btrfs-progs/kernel-shared/print-tree.c
Josef Bacik 0c58bfd5b6 btrfs-progs: make a local copy of btrfs_next_sibling_block in print-tree.c
We use this in print-tree to do BFS tree printing, but there are no
other users and it doesn't exist upstream.  Copy the current code and
clean it up so it can exist in print-tree.c and use the local copy
there.  This will allow us to remove the function call when ctree.c is
synced.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-03 01:11:56 +02:00

2233 lines
66 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <uuid/uuid.h>
#include <ctype.h>
#include "kerncompat.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/print-tree.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/compression.h"
#include "kernel-shared/accessors.h"
#include "kernel-shared/file-item.h"
#include "common/utils.h"
static void print_dir_item_type(struct extent_buffer *eb,
struct btrfs_dir_item *di)
{
u8 type = btrfs_dir_ftype(eb, di);
static const char* dir_item_str[] = {
[BTRFS_FT_REG_FILE] = "FILE",
[BTRFS_FT_DIR] = "DIR",
[BTRFS_FT_CHRDEV] = "CHRDEV",
[BTRFS_FT_BLKDEV] = "BLKDEV",
[BTRFS_FT_FIFO] = "FIFO",
[BTRFS_FT_SOCK] = "SOCK",
[BTRFS_FT_SYMLINK] = "SYMLINK",
[BTRFS_FT_XATTR] = "XATTR"
};
if (type < ARRAY_SIZE(dir_item_str) && dir_item_str[type])
printf("%s", dir_item_str[type]);
else
printf("DIR_ITEM.%u", type);
}
static void print_dir_item(struct extent_buffer *eb, u32 size,
struct btrfs_dir_item *di)
{
u32 cur = 0;
u32 len;
u32 name_len;
u32 data_len;
char namebuf[BTRFS_NAME_LEN];
struct btrfs_disk_key location;
while (cur < size) {
btrfs_dir_item_key(eb, di, &location);
printf("\t\tlocation ");
btrfs_print_key(&location);
printf(" type ");
print_dir_item_type(eb, di);
printf("\n");
name_len = btrfs_dir_name_len(eb, di);
data_len = btrfs_dir_data_len(eb, di);
len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf);
printf("\t\ttransid %llu data_len %u name_len %u\n",
btrfs_dir_transid(eb, di),
data_len, name_len);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("\t\tname: HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)(di + 1), len);
printf("\t\tname: %.*s\n", len, namebuf);
}
if (data_len) {
len = (data_len <= sizeof(namebuf)) ? data_len :
sizeof(namebuf);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("\t\tdata HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)(di + 1) + name_len, len);
printf("\t\tdata %.*s\n", len, namebuf);
}
}
len = sizeof(*di) + name_len + data_len;
di = (struct btrfs_dir_item *)((char *)di + len);
cur += len;
}
}
static void print_inode_extref_item(struct extent_buffer *eb, u32 size,
struct btrfs_inode_extref *extref)
{
u32 cur = 0;
u32 len;
u32 name_len = 0;
u64 index = 0;
u64 parent_objid;
char namebuf[BTRFS_NAME_LEN];
while (cur < size) {
index = btrfs_inode_extref_index(eb, extref);
name_len = btrfs_inode_extref_name_len(eb, extref);
parent_objid = btrfs_inode_extref_parent(eb, extref);
len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf);
printf("\t\tindex %llu parent %llu namelen %u ",
index, parent_objid, name_len);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("name: HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)extref->name, len);
printf("name: %.*s\n", len, namebuf);
}
len = sizeof(*extref) + name_len;
extref = (struct btrfs_inode_extref *)((char *)extref + len);
cur += len;
}
}
static void print_inode_ref_item(struct extent_buffer *eb, u32 size,
struct btrfs_inode_ref *ref)
{
u32 cur = 0;
u32 len;
u32 name_len;
u64 index;
char namebuf[BTRFS_NAME_LEN];
while (cur < size) {
name_len = btrfs_inode_ref_name_len(eb, ref);
index = btrfs_inode_ref_index(eb, ref);
len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf);
printf("\t\tindex %llu namelen %u ",
(unsigned long long)index, name_len);
if (eb->fs_info && eb->fs_info->hide_names) {
printf("name: HIDDEN\n");
} else {
read_extent_buffer(eb, namebuf,
(unsigned long)(ref + 1), len);
printf("name: %.*s\n", len, namebuf);
}
len = sizeof(*ref) + name_len;
ref = (struct btrfs_inode_ref *)((char *)ref + len);
cur += len;
}
}
/* The minimal length for the string buffer of block group/chunk flags */
#define BG_FLAG_STRING_LEN 64
static void bg_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
char profile[BG_FLAG_STRING_LEN] = {};
const char *name;
ret[0] = '\0';
if (flags & BTRFS_BLOCK_GROUP_DATA) {
empty = 0;
strncpy(ret, "DATA", BG_FLAG_STRING_LEN);
}
if (flags & BTRFS_BLOCK_GROUP_METADATA) {
if (!empty)
strncat(ret, "|", BG_FLAG_STRING_LEN);
strncat(ret, "METADATA", BG_FLAG_STRING_LEN);
}
if (flags & BTRFS_BLOCK_GROUP_SYSTEM) {
if (!empty)
strncat(ret, "|", BG_FLAG_STRING_LEN);
strncat(ret, "SYSTEM", BG_FLAG_STRING_LEN);
}
name = btrfs_bg_type_to_raid_name(flags);
if (!name) {
snprintf(profile, BG_FLAG_STRING_LEN, "UNKNOWN.0x%llx",
flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
} else {
/*
* Special handing for SINGLE profile, we don't output "SINGLE"
* for SINGLE profile, since there is no such bit for it.
* Thus here we only fill @profile if it's not single.
*/
if (strncmp(name, "SINGLE", strlen("SINGLE")) != 0)
strncpy(profile, name, BG_FLAG_STRING_LEN);
}
if (profile[0]) {
strncat(ret, "|", BG_FLAG_STRING_LEN);
strncat(ret, profile, BG_FLAG_STRING_LEN);
}
}
/* Caller should ensure sizeof(*ret)>= 26 "OFF|SCANNING|INCONSISTENT" */
static void qgroup_flags_to_str(u64 flags, char *ret)
{
ret[0] = 0;
if (flags & BTRFS_QGROUP_STATUS_FLAG_ON)
strcpy(ret, "ON");
else
strcpy(ret, "OFF");
if (flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN)
strcat(ret, "|SCANNING");
if (flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT)
strcat(ret, "|INCONSISTENT");
}
void print_chunk_item(struct extent_buffer *eb, struct btrfs_chunk *chunk)
{
u16 num_stripes = btrfs_chunk_num_stripes(eb, chunk);
int i;
u32 chunk_item_size;
char chunk_flags_str[BG_FLAG_STRING_LEN] = {};
/* The chunk must contain at least one stripe */
if (num_stripes < 1) {
printf("invalid num_stripes: %u\n", num_stripes);
return;
}
chunk_item_size = btrfs_chunk_item_size(num_stripes);
if ((unsigned long)chunk + chunk_item_size > eb->len) {
printf("\t\tchunk item invalid\n");
return;
}
bg_flags_to_str(btrfs_chunk_type(eb, chunk), chunk_flags_str);
printf("\t\tlength %llu owner %llu stripe_len %llu type %s\n",
(unsigned long long)btrfs_chunk_length(eb, chunk),
(unsigned long long)btrfs_chunk_owner(eb, chunk),
(unsigned long long)btrfs_chunk_stripe_len(eb, chunk),
chunk_flags_str);
printf("\t\tio_align %u io_width %u sector_size %u\n",
btrfs_chunk_io_align(eb, chunk),
btrfs_chunk_io_width(eb, chunk),
btrfs_chunk_sector_size(eb, chunk));
printf("\t\tnum_stripes %hu sub_stripes %hu\n", num_stripes,
btrfs_chunk_sub_stripes(eb, chunk));
for (i = 0 ; i < num_stripes ; i++) {
unsigned char dev_uuid[BTRFS_UUID_SIZE];
char str_dev_uuid[BTRFS_UUID_UNPARSED_SIZE];
u64 uuid_offset;
u64 stripe_offset;
uuid_offset = (unsigned long)btrfs_stripe_dev_uuid_nr(chunk, i);
stripe_offset = (unsigned long)btrfs_stripe_nr(chunk, i);
if (uuid_offset < stripe_offset ||
(uuid_offset + BTRFS_UUID_SIZE) >
(stripe_offset + sizeof(struct btrfs_stripe))) {
printf("\t\t\tstripe %d invalid\n", i);
break;
}
read_extent_buffer(eb, dev_uuid,
uuid_offset,
BTRFS_UUID_SIZE);
uuid_unparse(dev_uuid, str_dev_uuid);
printf("\t\t\tstripe %d devid %llu offset %llu\n", i,
(unsigned long long)btrfs_stripe_devid_nr(eb, chunk, i),
(unsigned long long)btrfs_stripe_offset_nr(eb, chunk, i));
printf("\t\t\tdev_uuid %s\n", str_dev_uuid);
}
}
static void print_dev_item(struct extent_buffer *eb,
struct btrfs_dev_item *dev_item)
{
char uuid_str[BTRFS_UUID_UNPARSED_SIZE];
char fsid_str[BTRFS_UUID_UNPARSED_SIZE];
u8 uuid[BTRFS_UUID_SIZE];
u8 fsid[BTRFS_UUID_SIZE];
read_extent_buffer(eb, uuid,
(unsigned long)btrfs_device_uuid(dev_item),
BTRFS_UUID_SIZE);
uuid_unparse(uuid, uuid_str);
read_extent_buffer(eb, fsid,
(unsigned long)btrfs_device_fsid(dev_item),
BTRFS_UUID_SIZE);
uuid_unparse(fsid, fsid_str);
printf("\t\tdevid %llu total_bytes %llu bytes_used %llu\n"
"\t\tio_align %u io_width %u sector_size %u type %llu\n"
"\t\tgeneration %llu start_offset %llu dev_group %u\n"
"\t\tseek_speed %hhu bandwidth %hhu\n"
"\t\tuuid %s\n"
"\t\tfsid %s\n",
(unsigned long long)btrfs_device_id(eb, dev_item),
(unsigned long long)btrfs_device_total_bytes(eb, dev_item),
(unsigned long long)btrfs_device_bytes_used(eb, dev_item),
btrfs_device_io_align(eb, dev_item),
btrfs_device_io_width(eb, dev_item),
btrfs_device_sector_size(eb, dev_item),
(unsigned long long)btrfs_device_type(eb, dev_item),
(unsigned long long)btrfs_device_generation(eb, dev_item),
(unsigned long long)btrfs_device_start_offset(eb, dev_item),
btrfs_device_group(eb, dev_item),
btrfs_device_seek_speed(eb, dev_item),
btrfs_device_bandwidth(eb, dev_item),
uuid_str, fsid_str);
}
static void print_uuids(struct extent_buffer *eb)
{
char fs_uuid[BTRFS_UUID_UNPARSED_SIZE];
char chunk_uuid[BTRFS_UUID_UNPARSED_SIZE];
u8 disk_uuid[BTRFS_UUID_SIZE];
read_extent_buffer(eb, disk_uuid, btrfs_header_fsid(),
BTRFS_FSID_SIZE);
fs_uuid[BTRFS_UUID_UNPARSED_SIZE - 1] = '\0';
uuid_unparse(disk_uuid, fs_uuid);
read_extent_buffer(eb, disk_uuid,
btrfs_header_chunk_tree_uuid(eb),
BTRFS_UUID_SIZE);
chunk_uuid[BTRFS_UUID_UNPARSED_SIZE - 1] = '\0';
uuid_unparse(disk_uuid, chunk_uuid);
printf("fs uuid %s\nchunk uuid %s\n", fs_uuid, chunk_uuid);
}
static void compress_type_to_str(u8 compress_type, char *ret)
{
switch (compress_type) {
case BTRFS_COMPRESS_NONE:
strcpy(ret, "none");
break;
case BTRFS_COMPRESS_ZLIB:
strcpy(ret, "zlib");
break;
case BTRFS_COMPRESS_LZO:
strcpy(ret, "lzo");
break;
case BTRFS_COMPRESS_ZSTD:
strcpy(ret, "zstd");
break;
default:
sprintf(ret, "UNKNOWN.%d", compress_type);
}
}
static const char* file_extent_type_to_str(u8 type)
{
switch (type) {
case BTRFS_FILE_EXTENT_INLINE: return "inline";
case BTRFS_FILE_EXTENT_PREALLOC: return "prealloc";
case BTRFS_FILE_EXTENT_REG: return "regular";
default: return "unknown";
}
}
static void print_file_extent_item(struct extent_buffer *eb,
int slot,
struct btrfs_file_extent_item *fi)
{
unsigned char extent_type = btrfs_file_extent_type(eb, fi);
char compress_str[16];
compress_type_to_str(btrfs_file_extent_compression(eb, fi),
compress_str);
printf("\t\tgeneration %llu type %hhu (%s)\n",
btrfs_file_extent_generation(eb, fi),
extent_type, file_extent_type_to_str(extent_type));
if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
printf("\t\tinline extent data size %u ram_bytes %llu compression %hhu (%s)\n",
btrfs_file_extent_inline_item_len(eb, slot),
btrfs_file_extent_ram_bytes(eb, fi),
btrfs_file_extent_compression(eb, fi),
compress_str);
return;
}
if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
printf("\t\tprealloc data disk byte %llu nr %llu\n",
(unsigned long long)btrfs_file_extent_disk_bytenr(eb, fi),
(unsigned long long)btrfs_file_extent_disk_num_bytes(eb, fi));
printf("\t\tprealloc data offset %llu nr %llu\n",
(unsigned long long)btrfs_file_extent_offset(eb, fi),
(unsigned long long)btrfs_file_extent_num_bytes(eb, fi));
return;
}
printf("\t\textent data disk byte %llu nr %llu\n",
(unsigned long long)btrfs_file_extent_disk_bytenr(eb, fi),
(unsigned long long)btrfs_file_extent_disk_num_bytes(eb, fi));
printf("\t\textent data offset %llu nr %llu ram %llu\n",
(unsigned long long)btrfs_file_extent_offset(eb, fi),
(unsigned long long)btrfs_file_extent_num_bytes(eb, fi),
(unsigned long long)btrfs_file_extent_ram_bytes(eb, fi));
printf("\t\textent compression %hhu (%s)\n",
btrfs_file_extent_compression(eb, fi),
compress_str);
}
/* Caller should ensure sizeof(*ret) >= 16("DATA|TREE_BLOCK") */
static void extent_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
ret[0] = 0;
if (flags & BTRFS_EXTENT_FLAG_DATA) {
empty = 0;
strcpy(ret, "DATA");
}
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
if (!empty) {
empty = 0;
strcat(ret, "|");
}
strcat(ret, "TREE_BLOCK");
}
if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
strcat(ret, "|");
strcat(ret, "FULL_BACKREF");
}
}
void print_extent_item(struct extent_buffer *eb, int slot, int metadata)
{
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_data_ref *dref;
struct btrfs_shared_data_ref *sref;
struct btrfs_disk_key key;
unsigned long end;
unsigned long ptr;
int type;
u32 item_size = btrfs_item_size(eb, slot);
u64 flags;
u64 offset;
char flags_str[32] = {0};
if (item_size < sizeof(*ei))
return;
ei = btrfs_item_ptr(eb, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(eb, ei);
extent_flags_to_str(flags, flags_str);
printf("\t\trefs %llu gen %llu flags %s\n",
(unsigned long long)btrfs_extent_refs(eb, ei),
(unsigned long long)btrfs_extent_generation(eb, ei),
flags_str);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !metadata) {
struct btrfs_tree_block_info *info;
info = (struct btrfs_tree_block_info *)(ei + 1);
btrfs_tree_block_key(eb, info, &key);
printf("\t\ttree block ");
btrfs_print_key(&key);
printf(" level %d\n", btrfs_tree_block_level(eb, info));
iref = (struct btrfs_extent_inline_ref *)(info + 1);
} else if (metadata) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(eb, &tmp, slot);
printf("\t\ttree block skinny level %d\n", (int)tmp.offset);
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
} else{
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
}
ptr = (unsigned long)iref;
end = (unsigned long)ei + item_size;
while (ptr < end) {
iref = (struct btrfs_extent_inline_ref *)ptr;
type = btrfs_extent_inline_ref_type(eb, iref);
offset = btrfs_extent_inline_ref_offset(eb, iref);
switch (type) {
case BTRFS_TREE_BLOCK_REF_KEY:
printf("\t\ttree block backref root ");
print_objectid(stdout, offset, 0);
printf("\n");
break;
case BTRFS_SHARED_BLOCK_REF_KEY:
printf("\t\tshared block backref parent %llu\n",
(unsigned long long)offset);
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
printf("\t\textent data backref root ");
print_objectid(stdout,
(unsigned long long)btrfs_extent_data_ref_root(eb, dref), 0);
printf(" objectid %llu offset %llu count %u\n",
(unsigned long long)btrfs_extent_data_ref_objectid(eb, dref),
btrfs_extent_data_ref_offset(eb, dref),
btrfs_extent_data_ref_count(eb, dref));
break;
case BTRFS_SHARED_DATA_REF_KEY:
sref = (struct btrfs_shared_data_ref *)(iref + 1);
printf("\t\tshared data backref parent %llu count %u\n",
(unsigned long long)offset,
btrfs_shared_data_ref_count(eb, sref));
break;
case BTRFS_EXTENT_OWNER_REF_KEY:
printf("\t\textent owner root %llu\n",
(unsigned long long)offset);
break;
default:
return;
}
ptr += btrfs_extent_inline_ref_size(type);
}
WARN_ON(ptr > end);
}
static void print_root_ref(struct extent_buffer *leaf, int slot, const char *tag)
{
struct btrfs_root_ref *ref;
char namebuf[BTRFS_NAME_LEN];
int namelen;
ref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
namelen = btrfs_root_ref_name_len(leaf, ref);
read_extent_buffer(leaf, namebuf, (unsigned long)(ref + 1), namelen);
printf("\t\troot %s key dirid %llu sequence %llu name %.*s\n", tag,
(unsigned long long)btrfs_root_ref_dirid(leaf, ref),
(unsigned long long)btrfs_root_ref_sequence(leaf, ref),
namelen, namebuf);
}
/*
* Caller must ensure sizeof(*ret) >= 7 "RDONLY"
*/
static void root_flags_to_str(u64 flags, char *ret)
{
if (flags & BTRFS_ROOT_SUBVOL_RDONLY)
strcat(ret, "RDONLY");
else
strcat(ret, "none");
}
static void print_timespec(struct extent_buffer *eb,
struct btrfs_timespec *timespec, const char *prefix,
const char *suffix)
{
struct tm tm;
u64 tmp_u64;
u32 tmp_u32;
time_t tmp_time;
char timestamp[256];
tmp_u64 = btrfs_timespec_sec(eb, timespec);
tmp_u32 = btrfs_timespec_nsec(eb, timespec);
tmp_time = tmp_u64;
localtime_r(&tmp_time, &tm);
strftime(timestamp, sizeof(timestamp),
"%Y-%m-%d %H:%M:%S", &tm);
printf("%s%llu.%u (%s)%s", prefix, (unsigned long long)tmp_u64, tmp_u32,
timestamp, suffix);
}
static void print_root_item(struct extent_buffer *leaf, int slot)
{
struct btrfs_root_item *ri;
struct btrfs_root_item root_item;
int len;
char uuid_str[BTRFS_UUID_UNPARSED_SIZE];
char flags_str[32] = {0};
struct btrfs_key drop_key;
ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item);
len = btrfs_item_size(leaf, slot);
memset(&root_item, 0, sizeof(root_item));
read_extent_buffer(leaf, &root_item, (unsigned long)ri, len);
root_flags_to_str(btrfs_root_flags(&root_item), flags_str);
printf("\t\tgeneration %llu root_dirid %llu bytenr %llu byte_limit %llu bytes_used %llu\n",
(unsigned long long)btrfs_root_generation(&root_item),
(unsigned long long)btrfs_root_dirid(&root_item),
(unsigned long long)btrfs_root_bytenr(&root_item),
(unsigned long long)btrfs_root_limit(&root_item),
(unsigned long long)btrfs_root_used(&root_item));
printf("\t\tlast_snapshot %llu flags 0x%llx(%s) refs %u\n",
(unsigned long long)btrfs_root_last_snapshot(&root_item),
(unsigned long long)btrfs_root_flags(&root_item),
flags_str,
btrfs_root_refs(&root_item));
btrfs_disk_key_to_cpu(&drop_key, &root_item.drop_progress);
printf("\t\tdrop_progress ");
btrfs_print_key(&root_item.drop_progress);
printf(" drop_level %hhu\n", root_item.drop_level);
printf("\t\tlevel %hhu generation_v2 %llu\n",
btrfs_root_level(&root_item), root_item.generation_v2);
if (root_item.generation == root_item.generation_v2) {
uuid_unparse(root_item.uuid, uuid_str);
printf("\t\tuuid %s\n", uuid_str);
uuid_unparse(root_item.parent_uuid, uuid_str);
printf("\t\tparent_uuid %s\n", uuid_str);
uuid_unparse(root_item.received_uuid, uuid_str);
printf("\t\treceived_uuid %s\n", uuid_str);
printf("\t\tctransid %llu otransid %llu stransid %llu rtransid %llu\n",
btrfs_root_ctransid(&root_item),
btrfs_root_otransid(&root_item),
btrfs_root_stransid(&root_item),
btrfs_root_rtransid(&root_item));
print_timespec(leaf, btrfs_root_ctime(ri),
"\t\tctime ", "\n");
print_timespec(leaf, btrfs_root_otime(ri),
"\t\totime ", "\n");
print_timespec(leaf, btrfs_root_stime(ri),
"\t\tstime ", "\n");
print_timespec(leaf, btrfs_root_rtime(ri),
"\t\trtime ", "\n");
}
}
static void print_free_space_header(struct extent_buffer *leaf, int slot)
{
struct btrfs_free_space_header *header;
struct btrfs_disk_key location;
header = btrfs_item_ptr(leaf, slot, struct btrfs_free_space_header);
btrfs_free_space_key(leaf, header, &location);
printf("\t\tlocation ");
btrfs_print_key(&location);
printf("\n");
printf("\t\tcache generation %llu entries %llu bitmaps %llu\n",
(unsigned long long)btrfs_free_space_generation(leaf, header),
(unsigned long long)btrfs_free_space_entries(leaf, header),
(unsigned long long)btrfs_free_space_bitmaps(leaf, header));
}
struct raid_encoding_map {
u8 encoding;
char name[16];
};
static const struct raid_encoding_map raid_map[] = {
{ BTRFS_STRIPE_DUP, "DUP" },
{ BTRFS_STRIPE_RAID0, "RAID0" },
{ BTRFS_STRIPE_RAID1, "RAID1" },
{ BTRFS_STRIPE_RAID1C3, "RAID1C3" },
{ BTRFS_STRIPE_RAID1C4, "RAID1C4" },
{ BTRFS_STRIPE_RAID5, "RAID5" },
{ BTRFS_STRIPE_RAID6, "RAID6" },
{ BTRFS_STRIPE_RAID10, "RAID10" }
};
static const char *stripe_encoding_name(u8 encoding)
{
for (int i = 0; i < ARRAY_SIZE(raid_map); i++) {
if (raid_map[i].encoding == encoding)
return raid_map[i].name;
}
return "UNKNOWN";
}
static void print_raid_stripe_key(struct extent_buffer *eb,
u32 item_size, struct btrfs_stripe_extent *stripe)
{
int num_stripes;
u8 encoding = btrfs_stripe_extent_encoding(eb, stripe);
num_stripes = (item_size - offsetof(struct btrfs_stripe_extent, strides)) /
sizeof(struct btrfs_raid_stride);
printf("\t\t\tencoding: %s\n", stripe_encoding_name(encoding));
for (int i = 0; i < num_stripes; i++)
printf("\t\t\tstripe %d devid %llu physical %llu length %llu\n", i,
(unsigned long long)btrfs_raid_stride_devid_nr(eb, stripe, i),
(unsigned long long)btrfs_raid_stride_offset_nr(eb, stripe, i),
(unsigned long long)btrfs_raid_stride_length_nr(eb, stripe, i));
}
void print_key_type(FILE *stream, u64 objectid, u8 type)
{
static const char* key_to_str[256] = {
[BTRFS_INODE_ITEM_KEY] = "INODE_ITEM",
[BTRFS_INODE_REF_KEY] = "INODE_REF",
[BTRFS_INODE_EXTREF_KEY] = "INODE_EXTREF",
[BTRFS_DIR_ITEM_KEY] = "DIR_ITEM",
[BTRFS_DIR_INDEX_KEY] = "DIR_INDEX",
[BTRFS_DIR_LOG_ITEM_KEY] = "DIR_LOG_ITEM",
[BTRFS_DIR_LOG_INDEX_KEY] = "DIR_LOG_INDEX",
[BTRFS_XATTR_ITEM_KEY] = "XATTR_ITEM",
[BTRFS_VERITY_DESC_ITEM_KEY] = "VERITY_DESC_ITEM",
[BTRFS_VERITY_MERKLE_ITEM_KEY] = "VERITY_MERKLE_ITEM",
[BTRFS_ORPHAN_ITEM_KEY] = "ORPHAN_ITEM",
[BTRFS_ROOT_ITEM_KEY] = "ROOT_ITEM",
[BTRFS_ROOT_REF_KEY] = "ROOT_REF",
[BTRFS_ROOT_BACKREF_KEY] = "ROOT_BACKREF",
[BTRFS_EXTENT_ITEM_KEY] = "EXTENT_ITEM",
[BTRFS_METADATA_ITEM_KEY] = "METADATA_ITEM",
[BTRFS_TREE_BLOCK_REF_KEY] = "TREE_BLOCK_REF",
[BTRFS_SHARED_BLOCK_REF_KEY] = "SHARED_BLOCK_REF",
[BTRFS_EXTENT_DATA_REF_KEY] = "EXTENT_DATA_REF",
[BTRFS_SHARED_DATA_REF_KEY] = "SHARED_DATA_REF",
[BTRFS_EXTENT_REF_V0_KEY] = "EXTENT_REF_V0",
[BTRFS_EXTENT_OWNER_REF_KEY] = "EXTENT_OWNER_REF",
[BTRFS_CSUM_ITEM_KEY] = "CSUM_ITEM",
[BTRFS_EXTENT_CSUM_KEY] = "EXTENT_CSUM",
[BTRFS_EXTENT_DATA_KEY] = "EXTENT_DATA",
[BTRFS_BLOCK_GROUP_ITEM_KEY] = "BLOCK_GROUP_ITEM",
[BTRFS_FREE_SPACE_INFO_KEY] = "FREE_SPACE_INFO",
[BTRFS_FREE_SPACE_EXTENT_KEY] = "FREE_SPACE_EXTENT",
[BTRFS_FREE_SPACE_BITMAP_KEY] = "FREE_SPACE_BITMAP",
[BTRFS_CHUNK_ITEM_KEY] = "CHUNK_ITEM",
[BTRFS_DEV_ITEM_KEY] = "DEV_ITEM",
[BTRFS_DEV_EXTENT_KEY] = "DEV_EXTENT",
[BTRFS_TEMPORARY_ITEM_KEY] = "TEMPORARY_ITEM",
[BTRFS_DEV_REPLACE_KEY] = "DEV_REPLACE",
[BTRFS_STRING_ITEM_KEY] = "STRING_ITEM",
[BTRFS_QGROUP_STATUS_KEY] = "QGROUP_STATUS",
[BTRFS_QGROUP_RELATION_KEY] = "QGROUP_RELATION",
[BTRFS_QGROUP_INFO_KEY] = "QGROUP_INFO",
[BTRFS_QGROUP_LIMIT_KEY] = "QGROUP_LIMIT",
[BTRFS_PERSISTENT_ITEM_KEY] = "PERSISTENT_ITEM",
[BTRFS_UUID_KEY_SUBVOL] = "UUID_KEY_SUBVOL",
[BTRFS_UUID_KEY_RECEIVED_SUBVOL] = "UUID_KEY_RECEIVED_SUBVOL",
[BTRFS_RAID_STRIPE_KEY] = "RAID_STRIPE",
};
if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID) {
fprintf(stream, "UNTYPED");
return;
}
if (key_to_str[type])
fputs(key_to_str[type], stream);
else
fprintf(stream, "UNKNOWN.%d", type);
}
void print_objectid(FILE *stream, u64 objectid, u8 type)
{
switch (type) {
case BTRFS_PERSISTENT_ITEM_KEY:
if (objectid == BTRFS_DEV_STATS_OBJECTID)
fprintf(stream, "DEV_STATS");
else
fprintf(stream, "%llu", (unsigned long long)objectid);
return;
case BTRFS_DEV_EXTENT_KEY:
/* device id */
fprintf(stream, "%llu", (unsigned long long)objectid);
return;
case BTRFS_QGROUP_RELATION_KEY:
fprintf(stream, "%u/%llu", btrfs_qgroup_level(objectid),
btrfs_qgroup_subvolid(objectid));
return;
case BTRFS_UUID_KEY_SUBVOL:
case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
fprintf(stream, "0x%016llx", (unsigned long long)objectid);
return;
}
switch (objectid) {
case BTRFS_ROOT_TREE_OBJECTID:
/*
* BTRFS_ROOT_TREE_OBJECTID and BTRFS_DEV_ITEMS_OBJECTID are
* defined with the same value 1, we need to distinguish them
* by the type.
*/
if (type == BTRFS_DEV_ITEM_KEY)
fprintf(stream, "DEV_ITEMS");
else
fprintf(stream, "ROOT_TREE");
break;
case BTRFS_EXTENT_TREE_OBJECTID:
fprintf(stream, "EXTENT_TREE");
break;
case BTRFS_CHUNK_TREE_OBJECTID:
fprintf(stream, "CHUNK_TREE");
break;
case BTRFS_DEV_TREE_OBJECTID:
fprintf(stream, "DEV_TREE");
break;
case BTRFS_FS_TREE_OBJECTID:
fprintf(stream, "FS_TREE");
break;
case BTRFS_ROOT_TREE_DIR_OBJECTID:
fprintf(stream, "ROOT_TREE_DIR");
break;
case BTRFS_CSUM_TREE_OBJECTID:
fprintf(stream, "CSUM_TREE");
break;
case BTRFS_BALANCE_OBJECTID:
fprintf(stream, "BALANCE");
break;
case BTRFS_ORPHAN_OBJECTID:
fprintf(stream, "ORPHAN");
break;
case BTRFS_TREE_LOG_OBJECTID:
fprintf(stream, "TREE_LOG");
break;
case BTRFS_TREE_LOG_FIXUP_OBJECTID:
fprintf(stream, "LOG_FIXUP");
break;
case BTRFS_TREE_RELOC_OBJECTID:
fprintf(stream, "TREE_RELOC");
break;
case BTRFS_DATA_RELOC_TREE_OBJECTID:
fprintf(stream, "DATA_RELOC_TREE");
break;
case BTRFS_EXTENT_CSUM_OBJECTID:
fprintf(stream, "EXTENT_CSUM");
break;
case BTRFS_FREE_SPACE_OBJECTID:
fprintf(stream, "FREE_SPACE");
break;
case BTRFS_FREE_INO_OBJECTID:
fprintf(stream, "FREE_INO");
break;
case BTRFS_QUOTA_TREE_OBJECTID:
fprintf(stream, "QUOTA_TREE");
break;
case BTRFS_UUID_TREE_OBJECTID:
fprintf(stream, "UUID_TREE");
break;
case BTRFS_FREE_SPACE_TREE_OBJECTID:
fprintf(stream, "FREE_SPACE_TREE");
break;
case BTRFS_MULTIPLE_OBJECTIDS:
fprintf(stream, "MULTIPLE");
break;
case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
fprintf(stream, "BLOCK_GROUP_TREE");
break;
case BTRFS_CSUM_CHANGE_OBJECTID:
fprintf(stream, "CSUM_CHANGE");
break;
case BTRFS_RAID_STRIPE_TREE_OBJECTID:
fprintf(stream, "RAID_STRIPE_TREE");
break;
case (u64)-1:
fprintf(stream, "-1");
break;
case BTRFS_FIRST_CHUNK_TREE_OBJECTID:
if (type == BTRFS_CHUNK_ITEM_KEY) {
fprintf(stream, "FIRST_CHUNK_TREE");
break;
}
fallthrough;
default:
fprintf(stream, "%llu", (unsigned long long)objectid);
}
}
void btrfs_print_key(struct btrfs_disk_key *disk_key)
{
u64 objectid = btrfs_disk_key_objectid(disk_key);
u8 type = btrfs_disk_key_type(disk_key);
u64 offset = btrfs_disk_key_offset(disk_key);
printf("key (");
print_objectid(stdout, objectid, type);
printf(" ");
print_key_type(stdout, objectid, type);
switch (type) {
case BTRFS_QGROUP_RELATION_KEY:
case BTRFS_QGROUP_INFO_KEY:
case BTRFS_QGROUP_LIMIT_KEY:
printf(" %u/%llu)", btrfs_qgroup_level(offset),
btrfs_qgroup_subvolid(offset));
break;
case BTRFS_UUID_KEY_SUBVOL:
case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
printf(" 0x%016llx)", (unsigned long long)offset);
break;
/*
* Key offsets of ROOT_ITEM point to tree root, print them in human
* readable format. Especially useful for trees like data/tree reloc
* tree, whose tree id can be negative.
*/
case BTRFS_ROOT_ITEM_KEY:
printf(" ");
/*
* Normally offset of ROOT_ITEM should present the generation
* of creation time of the root.
* However if this is reloc tree, offset is the subvolume
* id of its source. Here we do extra check on this.
*/
if (objectid == BTRFS_TREE_RELOC_OBJECTID)
print_objectid(stdout, offset, type);
else
printf("%llu", offset);
printf(")");
break;
default:
if (offset == (u64)-1)
printf(" -1)");
else
printf(" %llu)", (unsigned long long)offset);
break;
}
}
static void print_uuid_item(struct extent_buffer *l, unsigned long offset,
u32 item_size)
{
if (item_size & (sizeof(u64) - 1)) {
printf("btrfs: uuid item with illegal size %lu!\n",
(unsigned long)item_size);
return;
}
while (item_size) {
__le64 subvol_id;
read_extent_buffer(l, &subvol_id, offset, sizeof(u64));
printf("\t\tsubvol_id %llu\n",
(unsigned long long)le64_to_cpu(subvol_id));
item_size -= sizeof(u64);
offset += sizeof(u64);
}
}
/* Btrfs inode flag stringification helper */
#define STRCAT_ONE_INODE_FLAG(flags, name, empty, dst) ({ \
if (flags & BTRFS_INODE_##name) { \
if (!empty) \
strcat(dst, "|"); \
strcat(dst, #name); \
empty = 0; \
} \
})
/*
* Caller should ensure sizeof(*ret) >= 102: all characters plus '|' of
* BTRFS_INODE_* flags
*/
static void inode_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
STRCAT_ONE_INODE_FLAG(flags, NODATASUM, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NODATACOW, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, READONLY, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NOCOMPRESS, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, PREALLOC, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, SYNC, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, IMMUTABLE, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, APPEND, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NODUMP, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, NOATIME, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, DIRSYNC, empty, ret);
STRCAT_ONE_INODE_FLAG(flags, COMPRESS, empty, ret);
if (empty)
strcat(ret, "none");
}
static void print_inode_item(struct extent_buffer *eb,
struct btrfs_inode_item *ii)
{
char flags_str[256];
memset(flags_str, 0, sizeof(flags_str));
inode_flags_to_str(btrfs_inode_flags(eb, ii), flags_str);
printf("\t\tgeneration %llu transid %llu size %llu nbytes %llu\n"
"\t\tblock group %llu mode %o links %u uid %u gid %u rdev %llu\n"
"\t\tsequence %llu flags 0x%llx(%s)\n",
(unsigned long long)btrfs_inode_generation(eb, ii),
(unsigned long long)btrfs_inode_transid(eb, ii),
(unsigned long long)btrfs_inode_size(eb, ii),
(unsigned long long)btrfs_inode_nbytes(eb, ii),
(unsigned long long)btrfs_inode_block_group(eb,ii),
btrfs_inode_mode(eb, ii),
btrfs_inode_nlink(eb, ii),
btrfs_inode_uid(eb, ii),
btrfs_inode_gid(eb, ii),
(unsigned long long)btrfs_inode_rdev(eb,ii),
(unsigned long long)btrfs_inode_sequence(eb, ii),
(unsigned long long)btrfs_inode_flags(eb,ii),
flags_str);
print_timespec(eb, btrfs_inode_atime(ii), "\t\tatime ", "\n");
print_timespec(eb, btrfs_inode_ctime(ii), "\t\tctime ", "\n");
print_timespec(eb, btrfs_inode_mtime(ii), "\t\tmtime ", "\n");
print_timespec(eb, btrfs_inode_otime(ii), "\t\totime ", "\n");
}
static void print_disk_balance_args(struct btrfs_disk_balance_args *ba)
{
printf("\t\tprofiles %llu devid %llu target %llu flags %llu\n",
(unsigned long long)le64_to_cpu(ba->profiles),
(unsigned long long)le64_to_cpu(ba->devid),
(unsigned long long)le64_to_cpu(ba->target),
(unsigned long long)le64_to_cpu(ba->flags));
printf("\t\tusage_min %u usage_max %u pstart %llu pend %llu\n",
le32_to_cpu(ba->usage_min),
le32_to_cpu(ba->usage_max),
(unsigned long long)le64_to_cpu(ba->pstart),
(unsigned long long)le64_to_cpu(ba->pend));
printf("\t\tvstart %llu vend %llu limit_min %u limit_max %u\n",
(unsigned long long)le64_to_cpu(ba->vstart),
(unsigned long long)le64_to_cpu(ba->vend),
le32_to_cpu(ba->limit_min),
le32_to_cpu(ba->limit_max));
printf("\t\tstripes_min %u stripes_max %u\n",
le32_to_cpu(ba->stripes_min),
le32_to_cpu(ba->stripes_max));
}
static void print_balance_item(struct extent_buffer *eb,
struct btrfs_balance_item *bi)
{
struct btrfs_disk_balance_args ba;
printf("\t\tbalance status flags %llu\n",
btrfs_balance_flags(eb, bi));
printf("\t\tDATA\n");
btrfs_balance_data(eb, bi, &ba);
print_disk_balance_args(&ba);
printf("\t\tMETADATA\n");
btrfs_balance_meta(eb, bi, &ba);
print_disk_balance_args(&ba);
printf("\t\tSYSTEM\n");
btrfs_balance_sys(eb, bi, &ba);
print_disk_balance_args(&ba);
}
static void print_dev_stats(struct extent_buffer *eb,
struct btrfs_dev_stats_item *stats, u32 size)
{
u32 known = BTRFS_DEV_STAT_VALUES_MAX * sizeof(__le64);
int i;
printf("\t\tdevice stats\n");
printf("\t\twrite_errs %llu read_errs %llu flush_errs %llu corruption_errs %llu generation %llu\n",
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_WRITE_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_READ_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_FLUSH_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_CORRUPTION_ERRS),
btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_GENERATION_ERRS));
if (known < size) {
printf("\t\tunknown stats item bytes %u", size - known);
for (i = BTRFS_DEV_STAT_VALUES_MAX; i * sizeof(__le64) < size; i++) {
printf("\t\tunknown item %d offset %zu value %llu\n",
i, i * sizeof(__le64),
btrfs_dev_stats_value(eb, stats, i));
}
}
}
static void print_block_group_item(struct extent_buffer *eb,
struct btrfs_block_group_item *bgi)
{
struct btrfs_block_group_item bg_item;
char flags_str[BG_FLAG_STRING_LEN] = {};
read_extent_buffer(eb, &bg_item, (unsigned long)bgi, sizeof(bg_item));
memset(flags_str, 0, sizeof(flags_str));
bg_flags_to_str(btrfs_stack_block_group_flags(&bg_item), flags_str);
printf("\t\tblock group used %llu chunk_objectid %llu flags %s\n",
btrfs_stack_block_group_used(&bg_item),
btrfs_stack_block_group_chunk_objectid(&bg_item),
flags_str);
}
static void print_extent_data_ref(struct extent_buffer *eb, int slot)
{
struct btrfs_extent_data_ref *dref;
dref = btrfs_item_ptr(eb, slot, struct btrfs_extent_data_ref);
printf("\t\textent data backref root ");
print_objectid(stdout,
(unsigned long long)btrfs_extent_data_ref_root(eb, dref), 0);
printf(" objectid %llu offset %llu count %u\n",
(unsigned long long)btrfs_extent_data_ref_objectid(eb, dref),
(unsigned long long)btrfs_extent_data_ref_offset(eb, dref),
btrfs_extent_data_ref_count(eb, dref));
}
static void print_shared_data_ref(struct extent_buffer *eb, int slot)
{
struct btrfs_shared_data_ref *sref;
sref = btrfs_item_ptr(eb, slot, struct btrfs_shared_data_ref);
printf("\t\tshared data backref count %u\n",
btrfs_shared_data_ref_count(eb, sref));
}
static void print_extent_owner_ref(struct extent_buffer *eb, int slot)
{
struct btrfs_extent_owner_ref *oref;
u64 root_id;
oref = btrfs_item_ptr(eb, slot, struct btrfs_extent_owner_ref);
root_id = btrfs_extent_owner_ref_root_id(eb, oref);
printf("\t\textent owner root %llu\n", root_id);
}
static void print_free_space_info(struct extent_buffer *eb, int slot)
{
struct btrfs_free_space_info *free_info;
free_info = btrfs_item_ptr(eb, slot, struct btrfs_free_space_info);
printf("\t\tfree space info extent count %u flags %u\n",
(unsigned)btrfs_free_space_extent_count(eb, free_info),
(unsigned)btrfs_free_space_flags(eb, free_info));
}
static void print_dev_extent(struct extent_buffer *eb, int slot)
{
struct btrfs_dev_extent *dev_extent;
u8 uuid[BTRFS_UUID_SIZE];
char uuid_str[BTRFS_UUID_UNPARSED_SIZE];
dev_extent = btrfs_item_ptr(eb, slot, struct btrfs_dev_extent);
read_extent_buffer(eb, uuid,
(unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent),
BTRFS_UUID_SIZE);
uuid_unparse(uuid, uuid_str);
printf("\t\tdev extent chunk_tree %llu\n"
"\t\tchunk_objectid %llu chunk_offset %llu "
"length %llu\n"
"\t\tchunk_tree_uuid %s\n",
(unsigned long long)btrfs_dev_extent_chunk_tree(eb, dev_extent),
(unsigned long long)btrfs_dev_extent_chunk_objectid(eb, dev_extent),
(unsigned long long)btrfs_dev_extent_chunk_offset(eb, dev_extent),
(unsigned long long)btrfs_dev_extent_length(eb, dev_extent),
uuid_str);
}
static void print_qgroup_status(struct extent_buffer *eb, int slot)
{
struct btrfs_qgroup_status_item *qg_status;
char flags_str[256];
qg_status = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_status_item);
memset(flags_str, 0, sizeof(flags_str));
qgroup_flags_to_str(btrfs_qgroup_status_flags(eb, qg_status),
flags_str);
printf("\t\tversion %llu generation %llu flags %s scan %llu",
(unsigned long long)btrfs_qgroup_status_version(eb, qg_status),
(unsigned long long)btrfs_qgroup_status_generation(eb, qg_status),
flags_str,
(unsigned long long)btrfs_qgroup_status_rescan(eb, qg_status));
if (btrfs_fs_incompat(eb->fs_info, SIMPLE_QUOTA))
printf(" enable_gen %llu\n",
(unsigned long long)btrfs_qgroup_status_enable_gen(eb, qg_status));
else
printf("\n");
}
static void print_qgroup_info(struct extent_buffer *eb, int slot)
{
struct btrfs_qgroup_info_item *qg_info;
qg_info = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_info_item);
printf("\t\tgeneration %llu\n"
"\t\treferenced %llu referenced_compressed %llu\n"
"\t\texclusive %llu exclusive_compressed %llu\n",
(unsigned long long)btrfs_qgroup_info_generation(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_rfer(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_rfer_cmpr(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_excl(eb, qg_info),
(unsigned long long)btrfs_qgroup_info_excl_cmpr(eb, qg_info));
}
static void print_qgroup_limit(struct extent_buffer *eb, int slot)
{
struct btrfs_qgroup_limit_item *qg_limit;
qg_limit = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_limit_item);
printf("\t\tflags %llx\n"
"\t\tmax_referenced %lld max_exclusive %lld\n"
"\t\trsv_referenced %lld rsv_exclusive %lld\n",
(unsigned long long)btrfs_qgroup_limit_flags(eb, qg_limit),
(long long)btrfs_qgroup_limit_max_rfer(eb, qg_limit),
(long long)btrfs_qgroup_limit_max_excl(eb, qg_limit),
(long long)btrfs_qgroup_limit_rsv_rfer(eb, qg_limit),
(long long)btrfs_qgroup_limit_rsv_excl(eb, qg_limit));
}
static void print_persistent_item(struct extent_buffer *eb, void *ptr,
u32 item_size, u64 objectid, u64 offset)
{
printf("\t\tpersistent item objectid ");
print_objectid(stdout, objectid, BTRFS_PERSISTENT_ITEM_KEY);
printf(" offset %llu\n", (unsigned long long)offset);
switch (objectid) {
case BTRFS_DEV_STATS_OBJECTID:
print_dev_stats(eb, ptr, item_size);
break;
default:
printf("\t\tunknown persistent item objectid %llu\n", objectid);
}
}
static void print_temporary_item(struct extent_buffer *eb, void *ptr,
u64 objectid, u64 offset)
{
printf("\t\ttemporary item objectid ");
print_objectid(stdout, objectid, BTRFS_TEMPORARY_ITEM_KEY);
printf(" offset %llu\n", (unsigned long long)offset);
switch (objectid) {
case BTRFS_BALANCE_OBJECTID:
print_balance_item(eb, ptr);
break;
case BTRFS_CSUM_CHANGE_OBJECTID:
if (offset < btrfs_get_num_csums())
printf("\t\ttarget csum type %s (%llu)\n",
btrfs_super_csum_name(offset) ,offset);
else
printf("\t\tunknown csum type %llu\n", offset);
break;
default:
printf("\t\tunknown temporary item objectid %llu\n", objectid);
}
}
static void print_extent_csum(struct extent_buffer *eb,
int item_size, u64 offset, void *ptr, bool print_csum_items)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
u32 size;
int csum_size;
/*
* If we don't have fs_info, only output its start position as we
* don't have sectorsize for the calculation
*/
if (!fs_info) {
printf("\t\trange start %llu\n", (unsigned long long)offset);
return;
}
csum_size = fs_info->csum_size;
size = (item_size / csum_size) * fs_info->sectorsize;
printf("\t\trange start %llu end %llu length %u\n",
(unsigned long long)offset,
(unsigned long long)offset + size, size);
/*
* Fill one long line, which is 1 item of sha256/blake2,
* 2x xxhash, 4x crc32c with format:
* [offset] 0xCHECKSUM [offset] 0xCHECKSUM
*/
if (print_csum_items) {
const int one_line = max(1, BTRFS_CSUM_SIZE / csum_size / 2);
int curline;
const u8 *csum = (const u8 *)(eb->data + (unsigned long)ptr);
curline = one_line;
while (size > 0) {
int i;
if (curline == one_line) {
printf("\t\t");
} else if (curline == 0) {
curline = one_line;
printf("\n\t\t");
} else {
putchar(' ');
}
printf("[%llu] 0x", offset);
for (i = 0; i < csum_size; i++)
printf("%02x", *csum++);
offset += fs_info->sectorsize;
size -= fs_info->sectorsize;
curline--;
}
putchar('\n');
}
}
/* Caller must ensure sizeof(*ret) >= 14 "WRITTEN|RELOC" */
static void header_flags_to_str(u64 flags, char *ret)
{
int empty = 1;
ret[0] = 0;
if (flags & BTRFS_HEADER_FLAG_WRITTEN) {
empty = 0;
strcpy(ret, "WRITTEN");
}
if (flags & BTRFS_HEADER_FLAG_RELOC) {
if (!empty)
strcat(ret, "|");
strcat(ret, "RELOC");
}
}
static void print_header_info(struct extent_buffer *eb, unsigned int mode)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
char flags_str[128];
#if EXPERIMENTAL
u8 csum[BTRFS_CSUM_SIZE];
#endif
u64 flags;
u32 nr;
u8 backref_rev;
char csum_str[2 * BTRFS_CSUM_SIZE + strlen(" csum 0x") + 1];
int i;
int csum_size = fs_info->csum_size;
flags = btrfs_header_flags(eb) & ~BTRFS_BACKREF_REV_MASK;
backref_rev = btrfs_header_flags(eb) >> BTRFS_BACKREF_REV_SHIFT;
header_flags_to_str(flags, flags_str);
nr = btrfs_header_nritems(eb);
if (btrfs_header_level(eb))
printf(
"node %llu level %d items %u free space %u generation %llu owner ",
(unsigned long long)eb->start, btrfs_header_level(eb),
nr, (u32)BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb) - nr,
(unsigned long long)btrfs_header_generation(eb));
else
printf(
"leaf %llu items %u free space %d generation %llu owner ",
(unsigned long long)btrfs_header_bytenr(eb), nr,
btrfs_leaf_free_space(eb),
(unsigned long long)btrfs_header_generation(eb));
print_objectid(stdout, btrfs_header_owner(eb), 0);
printf("\n");
if (fs_info && (mode & BTRFS_PRINT_TREE_CSUM_HEADERS)) {
char *tmp = csum_str;
u8 *tree_csum = (u8 *)(eb->data + offsetof(struct btrfs_header, csum));
strcpy(csum_str, " csum 0x");
tmp = csum_str + strlen(csum_str);
for (i = 0; i < csum_size; i++) {
sprintf(tmp, "%02x", tree_csum[i]);
tmp++;
tmp++;
}
} else {
/* We don't have fs_info, can't print the csum */
csum_str[0] = 0;
}
printf("%s %llu flags 0x%llx(%s) backref revision %d%s\n",
btrfs_header_level(eb) ? "node" : "leaf",
btrfs_header_bytenr(eb), flags, flags_str, backref_rev,
csum_str);
#if EXPERIMENTAL
printf("checksum stored ");
for (i = 0; i < csum_size; i++)
printf("%02hhx", (int)(eb->data[i]));
printf("\n");
memset(csum, 0, sizeof(csum));
btrfs_csum_data(fs_info, btrfs_super_csum_type(fs_info->super_copy),
(u8 *)eb->data + BTRFS_CSUM_SIZE,
csum, fs_info->nodesize - BTRFS_CSUM_SIZE);
printf("checksum calced ");
for (i = 0; i < csum_size; i++)
printf("%02hhx", (int)(csum[i]));
printf("\n");
#endif
print_uuids(eb);
fflush(stdout);
}
void __btrfs_print_leaf(struct extent_buffer *eb, unsigned int mode)
{
struct btrfs_disk_key disk_key;
u32 leaf_data_size = BTRFS_LEAF_DATA_SIZE(eb->fs_info);
u32 i;
u32 nr;
const bool print_csum_items = (mode & BTRFS_PRINT_TREE_CSUM_ITEMS);
print_header_info(eb, mode);
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
u32 item_size;
void *ptr;
u64 objectid;
u32 type;
u64 offset;
/*
* Extra check on item pointers
* Here we don't need to be as strict as kernel leaf check.
* Only need to ensure all pointers are pointing range inside
* the leaf, thus no segfault.
*/
if (btrfs_item_offset(eb, i) > leaf_data_size ||
btrfs_item_size(eb, i) + btrfs_item_offset(eb, i) >
leaf_data_size) {
error(
"leaf %llu slot %u pointer invalid, offset %u size %u leaf data limit %u",
btrfs_header_bytenr(eb), i,
btrfs_item_offset(eb, i),
btrfs_item_size(eb, i), leaf_data_size);
error("skip remaining slots");
break;
}
item_size = btrfs_item_size(eb, i);
/* Untyped extraction of slot from btrfs_item_ptr */
ptr = btrfs_item_ptr(eb, i, void*);
btrfs_item_key(eb, &disk_key, i);
objectid = btrfs_disk_key_objectid(&disk_key);
type = btrfs_disk_key_type(&disk_key);
offset = btrfs_disk_key_offset(&disk_key);
printf("\titem %u ", i);
btrfs_print_key(&disk_key);
printf(" itemoff %u itemsize %u\n",
btrfs_item_offset(eb, i),
btrfs_item_size(eb, i));
if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID)
print_free_space_header(eb, i);
switch (type) {
case BTRFS_INODE_ITEM_KEY:
print_inode_item(eb, ptr);
break;
case BTRFS_INODE_REF_KEY:
print_inode_ref_item(eb, item_size, ptr);
break;
case BTRFS_INODE_EXTREF_KEY:
print_inode_extref_item(eb, item_size, ptr);
break;
case BTRFS_DIR_ITEM_KEY:
case BTRFS_DIR_INDEX_KEY:
case BTRFS_XATTR_ITEM_KEY:
print_dir_item(eb, item_size, ptr);
break;
case BTRFS_DIR_LOG_INDEX_KEY:
case BTRFS_DIR_LOG_ITEM_KEY: {
struct btrfs_dir_log_item *dlog;
dlog = btrfs_item_ptr(eb, i, struct btrfs_dir_log_item);
printf("\t\tdir log end %llu\n",
(unsigned long long)btrfs_dir_log_end(eb, dlog));
break;
}
case BTRFS_ORPHAN_ITEM_KEY:
printf("\t\torphan item\n");
break;
case BTRFS_ROOT_ITEM_KEY:
print_root_item(eb, i);
break;
case BTRFS_ROOT_REF_KEY:
print_root_ref(eb, i, "ref");
break;
case BTRFS_ROOT_BACKREF_KEY:
print_root_ref(eb, i, "backref");
break;
case BTRFS_EXTENT_ITEM_KEY:
print_extent_item(eb, i, 0);
break;
case BTRFS_METADATA_ITEM_KEY:
print_extent_item(eb, i, 1);
break;
case BTRFS_TREE_BLOCK_REF_KEY:
printf("\t\ttree block backref\n");
break;
case BTRFS_SHARED_BLOCK_REF_KEY:
printf("\t\tshared block backref\n");
break;
case BTRFS_EXTENT_DATA_REF_KEY:
print_extent_data_ref(eb, i);
break;
case BTRFS_SHARED_DATA_REF_KEY:
print_shared_data_ref(eb, i);
break;
case BTRFS_EXTENT_OWNER_REF_KEY:
print_extent_owner_ref(eb, i);
break;
case BTRFS_EXTENT_REF_V0_KEY:
printf("\t\textent ref v0 (deprecated)\n");
break;
case BTRFS_CSUM_ITEM_KEY:
printf("\t\tcsum item\n");
break;
case BTRFS_EXTENT_CSUM_KEY:
print_extent_csum(eb, item_size, offset, ptr, print_csum_items);
break;
case BTRFS_EXTENT_DATA_KEY:
print_file_extent_item(eb, i, ptr);
break;
case BTRFS_BLOCK_GROUP_ITEM_KEY:
print_block_group_item(eb, ptr);
break;
case BTRFS_FREE_SPACE_INFO_KEY:
print_free_space_info(eb, i);
break;
case BTRFS_FREE_SPACE_EXTENT_KEY:
printf("\t\tfree space extent\n");
break;
case BTRFS_FREE_SPACE_BITMAP_KEY:
printf("\t\tfree space bitmap\n");
break;
case BTRFS_CHUNK_ITEM_KEY:
print_chunk_item(eb, ptr);
break;
case BTRFS_DEV_ITEM_KEY:
print_dev_item(eb, ptr);
break;
case BTRFS_DEV_EXTENT_KEY:
print_dev_extent(eb, i);
break;
case BTRFS_QGROUP_STATUS_KEY:
print_qgroup_status(eb, i);
break;
case BTRFS_QGROUP_RELATION_KEY:
break;
case BTRFS_QGROUP_INFO_KEY:
print_qgroup_info(eb, i);
break;
case BTRFS_QGROUP_LIMIT_KEY:
print_qgroup_limit(eb, i);
break;
case BTRFS_UUID_KEY_SUBVOL:
case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
print_uuid_item(eb, btrfs_item_ptr_offset(eb, i),
btrfs_item_size(eb, i));
break;
case BTRFS_STRING_ITEM_KEY: {
const char *str = eb->data + btrfs_item_ptr_offset(eb, i);
printf("\t\titem data %.*s\n", item_size, str);
break;
}
case BTRFS_PERSISTENT_ITEM_KEY:
print_persistent_item(eb, ptr, item_size, objectid,
offset);
break;
case BTRFS_TEMPORARY_ITEM_KEY:
print_temporary_item(eb, ptr, objectid, offset);
break;
case BTRFS_RAID_STRIPE_KEY:
print_raid_stripe_key(eb, item_size, ptr);
break;
};
fflush(stdout);
}
}
/* Helper function to reach the leftmost tree block at @path->lowest_level */
static int search_leftmost_tree_block(struct btrfs_fs_info *fs_info,
struct btrfs_path *path, int root_level)
{
int i;
int ret = 0;
/* Release all nodes except path->nodes[root_level] */
for (i = 0; i < root_level; i++) {
path->slots[i] = 0;
if (!path->nodes[i])
continue;
free_extent_buffer(path->nodes[i]);
}
/* Reach the leftmost tree block by always reading out slot 0 */
for (i = root_level; i > path->lowest_level; i--) {
struct extent_buffer *eb;
path->slots[i] = 0;
eb = btrfs_read_node_slot(path->nodes[i], 0);
if (!extent_buffer_uptodate(eb)) {
ret = -EIO;
goto out;
}
path->nodes[i - 1] = eb;
}
out:
return ret;
}
/*
* Walk up the tree as far as necessary to find the next sibling tree block.
* More generic version of btrfs_next_leaf(), as it could find sibling nodes if
* @path->lowest_level is not 0.
*
* Returns 0 if it found something or 1 if there are no greater leaves.
* Returns < 0 on io errors.
*/
static int next_sibling_tree_block(struct btrfs_fs_info *fs_info,
struct btrfs_path *path)
{
int slot;
int level = path->lowest_level + 1;
struct extent_buffer *eb;
struct extent_buffer *next = NULL;
BUG_ON(path->lowest_level + 1 >= BTRFS_MAX_LEVEL);
do {
if (!path->nodes[level])
return 1;
slot = path->slots[level] + 1;
eb = path->nodes[level];
if (slot >= btrfs_header_nritems(eb)) {
level++;
if (level == BTRFS_MAX_LEVEL)
return 1;
continue;
}
next = btrfs_read_node_slot(eb, slot);
if (!extent_buffer_uptodate(next))
return -EIO;
break;
} while (level < BTRFS_MAX_LEVEL);
path->slots[level] = slot;
while(1) {
level--;
eb = path->nodes[level];
free_extent_buffer(eb);
path->nodes[level] = next;
path->slots[level] = 0;
if (level == path->lowest_level)
break;
next = btrfs_read_node_slot(next, 0);
if (!extent_buffer_uptodate(next))
return -EIO;
}
return 0;
}
static void bfs_print_children(struct extent_buffer *root_eb, unsigned int mode)
{
struct btrfs_fs_info *fs_info = root_eb->fs_info;
struct btrfs_path path = { 0 };
int root_level = btrfs_header_level(root_eb);
int cur_level;
int ret;
if (root_level < 1)
return;
mode &= ~(BTRFS_PRINT_TREE_FOLLOW);
mode |= BTRFS_PRINT_TREE_BFS;
mode &= ~(BTRFS_PRINT_TREE_DFS);
/* For path */
extent_buffer_get(root_eb);
path.nodes[root_level] = root_eb;
for (cur_level = root_level - 1; cur_level >= 0; cur_level--) {
path.lowest_level = cur_level;
/* Use the leftmost tree block as a starting point */
ret = search_leftmost_tree_block(fs_info, &path, root_level);
if (ret < 0)
goto out;
/* Print all sibling tree blocks */
while (1) {
btrfs_print_tree(path.nodes[cur_level], mode);
ret = next_sibling_tree_block(fs_info, &path);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
break;
}
}
}
out:
btrfs_release_path(&path);
return;
}
static void dfs_print_children(struct extent_buffer *root_eb, unsigned int mode)
{
struct btrfs_fs_info *fs_info = root_eb->fs_info;
struct extent_buffer *next;
int nr = btrfs_header_nritems(root_eb);
int root_eb_level = btrfs_header_level(root_eb);
int i;
mode |= BTRFS_PRINT_TREE_FOLLOW;
mode |= BTRFS_PRINT_TREE_DFS;
mode &= ~(BTRFS_PRINT_TREE_BFS);
for (i = 0; i < nr; i++) {
next = read_tree_block(fs_info, btrfs_node_blockptr(root_eb, i),
btrfs_header_owner(root_eb),
btrfs_node_ptr_generation(root_eb, i),
root_eb_level, NULL);
if (!extent_buffer_uptodate(next)) {
fprintf(stderr, "failed to read %llu in tree %llu\n",
btrfs_node_blockptr(root_eb, i),
btrfs_header_owner(root_eb));
continue;
}
if (btrfs_header_level(next) != root_eb_level - 1) {
warning(
"eb corrupted: parent bytenr %llu slot %d level %d child bytenr %llu level has %d expect %d, skipping the slot",
btrfs_header_bytenr(root_eb), i, root_eb_level,
btrfs_header_bytenr(next),
btrfs_header_level(next), root_eb_level - 1);
free_extent_buffer(next);
continue;
}
btrfs_print_tree(next, mode);
free_extent_buffer(next);
}
}
/*
* Print a tree block (applies to both node and leaf).
*
* @eb: tree block where to start
* @mode: bits setting mode of operation, see BTRFS_PRINT_TREE_*
*/
void btrfs_print_tree(struct extent_buffer *eb, unsigned int mode)
{
u32 i;
u32 nr;
u32 ptr_num;
struct btrfs_fs_info *fs_info = eb->fs_info;
struct btrfs_disk_key disk_key;
struct btrfs_key key;
const bool follow = (mode & BTRFS_PRINT_TREE_FOLLOW);
unsigned int traverse = BTRFS_PRINT_TREE_DEFAULT;
if (!eb)
return;
/* BFS is default and takes precedence if both are set */
if (mode & BTRFS_PRINT_TREE_DFS)
traverse = BTRFS_PRINT_TREE_DFS;
if (mode & BTRFS_PRINT_TREE_BFS)
traverse = BTRFS_PRINT_TREE_BFS;
nr = btrfs_header_nritems(eb);
if (btrfs_is_leaf(eb)) {
__btrfs_print_leaf(eb, mode);
return;
}
/* We are crossing eb boundary, this node must be corrupted */
if (nr > BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb))
warning(
"node nr_items corrupted, has %u limit %u, continue anyway",
nr, BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb));
print_header_info(eb, mode);
ptr_num = BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb);
for (i = 0; i < nr && i < ptr_num; i++) {
u64 blocknr = btrfs_node_blockptr(eb, i);
btrfs_node_key(eb, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
printf("\t");
btrfs_print_key(&disk_key);
printf(" block %llu gen %llu\n",
(unsigned long long)blocknr,
(unsigned long long)btrfs_node_ptr_generation(eb, i));
fflush(stdout);
}
if (!follow)
return;
if (follow && !fs_info)
return;
/* Keep non-traversal modes */
mode &= ~(BTRFS_PRINT_TREE_DFS | BTRFS_PRINT_TREE_BFS);
if (traverse == BTRFS_PRINT_TREE_DFS) {
dfs_print_children(eb, mode);
} else {
bfs_print_children(eb, mode);
}
}
static bool is_valid_csum_type(u16 csum_type)
{
switch (csum_type) {
case BTRFS_CSUM_TYPE_CRC32:
case BTRFS_CSUM_TYPE_XXHASH:
case BTRFS_CSUM_TYPE_SHA256:
case BTRFS_CSUM_TYPE_BLAKE2:
return true;
default:
return false;
}
}
static int check_csum_sblock(void *sb, int csum_size, u16 csum_type)
{
u8 result[BTRFS_CSUM_SIZE];
btrfs_csum_data(NULL, csum_type, (u8 *)sb + BTRFS_CSUM_SIZE,
result, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
return !memcmp(sb, result, csum_size);
}
struct readable_flag_entry {
u64 bit;
char *output;
};
#define DEF_COMPAT_RO_FLAG_ENTRY(bit_name) \
{BTRFS_FEATURE_COMPAT_RO_##bit_name, #bit_name}
static struct readable_flag_entry compat_ro_flags_array[] = {
DEF_COMPAT_RO_FLAG_ENTRY(FREE_SPACE_TREE),
DEF_COMPAT_RO_FLAG_ENTRY(FREE_SPACE_TREE_VALID),
DEF_COMPAT_RO_FLAG_ENTRY(BLOCK_GROUP_TREE),
};
static const int compat_ro_flags_num = sizeof(compat_ro_flags_array) /
sizeof(struct readable_flag_entry);
#define DEF_INCOMPAT_FLAG_ENTRY(bit_name) \
{BTRFS_FEATURE_INCOMPAT_##bit_name, #bit_name}
static struct readable_flag_entry incompat_flags_array[] = {
DEF_INCOMPAT_FLAG_ENTRY(MIXED_BACKREF),
DEF_INCOMPAT_FLAG_ENTRY(DEFAULT_SUBVOL),
DEF_INCOMPAT_FLAG_ENTRY(MIXED_GROUPS),
DEF_INCOMPAT_FLAG_ENTRY(COMPRESS_LZO),
DEF_INCOMPAT_FLAG_ENTRY(COMPRESS_ZSTD),
DEF_INCOMPAT_FLAG_ENTRY(BIG_METADATA),
DEF_INCOMPAT_FLAG_ENTRY(EXTENDED_IREF),
DEF_INCOMPAT_FLAG_ENTRY(RAID56),
DEF_INCOMPAT_FLAG_ENTRY(SKINNY_METADATA),
DEF_INCOMPAT_FLAG_ENTRY(NO_HOLES),
DEF_INCOMPAT_FLAG_ENTRY(METADATA_UUID),
DEF_INCOMPAT_FLAG_ENTRY(RAID1C34),
DEF_INCOMPAT_FLAG_ENTRY(ZONED),
DEF_INCOMPAT_FLAG_ENTRY(EXTENT_TREE_V2),
DEF_INCOMPAT_FLAG_ENTRY(RAID_STRIPE_TREE),
DEF_INCOMPAT_FLAG_ENTRY(SIMPLE_QUOTA),
};
static const int incompat_flags_num = sizeof(incompat_flags_array) /
sizeof(struct readable_flag_entry);
#define DEF_HEADER_FLAG_ENTRY(bit_name) \
{BTRFS_HEADER_FLAG_##bit_name, #bit_name}
#define DEF_SUPER_FLAG_ENTRY(bit_name) \
{BTRFS_SUPER_FLAG_##bit_name, #bit_name}
static struct readable_flag_entry super_flags_array[] = {
DEF_HEADER_FLAG_ENTRY(WRITTEN),
DEF_HEADER_FLAG_ENTRY(RELOC),
DEF_SUPER_FLAG_ENTRY(CHANGING_FSID),
DEF_SUPER_FLAG_ENTRY(CHANGING_FSID_V2),
DEF_SUPER_FLAG_ENTRY(SEEDING),
DEF_SUPER_FLAG_ENTRY(METADUMP),
DEF_SUPER_FLAG_ENTRY(METADUMP_V2)
};
static const int super_flags_num = ARRAY_SIZE(super_flags_array);
#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
BTRFS_HEADER_FLAG_RELOC |\
BTRFS_SUPER_FLAG_CHANGING_FSID |\
BTRFS_SUPER_FLAG_CHANGING_FSID_V2 |\
BTRFS_SUPER_FLAG_SEEDING |\
BTRFS_SUPER_FLAG_METADUMP |\
BTRFS_SUPER_FLAG_METADUMP_V2)
static void __print_readable_flag(u64 flag, struct readable_flag_entry *array,
int array_size, u64 supported_flags)
{
int i;
int first = 1;
struct readable_flag_entry *entry;
if (!flag)
return;
printf("\t\t\t( ");
for (i = 0; i < array_size; i++) {
entry = array + i;
if ((flag & supported_flags) && (flag & entry->bit)) {
if (first)
printf("%s ", entry->output);
else
printf("|\n\t\t\t %s ", entry->output);
first = 0;
}
}
flag &= ~supported_flags;
if (flag) {
if (first)
printf("unknown flag: 0x%llx ", flag);
else
printf("|\n\t\t\t unknown flag: 0x%llx ", flag);
}
printf(")\n");
}
static void print_readable_compat_ro_flag(u64 flag)
{
/*
* We know about the FREE_SPACE_TREE{,_VALID} bits, but we don't
* actually support them yet.
*/
return __print_readable_flag(flag, compat_ro_flags_array,
compat_ro_flags_num,
BTRFS_FEATURE_COMPAT_RO_SUPP);
}
static void print_readable_incompat_flag(u64 flag)
{
return __print_readable_flag(flag, incompat_flags_array,
incompat_flags_num,
BTRFS_FEATURE_INCOMPAT_SUPP);
}
static void print_readable_super_flag(u64 flag)
{
return __print_readable_flag(flag, super_flags_array,
super_flags_num, BTRFS_SUPER_FLAG_SUPP);
}
static void print_sys_chunk_array(struct btrfs_super_block *sb)
{
struct extent_buffer *buf;
struct btrfs_disk_key *disk_key;
struct btrfs_chunk *chunk;
u8 *array_ptr;
unsigned long sb_array_offset;
u32 num_stripes;
u32 array_size;
u32 len = 0;
u32 cur_offset;
struct btrfs_key key;
int item;
buf = alloc_dummy_extent_buffer(NULL, 0, BTRFS_SUPER_INFO_SIZE);
if (!buf) {
error_msg(ERROR_MSG_MEMORY, NULL);
return;
}
write_extent_buffer(buf, sb, 0, sizeof(*sb));
buf->len = sizeof(*sb);
array_size = btrfs_super_sys_array_size(sb);
array_ptr = sb->sys_chunk_array;
sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
if (array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
error("sys_array_size %u shouldn't exceed %u bytes",
array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
goto out;
}
cur_offset = 0;
item = 0;
while (cur_offset < array_size) {
disk_key = (struct btrfs_disk_key *)array_ptr;
len = sizeof(*disk_key);
if (cur_offset + len > array_size)
goto out_short_read;
btrfs_disk_key_to_cpu(&key, disk_key);
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
printf("\titem %d ", item);
btrfs_print_key(disk_key);
putchar('\n');
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
chunk = (struct btrfs_chunk *)sb_array_offset;
/*
* At least one btrfs_chunk with one stripe must be
* present, exact stripe count check comes afterwards
*/
len = btrfs_chunk_item_size(1);
if (cur_offset + len > array_size)
goto out_short_read;
num_stripes = btrfs_chunk_num_stripes(buf, chunk);
if (!num_stripes) {
error(
"invalid number of stripes %u in sys_array at offset %u",
num_stripes, cur_offset);
break;
}
len = btrfs_chunk_item_size(num_stripes);
if (cur_offset + len > array_size)
goto out_short_read;
print_chunk_item(buf, chunk);
} else {
error("unexpected item type %u in sys_array at offset %u",
(u32)key.type, cur_offset);
break;
}
array_ptr += len;
sb_array_offset += len;
cur_offset += len;
item++;
}
out:
free_extent_buffer(buf);
return;
out_short_read:
error("sys_array too short to read %u bytes at offset %u",
len, cur_offset);
free_extent_buffer(buf);
}
static int empty_backup(struct btrfs_root_backup *backup)
{
if (backup == NULL ||
(backup->tree_root == 0 &&
backup->tree_root_gen == 0))
return 1;
return 0;
}
static void print_root_backup(struct btrfs_root_backup *backup,
bool extent_tree_v2)
{
const char *extent_tree_str = "backup_extent_root";
if (extent_tree_v2)
extent_tree_str = "backup_block_group_root";
printf("\t\tbackup_tree_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_tree_root(backup),
btrfs_backup_tree_root_gen(backup),
btrfs_backup_tree_root_level(backup));
printf("\t\tbackup_chunk_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_chunk_root(backup),
btrfs_backup_chunk_root_gen(backup),
btrfs_backup_chunk_root_level(backup));
printf("\t\t%s:\t%llu\tgen: %llu\tlevel: %d\n",
extent_tree_str,
btrfs_backup_extent_root(backup),
btrfs_backup_extent_root_gen(backup),
btrfs_backup_extent_root_level(backup));
printf("\t\tbackup_fs_root:\t\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_fs_root(backup),
btrfs_backup_fs_root_gen(backup),
btrfs_backup_fs_root_level(backup));
printf("\t\tbackup_dev_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_dev_root(backup),
btrfs_backup_dev_root_gen(backup),
btrfs_backup_dev_root_level(backup));
printf("\t\tcsum_root:\t%llu\tgen: %llu\tlevel: %d\n",
btrfs_backup_csum_root(backup),
btrfs_backup_csum_root_gen(backup),
btrfs_backup_csum_root_level(backup));
printf("\t\tbackup_total_bytes:\t%llu\n",
btrfs_backup_total_bytes(backup));
printf("\t\tbackup_bytes_used:\t%llu\n",
btrfs_backup_bytes_used(backup));
printf("\t\tbackup_num_devices:\t%llu\n",
btrfs_backup_num_devices(backup));
putchar('\n');
}
static void print_backup_roots(struct btrfs_super_block *sb)
{
struct btrfs_root_backup *backup;
int i;
bool extent_tree_v2 = (btrfs_super_incompat_flags(sb) &
BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2);
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
backup = sb->super_roots + i;
if (!empty_backup(backup)) {
printf("\tbackup %d:\n", i);
print_root_backup(backup, extent_tree_v2);
}
}
}
void btrfs_print_superblock(struct btrfs_super_block *sb, int full)
{
int i;
char *s, buf[BTRFS_UUID_UNPARSED_SIZE];
u8 *p;
u32 csum_size;
u16 csum_type;
bool metadata_uuid_present = (btrfs_super_incompat_flags(sb) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
int cmp_res = 0;
csum_type = btrfs_super_csum_type(sb);
csum_size = BTRFS_CSUM_SIZE;
printf("csum_type\t\t%hu (", csum_type);
if (!is_valid_csum_type(csum_type)) {
printf("INVALID");
} else {
printf("%s", btrfs_super_csum_name(csum_type));
csum_size = btrfs_super_csum_size(sb);
}
printf(")\n");
printf("csum_size\t\t%llu\n", (unsigned long long)csum_size);
printf("csum\t\t\t0x");
for (i = 0, p = sb->csum; i < csum_size; i++)
printf("%02x", p[i]);
if (!is_valid_csum_type(csum_type))
printf(" [UNKNOWN CSUM TYPE OR SIZE]");
else if (check_csum_sblock(sb, csum_size, csum_type))
printf(" [match]");
else
printf(" [DON'T MATCH]");
putchar('\n');
printf("bytenr\t\t\t%llu\n",
(unsigned long long)btrfs_super_bytenr(sb));
printf("flags\t\t\t0x%llx\n",
(unsigned long long)btrfs_super_flags(sb));
print_readable_super_flag(btrfs_super_flags(sb));
printf("magic\t\t\t");
s = (char *) &sb->magic;
for (i = 0; i < 8; i++)
putchar(isprint(s[i]) ? s[i] : '.');
if (btrfs_super_magic(sb) == BTRFS_MAGIC)
printf(" [match]\n");
else
printf(" [DON'T MATCH]\n");
uuid_unparse(sb->fsid, buf);
printf("fsid\t\t\t%s\n", buf);
uuid_unparse(sb->metadata_uuid, buf);
printf("metadata_uuid\t\t%s\n", buf);
printf("label\t\t\t");
s = sb->label;
for (i = 0; i < BTRFS_LABEL_SIZE && s[i]; i++)
putchar(isprint(s[i]) ? s[i] : '.');
putchar('\n');
printf("generation\t\t%llu\n",
(unsigned long long)btrfs_super_generation(sb));
printf("root\t\t\t%llu\n", (unsigned long long)btrfs_super_root(sb));
printf("sys_array_size\t\t%llu\n",
(unsigned long long)btrfs_super_sys_array_size(sb));
printf("chunk_root_generation\t%llu\n",
(unsigned long long)btrfs_super_chunk_root_generation(sb));
printf("root_level\t\t%llu\n",
(unsigned long long)btrfs_super_root_level(sb));
printf("chunk_root\t\t%llu\n",
(unsigned long long)btrfs_super_chunk_root(sb));
printf("chunk_root_level\t%llu\n",
(unsigned long long)btrfs_super_chunk_root_level(sb));
printf("log_root\t\t%llu\n",
(unsigned long long)btrfs_super_log_root(sb));
printf("log_root_transid (deprecated)\t%llu\n",
le64_to_cpu(sb->__unused_log_root_transid));
printf("log_root_level\t\t%llu\n",
(unsigned long long)btrfs_super_log_root_level(sb));
printf("total_bytes\t\t%llu\n",
(unsigned long long)btrfs_super_total_bytes(sb));
printf("bytes_used\t\t%llu\n",
(unsigned long long)btrfs_super_bytes_used(sb));
printf("sectorsize\t\t%llu\n",
(unsigned long long)btrfs_super_sectorsize(sb));
printf("nodesize\t\t%llu\n",
(unsigned long long)btrfs_super_nodesize(sb));
printf("leafsize (deprecated)\t%u\n",
le32_to_cpu(sb->__unused_leafsize));
printf("stripesize\t\t%llu\n",
(unsigned long long)btrfs_super_stripesize(sb));
printf("root_dir\t\t%llu\n",
(unsigned long long)btrfs_super_root_dir(sb));
printf("num_devices\t\t%llu\n",
(unsigned long long)btrfs_super_num_devices(sb));
printf("compat_flags\t\t0x%llx\n",
(unsigned long long)btrfs_super_compat_flags(sb));
printf("compat_ro_flags\t\t0x%llx\n",
(unsigned long long)btrfs_super_compat_ro_flags(sb));
print_readable_compat_ro_flag(btrfs_super_compat_ro_flags(sb));
printf("incompat_flags\t\t0x%llx\n",
(unsigned long long)btrfs_super_incompat_flags(sb));
print_readable_incompat_flag(btrfs_super_incompat_flags(sb));
printf("cache_generation\t%llu\n",
(unsigned long long)btrfs_super_cache_generation(sb));
printf("uuid_tree_generation\t%llu\n",
(unsigned long long)btrfs_super_uuid_tree_generation(sb));
uuid_unparse(sb->dev_item.uuid, buf);
printf("dev_item.uuid\t\t%s\n", buf);
uuid_unparse(sb->dev_item.fsid, buf);
if (metadata_uuid_present) {
cmp_res = !memcmp(sb->dev_item.fsid, sb->metadata_uuid,
BTRFS_FSID_SIZE);
} else {
cmp_res = !memcmp(sb->dev_item.fsid, sb->fsid, BTRFS_FSID_SIZE);
}
printf("dev_item.fsid\t\t%s %s\n", buf,
cmp_res ? "[match]" : "[DON'T MATCH]");
printf("dev_item.type\t\t%llu\n", (unsigned long long)
btrfs_stack_device_type(&sb->dev_item));
printf("dev_item.total_bytes\t%llu\n", (unsigned long long)
btrfs_stack_device_total_bytes(&sb->dev_item));
printf("dev_item.bytes_used\t%llu\n", (unsigned long long)
btrfs_stack_device_bytes_used(&sb->dev_item));
printf("dev_item.io_align\t%u\n", (unsigned int)
btrfs_stack_device_io_align(&sb->dev_item));
printf("dev_item.io_width\t%u\n", (unsigned int)
btrfs_stack_device_io_width(&sb->dev_item));
printf("dev_item.sector_size\t%u\n", (unsigned int)
btrfs_stack_device_sector_size(&sb->dev_item));
printf("dev_item.devid\t\t%llu\n",
btrfs_stack_device_id(&sb->dev_item));
printf("dev_item.dev_group\t%u\n", (unsigned int)
btrfs_stack_device_group(&sb->dev_item));
printf("dev_item.seek_speed\t%u\n", (unsigned int)
btrfs_stack_device_seek_speed(&sb->dev_item));
printf("dev_item.bandwidth\t%u\n", (unsigned int)
btrfs_stack_device_bandwidth(&sb->dev_item));
printf("dev_item.generation\t%llu\n", (unsigned long long)
btrfs_stack_device_generation(&sb->dev_item));
if (full) {
printf("sys_chunk_array[%d]:\n", BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
print_sys_chunk_array(sb);
printf("backup_roots[%d]:\n", BTRFS_NUM_BACKUP_ROOTS);
print_backup_roots(sb);
}
}