btrfs-progs/kernel-shared/extent_io.c
Qu Wenruo 2aa4085bf7 btrfs-progs: properly handle degraded raid56 reads
[BUG]
For a degraded RAID5, btrfs check will fail to even read the chunk root:

  # mkfs.btrfs -f -m raid5 -d raid5 $dev1 $dev2 $dev3
  # wipefs -fa $dev1
  # btrfs check $dev2
  Opening filesystem to check...
  warning, device 1 is missing
  bad tree block 22036480, bytenr mismatch, want=22036480, have=0
  ERROR: cannot read chunk root
  ERROR: cannot open file system

[CAUSE]
Although read_tree_block() function from btrfs-progs is properly
iterating the mirrors (mirror 1 is reading from the disk directly,
mirror 2 will be rebuild from parity), the raid56 recovery path is not
handling the read error correctly.

The existing code will try to read the full stripe, but any read failure
(including missing device) will immediately cause an error:

	for (i = 0; i < num_stripes; i++) {
		ret = btrfs_pread(multi->stripes[i].dev->fd, pointers[i],
				  BTRFS_STRIPE_LEN, multi->stripes[i].physical,
				  fs_info->zoned);
		if (ret < BTRFS_STRIPE_LEN) {
			ret = -EIO;
			goto out;
		}
	}

[FIX]
To make failed_a/failed_b calculation much easier, and properly handle
too many missing devices, here this patch will introduce a new bitmap
based solution.

The new @failed_stripe_bitmap will represent all the failed stripes.

So the initial read will mark all the missing devices in the
@failed_stripe_bitmap, and later operations will all operate on that
bitmap.

Only before we call raid56_recov(), we convert the bitmap to the old
failed_a/failed_b interface and continue.

Now btrfs check can handle above case properly:

  # btrfs check $dev2
  Opening filesystem to check...
  warning, device 1 is missing
  Checking filesystem on /dev/test/scratch2
  UUID: 8b2e1cb4-f35b-4856-9b11-262d39d8458b
  [1/7] checking root items
  [2/7] checking extents
  [3/7] checking free space tree
  [4/7] checking fs roots
  [5/7] checking only csums items (without verifying data)
  [6/7] checking root refs
  [7/7] checking quota groups skipped (not enabled on this FS)
  found 147456 bytes used, no error found
  total csum bytes: 0
  total tree bytes: 147456
  total fs tree bytes: 32768
  total extent tree bytes: 16384
  btree space waste bytes: 139871
  file data blocks allocated: 0
   referenced 0

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-11-24 17:29:12 +01:00

1114 lines
26 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdbool.h>
#include "kerncompat.h"
#include "kernel-shared/extent_io.h"
#include "kernel-lib/list.h"
#include "kernel-lib/raid56.h"
#include "kernel-lib/bitmap.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/disk-io.h"
#include "common/utils.h"
#include "common/device-utils.h"
#include "common/internal.h"
void extent_io_tree_init(struct extent_io_tree *tree)
{
cache_tree_init(&tree->state);
cache_tree_init(&tree->cache);
INIT_LIST_HEAD(&tree->lru);
tree->cache_size = 0;
tree->max_cache_size = (u64)total_memory() / 4;
}
static struct extent_state *alloc_extent_state(void)
{
struct extent_state *state;
state = malloc(sizeof(*state));
if (!state)
return NULL;
state->cache_node.objectid = 0;
state->refs = 1;
state->state = 0;
state->xprivate = 0;
return state;
}
static void btrfs_free_extent_state(struct extent_state *state)
{
state->refs--;
BUG_ON(state->refs < 0);
if (state->refs == 0)
free(state);
}
static void free_extent_state_func(struct cache_extent *cache)
{
struct extent_state *es;
es = container_of(cache, struct extent_state, cache_node);
btrfs_free_extent_state(es);
}
static void free_extent_buffer_final(struct extent_buffer *eb);
void extent_io_tree_cleanup(struct extent_io_tree *tree)
{
struct extent_buffer *eb;
while(!list_empty(&tree->lru)) {
eb = list_entry(tree->lru.next, struct extent_buffer, lru);
if (eb->refs) {
/*
* Reset extent buffer refs to 1, so the
* free_extent_buffer_nocache() can free it for sure.
*/
eb->refs = 1;
fprintf(stderr,
"extent buffer leak: start %llu len %u\n",
(unsigned long long)eb->start, eb->len);
free_extent_buffer_nocache(eb);
} else {
free_extent_buffer_final(eb);
}
}
cache_tree_free_extents(&tree->state, free_extent_state_func);
}
static inline void update_extent_state(struct extent_state *state)
{
state->cache_node.start = state->start;
state->cache_node.size = state->end + 1 - state->start;
}
/*
* Utility function to look for merge candidates inside a given range.
* Any extents with matching state are merged together into a single
* extent in the tree. Extents with EXTENT_IO in their state field are
* not merged
*/
static int merge_state(struct extent_io_tree *tree,
struct extent_state *state)
{
struct extent_state *other;
struct cache_extent *other_node;
if (state->state & EXTENT_IOBITS)
return 0;
other_node = prev_cache_extent(&state->cache_node);
if (other_node) {
other = container_of(other_node, struct extent_state,
cache_node);
if (other->end == state->start - 1 &&
other->state == state->state) {
state->start = other->start;
update_extent_state(state);
remove_cache_extent(&tree->state, &other->cache_node);
btrfs_free_extent_state(other);
}
}
other_node = next_cache_extent(&state->cache_node);
if (other_node) {
other = container_of(other_node, struct extent_state,
cache_node);
if (other->start == state->end + 1 &&
other->state == state->state) {
other->start = state->start;
update_extent_state(other);
remove_cache_extent(&tree->state, &state->cache_node);
btrfs_free_extent_state(state);
}
}
return 0;
}
/*
* insert an extent_state struct into the tree. 'bits' are set on the
* struct before it is inserted.
*/
static int insert_state(struct extent_io_tree *tree,
struct extent_state *state, u64 start, u64 end,
int bits)
{
int ret;
BUG_ON(end < start);
state->state |= bits;
state->start = start;
state->end = end;
update_extent_state(state);
ret = insert_cache_extent(&tree->state, &state->cache_node);
BUG_ON(ret);
merge_state(tree, state);
return 0;
}
/*
* split a given extent state struct in two, inserting the preallocated
* struct 'prealloc' as the newly created second half. 'split' indicates an
* offset inside 'orig' where it should be split.
*/
static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
struct extent_state *prealloc, u64 split)
{
int ret;
prealloc->start = orig->start;
prealloc->end = split - 1;
prealloc->state = orig->state;
update_extent_state(prealloc);
orig->start = split;
update_extent_state(orig);
ret = insert_cache_extent(&tree->state, &prealloc->cache_node);
BUG_ON(ret);
return 0;
}
/*
* clear some bits on a range in the tree.
*/
static int clear_state_bit(struct extent_io_tree *tree,
struct extent_state *state, int bits)
{
int ret = state->state & bits;
state->state &= ~bits;
if (state->state == 0) {
remove_cache_extent(&tree->state, &state->cache_node);
btrfs_free_extent_state(state);
} else {
merge_state(tree, state);
}
return ret;
}
/*
* extent_buffer_bitmap_set - set an area of a bitmap
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @pos: bit number of the first bit
* @len: number of bits to set
*/
void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
unsigned long pos, unsigned long len)
{
u8 *p = (u8 *)eb->data + start + BIT_BYTE(pos);
const unsigned int size = pos + len;
int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
while (len >= bits_to_set) {
*p |= mask_to_set;
len -= bits_to_set;
bits_to_set = BITS_PER_BYTE;
mask_to_set = ~0;
p++;
}
if (len) {
mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
*p |= mask_to_set;
}
}
/*
* extent_buffer_bitmap_clear - clear an area of a bitmap
* @eb: the extent buffer
* @start: offset of the bitmap item in the extent buffer
* @pos: bit number of the first bit
* @len: number of bits to clear
*/
void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
unsigned long pos, unsigned long len)
{
u8 *p = (u8 *)eb->data + start + BIT_BYTE(pos);
const unsigned int size = pos + len;
int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
while (len >= bits_to_clear) {
*p &= ~mask_to_clear;
len -= bits_to_clear;
bits_to_clear = BITS_PER_BYTE;
mask_to_clear = ~0;
p++;
}
if (len) {
mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
*p &= ~mask_to_clear;
}
}
/*
* clear some bits on a range in the tree.
*/
int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, int bits)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct cache_extent *node;
u64 last_end;
int err;
int set = 0;
again:
if (!prealloc) {
prealloc = alloc_extent_state();
if (!prealloc)
return -ENOMEM;
}
/*
* this search will find the extents that end after
* our range starts
*/
node = search_cache_extent(&tree->state, start);
if (!node)
goto out;
state = container_of(node, struct extent_state, cache_node);
if (state->start > end)
goto out;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state | or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip
* bits on second half.
*
* If the extent we found extends past our range, we
* just split and search again. It'll get split again
* the next time though.
*
* If the extent we found is inside our range, we clear
* the desired bit on it.
*/
if (state->start < start) {
err = split_state(tree, state, prealloc, start);
BUG_ON(err == -EEXIST);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
set |= clear_state_bit(tree, state, bits);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
} else {
start = state->start;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* We need to split the extent, and clear the bit
* on the first half
*/
if (state->start <= end && state->end > end) {
err = split_state(tree, state, prealloc, end + 1);
BUG_ON(err == -EEXIST);
set |= clear_state_bit(tree, prealloc, bits);
prealloc = NULL;
goto out;
}
start = state->end + 1;
set |= clear_state_bit(tree, state, bits);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
goto search_again;
out:
if (prealloc)
btrfs_free_extent_state(prealloc);
return set;
search_again:
if (start > end)
goto out;
goto again;
}
/*
* set some bits on a range in the tree.
*/
int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, int bits)
{
struct extent_state *state;
struct extent_state *prealloc = NULL;
struct cache_extent *node;
int err = 0;
u64 last_start;
u64 last_end;
again:
if (!prealloc) {
prealloc = alloc_extent_state();
if (!prealloc)
return -ENOMEM;
}
/*
* this search will find the extents that end after
* our range starts
*/
node = search_cache_extent(&tree->state, start);
if (!node) {
err = insert_state(tree, prealloc, start, end, bits);
BUG_ON(err == -EEXIST);
prealloc = NULL;
goto out;
}
state = container_of(node, struct extent_state, cache_node);
last_start = state->start;
last_end = state->end;
/*
* | ---- desired range ---- |
* | state |
*
* Just lock what we found and keep going
*/
if (state->start == start && state->end <= end) {
state->state |= bits;
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | state |
* or
* | ------------- state -------------- |
*
* We need to split the extent we found, and may flip bits on
* second half.
*
* If the extent we found extends past our
* range, we just split and search again. It'll get split
* again the next time though.
*
* If the extent we found is inside our range, we set the
* desired bit on it.
*/
if (state->start < start) {
err = split_state(tree, state, prealloc, start);
BUG_ON(err == -EEXIST);
prealloc = NULL;
if (err)
goto out;
if (state->end <= end) {
state->state |= bits;
start = state->end + 1;
merge_state(tree, state);
if (last_end == (u64)-1)
goto out;
start = last_end + 1;
} else {
start = state->start;
}
goto search_again;
}
/*
* | ---- desired range ---- |
* | state | or | state |
*
* There's a hole, we need to insert something in it and
* ignore the extent we found.
*/
if (state->start > start) {
u64 this_end;
if (end < last_start)
this_end = end;
else
this_end = last_start -1;
err = insert_state(tree, prealloc, start, this_end,
bits);
BUG_ON(err == -EEXIST);
prealloc = NULL;
if (err)
goto out;
start = this_end + 1;
goto search_again;
}
/*
* | ---- desired range ---- |
* | ---------- state ---------- |
* We need to split the extent, and set the bit
* on the first half
*/
err = split_state(tree, state, prealloc, end + 1);
BUG_ON(err == -EEXIST);
state->state |= bits;
merge_state(tree, prealloc);
prealloc = NULL;
out:
if (prealloc)
btrfs_free_extent_state(prealloc);
return err;
search_again:
if (start > end)
goto out;
goto again;
}
int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end)
{
return set_extent_bits(tree, start, end, EXTENT_DIRTY);
}
int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end)
{
return clear_extent_bits(tree, start, end, EXTENT_DIRTY);
}
int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
u64 *start_ret, u64 *end_ret, int bits)
{
struct cache_extent *node;
struct extent_state *state;
int ret = 1;
/*
* this search will find all the extents that end after
* our range starts.
*/
node = search_cache_extent(&tree->state, start);
if (!node)
goto out;
while(1) {
state = container_of(node, struct extent_state, cache_node);
if (state->end >= start && (state->state & bits)) {
*start_ret = state->start;
*end_ret = state->end;
ret = 0;
break;
}
node = next_cache_extent(node);
if (!node)
break;
}
out:
return ret;
}
int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
int bits, int filled)
{
struct extent_state *state = NULL;
struct cache_extent *node;
int bitset = 0;
node = search_cache_extent(&tree->state, start);
while (node && start <= end) {
state = container_of(node, struct extent_state, cache_node);
if (filled && state->start > start) {
bitset = 0;
break;
}
if (state->start > end)
break;
if (state->state & bits) {
bitset = 1;
if (!filled)
break;
} else if (filled) {
bitset = 0;
break;
}
start = state->end + 1;
if (start > end)
break;
node = next_cache_extent(node);
if (!node) {
if (filled)
bitset = 0;
break;
}
}
return bitset;
}
int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
{
struct cache_extent *node;
struct extent_state *state;
int ret = 0;
node = search_cache_extent(&tree->state, start);
if (!node) {
ret = -ENOENT;
goto out;
}
state = container_of(node, struct extent_state, cache_node);
if (state->start != start) {
ret = -ENOENT;
goto out;
}
state->xprivate = private;
out:
return ret;
}
int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
{
struct cache_extent *node;
struct extent_state *state;
int ret = 0;
node = search_cache_extent(&tree->state, start);
if (!node) {
ret = -ENOENT;
goto out;
}
state = container_of(node, struct extent_state, cache_node);
if (state->start != start) {
ret = -ENOENT;
goto out;
}
*private = state->xprivate;
out:
return ret;
}
static struct extent_buffer *__alloc_extent_buffer(struct btrfs_fs_info *info,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *eb;
eb = calloc(1, sizeof(struct extent_buffer) + blocksize);
if (!eb)
return NULL;
eb->start = bytenr;
eb->len = blocksize;
eb->refs = 1;
eb->flags = 0;
eb->cache_node.start = bytenr;
eb->cache_node.size = blocksize;
eb->fs_info = info;
INIT_LIST_HEAD(&eb->recow);
INIT_LIST_HEAD(&eb->lru);
memset_extent_buffer(eb, 0, 0, blocksize);
return eb;
}
struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
{
struct extent_buffer *new;
new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
if (!new)
return NULL;
copy_extent_buffer(new, src, 0, 0, src->len);
new->flags |= EXTENT_BUFFER_DUMMY;
return new;
}
static void free_extent_buffer_final(struct extent_buffer *eb)
{
BUG_ON(eb->refs);
list_del_init(&eb->lru);
if (!(eb->flags & EXTENT_BUFFER_DUMMY)) {
struct extent_io_tree *tree = &eb->fs_info->extent_cache;
remove_cache_extent(&tree->cache, &eb->cache_node);
BUG_ON(tree->cache_size < eb->len);
tree->cache_size -= eb->len;
}
free(eb);
}
static void free_extent_buffer_internal(struct extent_buffer *eb, bool free_now)
{
if (!eb || IS_ERR(eb))
return;
eb->refs--;
BUG_ON(eb->refs < 0);
if (eb->refs == 0) {
if (eb->flags & EXTENT_DIRTY) {
warning(
"dirty eb leak (aborted trans): start %llu len %u",
eb->start, eb->len);
}
list_del_init(&eb->recow);
if (eb->flags & EXTENT_BUFFER_DUMMY || free_now)
free_extent_buffer_final(eb);
}
}
void free_extent_buffer(struct extent_buffer *eb)
{
free_extent_buffer_internal(eb, 0);
}
void free_extent_buffer_nocache(struct extent_buffer *eb)
{
free_extent_buffer_internal(eb, 1);
}
struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *eb = NULL;
struct cache_extent *cache;
cache = lookup_cache_extent(&tree->cache, bytenr, blocksize);
if (cache && cache->start == bytenr &&
cache->size == blocksize) {
eb = container_of(cache, struct extent_buffer, cache_node);
list_move_tail(&eb->lru, &tree->lru);
eb->refs++;
}
return eb;
}
struct extent_buffer *find_first_extent_buffer(struct extent_io_tree *tree,
u64 start)
{
struct extent_buffer *eb = NULL;
struct cache_extent *cache;
cache = search_cache_extent(&tree->cache, start);
if (cache) {
eb = container_of(cache, struct extent_buffer, cache_node);
list_move_tail(&eb->lru, &tree->lru);
eb->refs++;
}
return eb;
}
static void trim_extent_buffer_cache(struct extent_io_tree *tree)
{
struct extent_buffer *eb, *tmp;
list_for_each_entry_safe(eb, tmp, &tree->lru, lru) {
if (eb->refs == 0)
free_extent_buffer_final(eb);
if (tree->cache_size <= ((tree->max_cache_size * 9) / 10))
break;
}
}
struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *eb;
struct extent_io_tree *tree = &fs_info->extent_cache;
struct cache_extent *cache;
cache = lookup_cache_extent(&tree->cache, bytenr, blocksize);
if (cache && cache->start == bytenr &&
cache->size == blocksize) {
eb = container_of(cache, struct extent_buffer, cache_node);
list_move_tail(&eb->lru, &tree->lru);
eb->refs++;
} else {
int ret;
if (cache) {
eb = container_of(cache, struct extent_buffer,
cache_node);
free_extent_buffer(eb);
}
eb = __alloc_extent_buffer(fs_info, bytenr, blocksize);
if (!eb)
return NULL;
ret = insert_cache_extent(&tree->cache, &eb->cache_node);
if (ret) {
free(eb);
return NULL;
}
list_add_tail(&eb->lru, &tree->lru);
tree->cache_size += blocksize;
if (tree->cache_size >= tree->max_cache_size)
trim_extent_buffer_cache(tree);
}
return eb;
}
/*
* Allocate a dummy extent buffer which won't be inserted into extent buffer
* cache.
*
* This mostly allows super block read write using existing eb infrastructure
* without pulluting the eb cache.
*
* This is especially important to avoid injecting eb->start == SZ_64K, as
* fuzzed image could have invalid tree bytenr covers super block range,
* and cause ref count underflow.
*/
struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
u64 bytenr, u32 blocksize)
{
struct extent_buffer *ret;
ret = __alloc_extent_buffer(fs_info, bytenr, blocksize);
if (!ret)
return NULL;
ret->flags |= EXTENT_BUFFER_DUMMY;
return ret;
}
static int read_raid56(struct btrfs_fs_info *fs_info, void *buf, u64 logical,
u64 len, int mirror, struct btrfs_multi_bio *multi,
u64 *raid_map)
{
const int tolerance = (multi->type & BTRFS_RAID_RAID6 ? 2 : 1);
const int num_stripes = multi->num_stripes;
const u64 full_stripe_start = raid_map[0];
void **pointers = NULL;
unsigned long *failed_stripe_bitmap = NULL;
int failed_a = -1;
int failed_b = -1;
int i;
int ret;
/* Only read repair should go this path */
ASSERT(mirror > 1);
ASSERT(raid_map);
/* The read length should be inside one stripe */
ASSERT(len <= BTRFS_STRIPE_LEN);
pointers = calloc(num_stripes, sizeof(void *));
if (!pointers) {
ret = -ENOMEM;
goto out;
}
/* Allocate memory for the full stripe */
for (i = 0; i < num_stripes; i++) {
pointers[i] = malloc(BTRFS_STRIPE_LEN);
if (!pointers[i]) {
ret = -ENOMEM;
goto out;
}
}
failed_stripe_bitmap = bitmap_zalloc(num_stripes);
if (!failed_stripe_bitmap) {
ret = -ENOMEM;
goto out;
}
/*
* Read the full stripe.
*
* The stripes in @multi is not rotated, thus can be used to read from
* disk directly.
*/
for (i = 0; i < num_stripes; i++) {
ret = btrfs_pread(multi->stripes[i].dev->fd, pointers[i],
BTRFS_STRIPE_LEN, multi->stripes[i].physical,
fs_info->zoned);
if (ret < BTRFS_STRIPE_LEN)
set_bit(i, failed_stripe_bitmap);
}
/*
* Get the failed index.
*
* Since we're reading using mirror_num > 1 already, it means the data
* stripe where @logical lies in is definitely corrupted.
*/
set_bit((logical - full_stripe_start) / BTRFS_STRIPE_LEN, failed_stripe_bitmap);
/*
* For RAID6, we don't have good way to exhaust all the combinations,
* so here we can only go through the map to see if we have missing devices.
*
* If we only have one failed stripe (marked by above set_bit()), then
* we have no better idea, fallback to use P corruption.
*/
if (multi->type & BTRFS_BLOCK_GROUP_RAID6 &&
bitmap_weight(failed_stripe_bitmap, num_stripes) < 2)
set_bit(num_stripes - 2, failed_stripe_bitmap);
/* Damaged beyond repair already. */
if (bitmap_weight(failed_stripe_bitmap, num_stripes) > tolerance) {
ret = -EIO;
goto out;
}
for_each_set_bit(i, failed_stripe_bitmap, num_stripes) {
if (failed_a < 0)
failed_a = i;
else if (failed_b < 0)
failed_b = i;
}
/* Rebuild the full stripe */
ret = raid56_recov(num_stripes, BTRFS_STRIPE_LEN, multi->type,
failed_a, failed_b, pointers);
ASSERT(ret == 0);
/* Now copy the data back to original buf */
memcpy(buf, pointers[failed_a] + (logical - full_stripe_start) %
BTRFS_STRIPE_LEN, len);
ret = 0;
out:
free(failed_stripe_bitmap);
for (i = 0; i < num_stripes; i++)
free(pointers[i]);
free(pointers);
return ret;
}
int read_data_from_disk(struct btrfs_fs_info *info, void *buf, u64 logical,
u64 *len, int mirror)
{
struct btrfs_multi_bio *multi = NULL;
struct btrfs_device *device;
u64 read_len = *len;
u64 *raid_map = NULL;
int ret;
ret = btrfs_map_block(info, READ, logical, &read_len, &multi, mirror,
&raid_map);
if (ret) {
fprintf(stderr, "Couldn't map the block %llu\n", logical);
return -EIO;
}
read_len = min(*len, read_len);
/* We need to rebuild from P/Q */
if (mirror > 1 && multi->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
ret = read_raid56(info, buf, logical, read_len, mirror, multi,
raid_map);
free(multi);
free(raid_map);
*len = read_len;
return ret;
}
free(raid_map);
device = multi->stripes[0].dev;
if (device->fd <= 0) {
kfree(multi);
return -EIO;
}
ret = btrfs_pread(device->fd, buf, read_len,
multi->stripes[0].physical, info->zoned);
kfree(multi);
if (ret < 0) {
fprintf(stderr, "Error reading %llu, %d\n", logical,
ret);
return ret;
}
if (ret != read_len) {
fprintf(stderr,
"Short read for %llu, read %d, read_len %llu\n",
logical, ret, read_len);
return -EIO;
}
*len = read_len;
return 0;
}
/*
* Write the data in @buf to logical bytenr @offset.
*
* Such data will be written to all mirrors and RAID56 P/Q will also be
* properly handled.
*/
int write_data_to_disk(struct btrfs_fs_info *info, void *buf, u64 offset,
u64 bytes)
{
struct btrfs_multi_bio *multi = NULL;
struct btrfs_device *device;
u64 bytes_left = bytes;
u64 this_len;
u64 total_write = 0;
u64 *raid_map = NULL;
u64 dev_bytenr;
int dev_nr;
int ret = 0;
while (bytes_left > 0) {
this_len = bytes_left;
dev_nr = 0;
ret = btrfs_map_block(info, WRITE, offset, &this_len, &multi,
0, &raid_map);
if (ret) {
fprintf(stderr, "Couldn't map the block %llu\n",
offset);
return -EIO;
}
if (raid_map) {
struct extent_buffer *eb;
u64 stripe_len = this_len;
this_len = min(this_len, bytes_left);
this_len = min(this_len, (u64)info->nodesize);
eb = malloc(sizeof(struct extent_buffer) + this_len);
if (!eb) {
error_msg(ERROR_MSG_MEMORY, "extent buffer");
ret = -ENOMEM;
goto out;
}
memset(eb, 0, sizeof(struct extent_buffer) + this_len);
eb->start = offset;
eb->len = this_len;
memcpy(eb->data, buf + total_write, this_len);
ret = write_raid56_with_parity(info, eb, multi,
stripe_len, raid_map);
BUG_ON(ret < 0);
free(eb);
kfree(raid_map);
raid_map = NULL;
} else while (dev_nr < multi->num_stripes) {
device = multi->stripes[dev_nr].dev;
if (device->fd <= 0) {
kfree(multi);
return -EIO;
}
dev_bytenr = multi->stripes[dev_nr].physical;
this_len = min(this_len, bytes_left);
dev_nr++;
device->total_ios++;
ret = btrfs_pwrite(device->fd, buf + total_write,
this_len, dev_bytenr, info->zoned);
if (ret != this_len) {
if (ret < 0) {
fprintf(stderr, "Error writing to "
"device %d\n", errno);
ret = -errno;
kfree(multi);
return ret;
} else {
fprintf(stderr, "Short write\n");
kfree(multi);
return -EIO;
}
}
}
BUG_ON(bytes_left < this_len);
bytes_left -= this_len;
offset += this_len;
total_write += this_len;
kfree(multi);
multi = NULL;
}
return 0;
out:
kfree(raid_map);
return ret;
}
int set_extent_buffer_dirty(struct extent_buffer *eb)
{
struct extent_io_tree *tree = &eb->fs_info->extent_cache;
if (!(eb->flags & EXTENT_DIRTY)) {
eb->flags |= EXTENT_DIRTY;
set_extent_dirty(tree, eb->start, eb->start + eb->len - 1);
extent_buffer_get(eb);
}
return 0;
}
int clear_extent_buffer_dirty(struct extent_buffer *eb)
{
struct extent_io_tree *tree = &eb->fs_info->extent_cache;
if (eb->flags & EXTENT_DIRTY) {
eb->flags &= ~EXTENT_DIRTY;
clear_extent_dirty(tree, eb->start, eb->start + eb->len - 1);
free_extent_buffer(eb);
}
return 0;
}
int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
unsigned long start, unsigned long len)
{
return memcmp(eb->data + start, ptrv, len);
}
void read_extent_buffer(const struct extent_buffer *eb, void *dst,
unsigned long start, unsigned long len)
{
memcpy(dst, eb->data + start, len);
}
void write_extent_buffer(struct extent_buffer *eb, const void *src,
unsigned long start, unsigned long len)
{
memcpy(eb->data + start, src, len);
}
void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
unsigned long dst_offset, unsigned long src_offset,
unsigned long len)
{
memcpy(dst->data + dst_offset, src->data + src_offset, len);
}
void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
unsigned long src_offset, unsigned long len)
{
memmove(dst->data + dst_offset, dst->data + src_offset, len);
}
void memset_extent_buffer(struct extent_buffer *eb, char c,
unsigned long start, unsigned long len)
{
memset(eb->data + start, c, len);
}
int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
unsigned long nr)
{
return le_test_bit(nr, (u8 *)eb->data + start);
}