mirror of
https://github.com/kdave/btrfs-progs
synced 2025-01-25 15:03:18 +00:00
326 lines
9.0 KiB
Python
Executable File
326 lines
9.0 KiB
Python
Executable File
#!/usr/bin/env python
|
|
#
|
|
# Copyright (C) 2007 Oracle. All rights reserved.
|
|
#
|
|
# This program is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU General Public
|
|
# License v2 as published by the Free Software Foundation.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public
|
|
# License along with this program; if not, write to the
|
|
# Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
# Boston, MA 021110-1307, USA.
|
|
#
|
|
import sys, os, signal, time, commands, tempfile, random
|
|
|
|
# numpy seems to override random() with something else. Instantiate our
|
|
# own here
|
|
randgen = random.Random()
|
|
randgen.seed(50)
|
|
|
|
from optparse import OptionParser
|
|
from matplotlib import rcParams
|
|
from matplotlib.font_manager import fontManager, FontProperties
|
|
import numpy
|
|
|
|
rcParams['numerix'] = 'numpy'
|
|
rcParams['backend'] = 'Agg'
|
|
rcParams['interactive'] = 'False'
|
|
from pylab import *
|
|
|
|
class AnnoteFinder:
|
|
"""
|
|
callback for matplotlib to display an annotation when points are clicked on. The
|
|
point which is closest to the click and within xtol and ytol is identified.
|
|
|
|
Register this function like this:
|
|
|
|
scatter(xdata, ydata)
|
|
af = AnnoteFinder(xdata, ydata, annotes)
|
|
connect('button_press_event', af)
|
|
"""
|
|
|
|
def __init__(self, axis=None):
|
|
if axis is None:
|
|
self.axis = gca()
|
|
else:
|
|
self.axis= axis
|
|
self.drawnAnnotations = {}
|
|
self.links = []
|
|
|
|
def clear(self):
|
|
for k in self.drawnAnnotations.keys():
|
|
self.drawnAnnotations[k].set_visible(False)
|
|
|
|
def __call__(self, event):
|
|
if event.inaxes:
|
|
if event.button != 1:
|
|
self.clear()
|
|
draw()
|
|
return
|
|
clickX = event.xdata
|
|
clickY = event.ydata
|
|
if (self.axis is None) or (self.axis==event.inaxes):
|
|
self.drawAnnote(event.inaxes, clickX, clickY)
|
|
|
|
def drawAnnote(self, axis, x, y):
|
|
"""
|
|
Draw the annotation on the plot
|
|
"""
|
|
if self.drawnAnnotations.has_key((x,y)):
|
|
markers = self.drawnAnnotations[(x,y)]
|
|
markers.set_visible(not markers.get_visible())
|
|
draw()
|
|
else:
|
|
t = axis.text(x,y, "(%3.2f, %3.2f)"%(x,y), bbox=dict(facecolor='red',
|
|
alpha=0.8))
|
|
self.drawnAnnotations[(x,y)] = t
|
|
draw()
|
|
|
|
def loaddata(fh,delimiter=None, converters=None):
|
|
|
|
#14413824 8192 extent back ref root 5 gen 10 owner 282 num_refs 1
|
|
def iter(fh, delimiter, converters):
|
|
global total_data
|
|
global total_metadata
|
|
for i,line in enumerate(fh):
|
|
line = line.split(' ')
|
|
start = float(line[0])
|
|
len = float(line[1])
|
|
owner = float(line[10])
|
|
root = float(line[6])
|
|
if owner <= 255:
|
|
total_metadata += int(len)
|
|
else:
|
|
total_data += int(len)
|
|
if start < zoommin or (zoommax != 0 and start > zoommax):
|
|
continue
|
|
yield start
|
|
yield len
|
|
yield owner
|
|
yield root
|
|
X = numpy.fromiter(iter(fh, delimiter, converters), dtype=float)
|
|
return X
|
|
|
|
def run_debug_tree(device):
|
|
p = os.popen('btrfs-debug-tree -e ' + device)
|
|
data = loaddata(p)
|
|
return data
|
|
|
|
def shapeit(X):
|
|
lines = len(X) / 4
|
|
X.shape = (lines, 4)
|
|
|
|
def line_picker(line, mouseevent):
|
|
if mouseevent.xdata is None: return False, dict()
|
|
print "%d %d\n", mouseevent.xdata, mouseevent.ydata
|
|
return False, dict()
|
|
|
|
def xycalc(byte):
|
|
byte = byte / bytes_per_cell
|
|
yval = floor(byte / num_cells)
|
|
xval = byte % num_cells
|
|
return (xval, yval + 1)
|
|
|
|
# record the color used for each root the first time we find it
|
|
root_colors = {}
|
|
# there are lots of good colormaps to choose from
|
|
# http://www.scipy.org/Cookbook/Matplotlib/Show_colormaps
|
|
#
|
|
meta_cmap = get_cmap("gist_ncar")
|
|
data_done = False
|
|
|
|
def plotone(a, xvals, yvals, owner, root, lines, labels):
|
|
global data_done
|
|
add_label = False
|
|
|
|
if owner:
|
|
if options.meta_only:
|
|
return
|
|
color = "blue"
|
|
label = "Data"
|
|
if not data_done:
|
|
add_label = True
|
|
data_done = True
|
|
else:
|
|
if options.data_only:
|
|
return
|
|
if root not in root_colors:
|
|
color = meta_cmap(randgen.random())
|
|
label = "Meta %d" % int(root)
|
|
root_colors[root] = (color, label)
|
|
add_label = True
|
|
else:
|
|
color, label = root_colors[root]
|
|
|
|
plotlines = a.plot(xvals, yvals, 's', color=color, mfc=color, mec=color,
|
|
markersize=.23, label=label)
|
|
if add_label:
|
|
lines += plotlines
|
|
labels.append(label)
|
|
print "add label %s" % label
|
|
|
|
def parse_zoom():
|
|
def parse_num(s):
|
|
mult = 1
|
|
c = s.lower()[-1]
|
|
if c == 't':
|
|
mult = 1024 * 1024 * 1024 * 1024
|
|
elif c == 'g':
|
|
mult = 1024 * 1024 * 1024
|
|
elif c == 'm':
|
|
mult = 1024 * 1024
|
|
elif c == 'k':
|
|
mult = 1024
|
|
else:
|
|
c = None
|
|
if c:
|
|
num = int(s[:-1]) * mult
|
|
else:
|
|
num = int(s)
|
|
return num
|
|
|
|
if not options.zoom:
|
|
return (0, 0)
|
|
|
|
vals = options.zoom.split(':')
|
|
if len(vals) != 2:
|
|
sys.stderr.write("warning: unable to parse zoom %s\n" % options.zoom)
|
|
return (0, 0)
|
|
zoommin = parse_num(vals[0])
|
|
zoommax = parse_num(vals[1])
|
|
return (zoommin, zoommax)
|
|
|
|
usage = "usage: %prog [options]"
|
|
parser = OptionParser(usage=usage)
|
|
parser.add_option("-d", "--device", help="Btrfs device", default="")
|
|
parser.add_option("-i", "--input-file", help="debug-tree data", default="")
|
|
parser.add_option("-o", "--output", help="Output file", default="blocks.png")
|
|
parser.add_option("-z", "--zoom", help="Zoom", default=None)
|
|
parser.add_option("", "--data-only", help="Only print data blocks",
|
|
default=False, action="store_true")
|
|
parser.add_option("", "--meta-only", help="Only print metadata blocks",
|
|
default=False, action="store_true")
|
|
|
|
(options,args) = parser.parse_args()
|
|
|
|
if not options.device and not options.input_file:
|
|
parser.print_help()
|
|
sys.exit(1)
|
|
|
|
zoommin, zoommax = parse_zoom()
|
|
total_data = 0
|
|
total_metadata = 0
|
|
|
|
if options.device:
|
|
data = run_debug_tree(options.device)
|
|
elif options.input_file:
|
|
data = loaddata(file(options.input_file))
|
|
shapeit(data)
|
|
|
|
# try to drop out the least common data points by creating
|
|
# a historgram of the sectors seen.
|
|
sectors = data[:,0]
|
|
sizes = data[:,1]
|
|
datalen = len(data)
|
|
sectormax = numpy.max(sectors)
|
|
sectormin = 0
|
|
num_cells = 800
|
|
total_cells = num_cells * num_cells
|
|
byte_range = sectormax - sectormin
|
|
bytes_per_cell = byte_range / total_cells
|
|
|
|
f = figure(figsize=(8,6))
|
|
|
|
# Throughput goes at the botoom
|
|
a = subplot(1, 1, 1)
|
|
subplots_adjust(right=0.7)
|
|
datai = 0
|
|
xvals = []
|
|
yvals = []
|
|
last_owner = 0
|
|
last_root = 0
|
|
lines = []
|
|
labels = []
|
|
while datai < datalen:
|
|
row = data[datai]
|
|
datai += 1
|
|
byte = row[0]
|
|
size = row[1]
|
|
owner = row[2]
|
|
root = row[3]
|
|
|
|
if owner <= 255:
|
|
owner = 0
|
|
else:
|
|
owner = 1
|
|
|
|
if len(xvals) and (owner != last_owner or last_root != root):
|
|
plotone(a, xvals, yvals, last_owner, last_root, lines, labels)
|
|
xvals = []
|
|
yvals = []
|
|
cell = 0
|
|
while cell < size:
|
|
xy = xycalc(byte)
|
|
byte += bytes_per_cell
|
|
cell += bytes_per_cell
|
|
if xy:
|
|
xvals.append(xy[0])
|
|
yvals.append(xy[1])
|
|
last_owner = owner
|
|
last_root = root
|
|
|
|
if xvals:
|
|
plotone(a, xvals, yvals, last_owner, last_root, lines, labels)
|
|
|
|
# make sure the final second goes on the x axes
|
|
ticks = []
|
|
a.set_xticks(ticks)
|
|
ticks = a.get_yticks()
|
|
|
|
first_tick = ticks[1] * bytes_per_cell * num_cells
|
|
if first_tick > 1024 * 1024 * 1024 * 1024:
|
|
scale = 1024 * 1024 * 1024 * 1024;
|
|
scalestr = "TB"
|
|
elif first_tick > 1024 * 1024 * 1024:
|
|
scale = 1024 * 1024 * 1024;
|
|
scalestr = "GB"
|
|
elif first_tick > 1024 * 1024:
|
|
scale = 1024 * 1024;
|
|
scalestr = "MB"
|
|
elif first_tick > 1024:
|
|
scale = 1024;
|
|
scalestr = "KB"
|
|
else:
|
|
scalestr = "Bytes"
|
|
scale = 1
|
|
|
|
ylabels = [ str(int((x * bytes_per_cell * num_cells) / scale)) for x in ticks ]
|
|
a.set_yticklabels(ylabels)
|
|
a.set_ylabel('Disk offset (%s)' % scalestr)
|
|
a.set_xlim(0, num_cells)
|
|
a.set_title('Blocks')
|
|
|
|
a.legend(lines, labels, loc=(1.05, 0.8), shadow=True, pad=0.1, numpoints=1,
|
|
handletextsep = 0.005,
|
|
labelsep = 0.01,
|
|
markerscale=10,
|
|
prop=FontProperties(size='x-small') )
|
|
|
|
if total_data == 0:
|
|
percent_meta = 100
|
|
else:
|
|
percent_meta = (float(total_metadata) / float(total_data)) * 100
|
|
|
|
print "Total metadata bytes %d data %d ratio %.3f" % (total_metadata,
|
|
total_data, percent_meta)
|
|
print "saving graph to %s" % options.output
|
|
savefig(options.output, orientation='landscape')
|
|
show()
|
|
|