error) {
print_usage();
return 1;
}
file = argv[optind];
ret = check_mounted(file);
if (ret < 0) {
error("could not check mount status: %s", strerror(-ret));
return 1;
} else if (ret) {
error("%s is mounted", file);
return 1;
}
if (rollback) {
ret = do_rollback(file);
} else {
ret = do_convert(file, datacsum, packing, noxattr, nodesize,
copylabel, fslabel, progress, features);
}
if (ret)
return 1;
return 0;
}