btrfs-progs/cmds-scrub.c
Stefan Behrens 7a69dc4eec Btrfs-progs: make two utility functions globally available
Two convenient utility functions that have so far been local to scrub are
moved to utils.c.
They will be used in the device stats code in a following commit.

Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
2013-01-30 00:40:35 +01:00

1655 lines
40 KiB
C

/*
* Copyright (C) 2011 STRATO. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/ioctl.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <poll.h>
#include <sys/file.h>
#include <uuid/uuid.h>
#include <fcntl.h>
#include <unistd.h>
#include <pthread.h>
#include <ctype.h>
#include <signal.h>
#include <stdarg.h>
#include "ctree.h"
#include "ioctl.h"
#include "utils.h"
#include "volumes.h"
#include "disk-io.h"
#include "commands.h"
static const char * const scrub_cmd_group_usage[] = {
"btrfs scrub <command> [options] <path>|<device>",
NULL
};
#define SCRUB_DATA_FILE "/var/lib/btrfs/scrub.status"
#define SCRUB_PROGRESS_SOCKET_PATH "/var/lib/btrfs/scrub.progress"
#define SCRUB_FILE_VERSION_PREFIX "scrub status"
#define SCRUB_FILE_VERSION "1"
struct scrub_stats {
time_t t_start;
time_t t_resumed;
u64 duration;
u64 finished;
u64 canceled;
};
struct scrub_progress {
struct btrfs_ioctl_scrub_args scrub_args;
int fd;
int ret;
int skip;
struct scrub_stats stats;
struct scrub_file_record *resumed;
int ioctl_errno;
pthread_mutex_t progress_mutex;
};
struct scrub_file_record {
u8 fsid[BTRFS_FSID_SIZE];
u64 devid;
struct scrub_stats stats;
struct btrfs_scrub_progress p;
};
struct scrub_progress_cycle {
int fdmnt;
int prg_fd;
int do_record;
struct btrfs_ioctl_fs_info_args *fi;
struct scrub_progress *progress;
struct scrub_progress *shared_progress;
pthread_mutex_t *write_mutex;
};
struct scrub_fs_stat {
struct btrfs_scrub_progress p;
struct scrub_stats s;
int i;
};
static void print_scrub_full(struct btrfs_scrub_progress *sp)
{
printf("\tdata_extents_scrubbed: %lld\n", sp->data_extents_scrubbed);
printf("\ttree_extents_scrubbed: %lld\n", sp->tree_extents_scrubbed);
printf("\tdata_bytes_scrubbed: %lld\n", sp->data_bytes_scrubbed);
printf("\ttree_bytes_scrubbed: %lld\n", sp->tree_bytes_scrubbed);
printf("\tread_errors: %lld\n", sp->read_errors);
printf("\tcsum_errors: %lld\n", sp->csum_errors);
printf("\tverify_errors: %lld\n", sp->verify_errors);
printf("\tno_csum: %lld\n", sp->no_csum);
printf("\tcsum_discards: %lld\n", sp->csum_discards);
printf("\tsuper_errors: %lld\n", sp->super_errors);
printf("\tmalloc_errors: %lld\n", sp->malloc_errors);
printf("\tuncorrectable_errors: %lld\n", sp->uncorrectable_errors);
printf("\tunverified_errors: %lld\n", sp->unverified_errors);
printf("\tcorrected_errors: %lld\n", sp->corrected_errors);
printf("\tlast_physical: %lld\n", sp->last_physical);
}
#define ERR(test, ...) do { \
if (test) \
fprintf(stderr, __VA_ARGS__); \
} while (0)
#define PRINT_SCRUB_ERROR(test, desc) do { \
if (test) \
printf(" %s=%llu", desc, test); \
} while (0)
static void print_scrub_summary(struct btrfs_scrub_progress *p)
{
u64 err_cnt;
u64 err_cnt2;
char *bytes;
err_cnt = p->read_errors +
p->csum_errors +
p->verify_errors +
p->super_errors;
err_cnt2 = p->corrected_errors + p->uncorrectable_errors;
if (p->malloc_errors)
printf("*** WARNING: memory allocation failed while scrubbing. "
"results may be inaccurate\n");
bytes = pretty_sizes(p->data_bytes_scrubbed + p->tree_bytes_scrubbed);
printf("\ttotal bytes scrubbed: %s with %llu errors\n", bytes,
max(err_cnt, err_cnt2));
free(bytes);
if (err_cnt || err_cnt2) {
printf("\terror details:");
PRINT_SCRUB_ERROR(p->read_errors, "read");
PRINT_SCRUB_ERROR(p->super_errors, "super");
PRINT_SCRUB_ERROR(p->verify_errors, "verify");
PRINT_SCRUB_ERROR(p->csum_errors, "csum");
printf("\n");
printf("\tcorrected errors: %llu, uncorrectable errors: %llu, "
"unverified errors: %llu\n", p->corrected_errors,
p->uncorrectable_errors, p->unverified_errors);
}
}
#define _SCRUB_FS_STAT(p, name, fs_stat) do { \
fs_stat->p.name += p->name; \
} while (0)
#define _SCRUB_FS_STAT_MIN(ss, name, fs_stat) \
do { \
if (fs_stat->s.name > ss->name) { \
fs_stat->s.name = ss->name; \
} \
} while (0)
#define _SCRUB_FS_STAT_ZMIN(ss, name, fs_stat) \
do { \
if (!fs_stat->s.name || fs_stat->s.name > ss->name) { \
fs_stat->s.name = ss->name; \
} \
} while (0)
#define _SCRUB_FS_STAT_ZMAX(ss, name, fs_stat) \
do { \
if (!(fs_stat)->s.name || (fs_stat)->s.name < (ss)->name) { \
(fs_stat)->s.name = (ss)->name; \
} \
} while (0)
static void add_to_fs_stat(struct btrfs_scrub_progress *p,
struct scrub_stats *ss,
struct scrub_fs_stat *fs_stat)
{
_SCRUB_FS_STAT(p, data_extents_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, tree_extents_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, data_bytes_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, tree_bytes_scrubbed, fs_stat);
_SCRUB_FS_STAT(p, read_errors, fs_stat);
_SCRUB_FS_STAT(p, csum_errors, fs_stat);
_SCRUB_FS_STAT(p, verify_errors, fs_stat);
_SCRUB_FS_STAT(p, no_csum, fs_stat);
_SCRUB_FS_STAT(p, csum_discards, fs_stat);
_SCRUB_FS_STAT(p, super_errors, fs_stat);
_SCRUB_FS_STAT(p, malloc_errors, fs_stat);
_SCRUB_FS_STAT(p, uncorrectable_errors, fs_stat);
_SCRUB_FS_STAT(p, corrected_errors, fs_stat);
_SCRUB_FS_STAT(p, last_physical, fs_stat);
_SCRUB_FS_STAT_ZMIN(ss, t_start, fs_stat);
_SCRUB_FS_STAT_ZMIN(ss, t_resumed, fs_stat);
_SCRUB_FS_STAT_ZMAX(ss, duration, fs_stat);
_SCRUB_FS_STAT_ZMAX(ss, canceled, fs_stat);
_SCRUB_FS_STAT_MIN(ss, finished, fs_stat);
}
static void init_fs_stat(struct scrub_fs_stat *fs_stat)
{
memset(fs_stat, 0, sizeof(*fs_stat));
fs_stat->s.finished = 1;
}
static void _print_scrub_ss(struct scrub_stats *ss)
{
char t[4096];
struct tm tm;
if (!ss || !ss->t_start) {
printf("\tno stats available\n");
return;
}
if (ss->t_resumed) {
localtime_r(&ss->t_resumed, &tm);
strftime(t, sizeof(t), "%c", &tm);
t[sizeof(t) - 1] = '\0';
printf("\tscrub resumed at %s", t);
} else {
localtime_r(&ss->t_start, &tm);
strftime(t, sizeof(t), "%c", &tm);
t[sizeof(t) - 1] = '\0';
printf("\tscrub started at %s", t);
}
if (ss->finished && !ss->canceled) {
printf(" and finished after %llu seconds\n",
ss->duration);
} else if (ss->canceled) {
printf(" and was aborted after %llu seconds\n",
ss->duration);
} else {
printf(", running for %llu seconds\n", ss->duration);
}
}
static void print_scrub_dev(struct btrfs_ioctl_dev_info_args *di,
struct btrfs_scrub_progress *p, int raw,
const char *append, struct scrub_stats *ss)
{
printf("scrub device %s (id %llu) %s\n", di->path, di->devid,
append ? append : "");
_print_scrub_ss(ss);
if (p) {
if (raw)
print_scrub_full(p);
else
print_scrub_summary(p);
}
}
static void print_fs_stat(struct scrub_fs_stat *fs_stat, int raw)
{
_print_scrub_ss(&fs_stat->s);
if (raw)
print_scrub_full(&fs_stat->p);
else
print_scrub_summary(&fs_stat->p);
}
static void free_history(struct scrub_file_record **last_scrubs)
{
struct scrub_file_record **l = last_scrubs;
if (!l)
return;
while (*l)
free(*l++);
free(last_scrubs);
}
/*
* cancels a running scrub and makes the master process record the current
* progress status before exiting.
*/
static int cancel_fd = -1;
static void scrub_sigint_record_progress(int signal)
{
ioctl(cancel_fd, BTRFS_IOC_SCRUB_CANCEL, NULL);
}
static int scrub_handle_sigint_parent(void)
{
struct sigaction sa = {
.sa_handler = SIG_IGN,
.sa_flags = SA_RESTART,
};
return sigaction(SIGINT, &sa, NULL);
}
static int scrub_handle_sigint_child(int fd)
{
struct sigaction sa = {
.sa_handler = fd == -1 ? SIG_DFL : scrub_sigint_record_progress,
};
cancel_fd = fd;
return sigaction(SIGINT, &sa, NULL);
}
static int scrub_datafile(const char *fn_base, const char *fn_local,
const char *fn_tmp, char *datafile, int size)
{
int ret;
int end = size - 2;
datafile[end + 1] = '\0';
strncpy(datafile, fn_base, end);
ret = strlen(datafile);
if (ret + 1 > end)
return -EOVERFLOW;
datafile[ret] = '.';
strncpy(datafile + ret + 1, fn_local, end - ret - 1);
ret = strlen(datafile);
if (ret + 1 > end)
return -EOVERFLOW;
if (fn_tmp) {
datafile[ret] = '_';
strncpy(datafile + ret + 1, fn_tmp, end - ret - 1);
ret = strlen(datafile);
if (ret > end)
return -EOVERFLOW;
}
return 0;
}
static int scrub_open_file(const char *datafile, int m)
{
int fd;
int ret;
fd = open(datafile, m, 0600);
if (fd < 0)
return -errno;
ret = flock(fd, LOCK_EX|LOCK_NB);
if (ret) {
ret = errno;
close(fd);
return -ret;
}
return fd;
}
static int scrub_open_file_r(const char *fn_base, const char *fn_local)
{
int ret;
char datafile[BTRFS_PATH_NAME_MAX + 1];
ret = scrub_datafile(fn_base, fn_local, NULL,
datafile, sizeof(datafile));
if (ret < 0)
return ret;
return scrub_open_file(datafile, O_RDONLY);
}
static int scrub_open_file_w(const char *fn_base, const char *fn_local,
const char *tmp)
{
int ret;
char datafile[BTRFS_PATH_NAME_MAX + 1];
ret = scrub_datafile(fn_base, fn_local, tmp,
datafile, sizeof(datafile));
if (ret < 0)
return ret;
return scrub_open_file(datafile, O_WRONLY|O_CREAT);
}
static int scrub_rename_file(const char *fn_base, const char *fn_local,
const char *tmp)
{
int ret;
char datafile_old[BTRFS_PATH_NAME_MAX + 1];
char datafile_new[BTRFS_PATH_NAME_MAX + 1];
ret = scrub_datafile(fn_base, fn_local, tmp,
datafile_old, sizeof(datafile_old));
if (ret < 0)
return ret;
ret = scrub_datafile(fn_base, fn_local, NULL,
datafile_new, sizeof(datafile_new));
if (ret < 0)
return ret;
ret = rename(datafile_old, datafile_new);
return ret ? -errno : 0;
}
#define _SCRUB_KVREAD(ret, i, name, avail, l, dest) if (ret == 0) { \
ret = scrub_kvread(i, sizeof(#name), avail, l, #name, dest.name); \
}
/*
* returns 0 if the key did not match (nothing was read)
* 1 if the key did match (success)
* -1 if the key did match and an error occured
*/
static int scrub_kvread(int *i, int len, int avail, const char *buf,
const char *key, u64 *dest)
{
int j;
if (*i + len + 1 < avail && strncmp(&buf[*i], key, len - 1) == 0) {
*i += len - 1;
if (buf[*i] != ':')
return -1;
*i += 1;
for (j = 0; isdigit(buf[*i + j]) && *i + j < avail; ++j)
;
if (*i + j >= avail)
return -1;
*dest = atoll(&buf[*i]);
*i += j;
return 1;
}
return 0;
}
#define _SCRUB_INVALID do { \
if (report_errors) \
fprintf(stderr, "WARNING: invalid data in line %d pos " \
"%d state %d (near \"%.*s\") at %s:%d\n", \
lineno, i, state, 20 > avail ? avail : 20, \
l + i, __FILE__, __LINE__); \
goto skip; \
} while (0)
static struct scrub_file_record **scrub_read_file(int fd, int report_errors)
{
int avail = 0;
int old_avail = 0;
char l[16 * 1024];
int state = 0;
int curr = -1;
int i = 0;
int j;
int ret;
int eof = 0;
int lineno = 0;
u64 version;
char empty_uuid[BTRFS_FSID_SIZE] = {0};
struct scrub_file_record **p = NULL;
if (fd < 0)
return ERR_PTR(-EINVAL);
again:
old_avail = avail - i;
BUG_ON(old_avail < 0);
if (old_avail)
memmove(l, l + i, old_avail);
avail = read(fd, l + old_avail, sizeof(l) - old_avail);
if (avail == 0)
eof = 1;
if (avail == 0 && old_avail == 0) {
if (curr >= 0 &&
memcmp(p[curr]->fsid, empty_uuid, BTRFS_FSID_SIZE) == 0) {
p[curr] = NULL;
} else if (curr == -1) {
p = ERR_PTR(-ENODATA);
}
return p;
}
if (avail == -1)
return ERR_PTR(-errno);
avail += old_avail;
i = 0;
while (i < avail) {
switch (state) {
case 0: /* start of file */
ret = scrub_kvread(&i,
sizeof(SCRUB_FILE_VERSION_PREFIX), avail, l,
SCRUB_FILE_VERSION_PREFIX, &version);
if (ret != 1)
_SCRUB_INVALID;
if (version != atoll(SCRUB_FILE_VERSION))
return ERR_PTR(-ENOTSUP);
state = 6;
continue;
case 1: /* start of line, alloc */
/*
* this state makes sure we have a complete line in
* further processing, so we don't need wrap-tracking
* everywhere.
*/
if (!eof && !memchr(l + i, '\n', avail - i))
goto again;
++lineno;
if (curr > -1 && memcmp(p[curr]->fsid, empty_uuid,
BTRFS_FSID_SIZE) == 0) {
state = 2;
continue;
}
++curr;
p = realloc(p, (curr + 2) * sizeof(*p));
if (p)
p[curr] = malloc(sizeof(**p));
if (!p || !p[curr])
return ERR_PTR(-errno);
memset(p[curr], 0, sizeof(**p));
p[curr + 1] = NULL;
++state;
/* fall through */
case 2: /* start of line, skip space */
while (isspace(l[i]) && i < avail) {
if (l[i] == '\n')
++lineno;
++i;
}
if (i >= avail ||
(!eof && !memchr(l + i, '\n', avail - i)))
goto again;
++state;
/* fall through */
case 3: /* read fsid */
if (i == avail)
continue;
for (j = 0; l[i + j] != ':' && i + j < avail; ++j)
;
if (i + j + 1 >= avail)
_SCRUB_INVALID;
if (j != 36)
_SCRUB_INVALID;
l[i + j] = '\0';
ret = uuid_parse(l + i, p[curr]->fsid);
if (ret)
_SCRUB_INVALID;
i += j + 1;
++state;
/* fall through */
case 4: /* read dev id */
for (j = 0; isdigit(l[i + j]) && i+j < avail; ++j)
;
if (j == 0 || i + j + 1 >= avail)
_SCRUB_INVALID;
p[curr]->devid = atoll(&l[i]);
i += j + 1;
++state;
/* fall through */
case 5: /* read key/value pair */
ret = 0;
_SCRUB_KVREAD(ret, &i, data_extents_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, data_extents_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, tree_extents_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, data_bytes_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, tree_bytes_scrubbed, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, read_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, csum_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, verify_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, no_csum, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, csum_discards, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, super_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, malloc_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, uncorrectable_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, corrected_errors, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, last_physical, avail, l,
&p[curr]->p);
_SCRUB_KVREAD(ret, &i, finished, avail, l,
&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, t_start, avail, l,
(u64 *)&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, t_resumed, avail, l,
(u64 *)&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, duration, avail, l,
(u64 *)&p[curr]->stats);
_SCRUB_KVREAD(ret, &i, canceled, avail, l,
&p[curr]->stats);
if (ret != 1)
_SCRUB_INVALID;
++state;
/* fall through */
case 6: /* after number */
if (l[i] == '|')
state = 5;
else if (l[i] == '\n')
state = 1;
else
_SCRUB_INVALID;
++i;
continue;
case 99: /* skip rest of line */
skip:
state = 99;
do {
++i;
if (l[i - 1] == '\n') {
state = 1;
break;
}
} while (i < avail);
continue;
}
BUG();
}
goto again;
}
static int scrub_write_buf(int fd, const void *data, int len)
{
int ret;
ret = write(fd, data, len);
return ret - len;
}
static int scrub_writev(int fd, char *buf, int max, const char *fmt, ...)
__attribute__ ((format (printf, 4, 5)));
static int scrub_writev(int fd, char *buf, int max, const char *fmt, ...)
{
int ret;
va_list args;
va_start(args, fmt);
ret = vsnprintf(buf, max, fmt, args);
va_end(args);
if (ret >= max)
return ret - max;
return scrub_write_buf(fd, buf, ret);
}
#define _SCRUB_SUM(dest, data, name) dest->scrub_args.progress.name = \
data->resumed->p.name + data->scrub_args.progress.name
static struct scrub_progress *scrub_resumed_stats(struct scrub_progress *data,
struct scrub_progress *dest)
{
if (!data->resumed || data->skip)
return data;
_SCRUB_SUM(dest, data, data_extents_scrubbed);
_SCRUB_SUM(dest, data, tree_extents_scrubbed);
_SCRUB_SUM(dest, data, data_bytes_scrubbed);
_SCRUB_SUM(dest, data, tree_bytes_scrubbed);
_SCRUB_SUM(dest, data, read_errors);
_SCRUB_SUM(dest, data, csum_errors);
_SCRUB_SUM(dest, data, verify_errors);
_SCRUB_SUM(dest, data, no_csum);
_SCRUB_SUM(dest, data, csum_discards);
_SCRUB_SUM(dest, data, super_errors);
_SCRUB_SUM(dest, data, malloc_errors);
_SCRUB_SUM(dest, data, uncorrectable_errors);
_SCRUB_SUM(dest, data, corrected_errors);
_SCRUB_SUM(dest, data, last_physical);
dest->stats.canceled = data->stats.canceled;
dest->stats.finished = data->stats.finished;
dest->stats.t_resumed = data->stats.t_start;
dest->stats.t_start = data->resumed->stats.t_start;
dest->stats.duration = data->resumed->stats.duration +
data->stats.duration;
dest->scrub_args.devid = data->scrub_args.devid;
return dest;
}
#define _SCRUB_KVWRITE(fd, buf, name, use) \
scrub_kvwrite(fd, buf, sizeof(buf), #name, \
use->scrub_args.progress.name)
#define _SCRUB_KVWRITE_STATS(fd, buf, name, use) \
scrub_kvwrite(fd, buf, sizeof(buf), #name, \
use->stats.name)
static int scrub_kvwrite(int fd, char *buf, int max, const char *key, u64 val)
{
return scrub_writev(fd, buf, max, "|%s:%lld", key, val);
}
static int scrub_write_file(int fd, const char *fsid,
struct scrub_progress *data, int n)
{
int ret = 0;
int i;
char buf[1024];
struct scrub_progress local;
struct scrub_progress *use;
if (n < 1)
return -EINVAL;
/* each -1 is to subtract one \0 byte, the + 2 is for ':' and '\n' */
ret = scrub_write_buf(fd, SCRUB_FILE_VERSION_PREFIX ":"
SCRUB_FILE_VERSION "\n",
(sizeof(SCRUB_FILE_VERSION_PREFIX) - 1) +
(sizeof(SCRUB_FILE_VERSION) - 1) + 2);
if (ret)
return -EOVERFLOW;
for (i = 0; i < n; ++i) {
use = scrub_resumed_stats(&data[i], &local);
if (scrub_write_buf(fd, fsid, strlen(fsid)) ||
scrub_write_buf(fd, ":", 1) ||
scrub_writev(fd, buf, sizeof(buf), "%lld",
use->scrub_args.devid) ||
scrub_write_buf(fd, buf, ret) ||
_SCRUB_KVWRITE(fd, buf, data_extents_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, tree_extents_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, data_bytes_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, tree_bytes_scrubbed, use) ||
_SCRUB_KVWRITE(fd, buf, read_errors, use) ||
_SCRUB_KVWRITE(fd, buf, csum_errors, use) ||
_SCRUB_KVWRITE(fd, buf, verify_errors, use) ||
_SCRUB_KVWRITE(fd, buf, no_csum, use) ||
_SCRUB_KVWRITE(fd, buf, csum_discards, use) ||
_SCRUB_KVWRITE(fd, buf, super_errors, use) ||
_SCRUB_KVWRITE(fd, buf, malloc_errors, use) ||
_SCRUB_KVWRITE(fd, buf, uncorrectable_errors, use) ||
_SCRUB_KVWRITE(fd, buf, corrected_errors, use) ||
_SCRUB_KVWRITE(fd, buf, last_physical, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, t_start, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, t_resumed, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, duration, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, canceled, use) ||
_SCRUB_KVWRITE_STATS(fd, buf, finished, use) ||
scrub_write_buf(fd, "\n", 1)) {
return -EOVERFLOW;
}
}
return 0;
}
static int scrub_write_progress(pthread_mutex_t *m, const char *fsid,
struct scrub_progress *data, int n)
{
int ret;
int err;
int fd = 0;
int old;
ret = pthread_mutex_lock(m);
if (ret) {
err = -errno;
goto out;
}
ret = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &old);
if (ret) {
err = -ret;
goto out;
}
fd = scrub_open_file_w(SCRUB_DATA_FILE, fsid, "tmp");
if (fd < 0) {
err = fd;
goto out;
}
err = scrub_write_file(fd, fsid, data, n);
if (err)
goto out;
err = scrub_rename_file(SCRUB_DATA_FILE, fsid, "tmp");
if (err)
goto out;
out:
if (fd > 0) {
ret = close(fd);
if (ret)
err = -errno;
}
ret = pthread_mutex_unlock(m);
if (ret && !err)
err = -ret;
ret = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old);
if (ret && !err)
err = -ret;
return err;
}
static void *scrub_one_dev(void *ctx)
{
struct scrub_progress *sp = ctx;
int ret;
struct timeval tv;
sp->stats.canceled = 0;
sp->stats.duration = 0;
sp->stats.finished = 0;
ret = ioctl(sp->fd, BTRFS_IOC_SCRUB, &sp->scrub_args);
gettimeofday(&tv, NULL);
sp->ret = ret;
sp->stats.duration = tv.tv_sec - sp->stats.t_start;
sp->stats.canceled = !!ret;
sp->ioctl_errno = errno;
ret = pthread_mutex_lock(&sp->progress_mutex);
if (ret)
return ERR_PTR(-ret);
sp->stats.finished = 1;
ret = pthread_mutex_unlock(&sp->progress_mutex);
if (ret)
return ERR_PTR(-ret);
return NULL;
}
static void *progress_one_dev(void *ctx)
{
struct scrub_progress *sp = ctx;
sp->ret = ioctl(sp->fd, BTRFS_IOC_SCRUB_PROGRESS, &sp->scrub_args);
sp->ioctl_errno = errno;
return NULL;
}
static void *scrub_progress_cycle(void *ctx)
{
int ret;
int old;
int i;
char fsid[37];
struct scrub_progress *sp;
struct scrub_progress *sp_last;
struct scrub_progress *sp_shared;
struct timeval tv;
struct scrub_progress_cycle *spc = ctx;
int ndev = spc->fi->num_devices;
int this = 1;
int last = 0;
int peer_fd = -1;
struct pollfd accept_poll_fd = {
.fd = spc->prg_fd,
.events = POLLIN,
.revents = 0,
};
struct pollfd write_poll_fd = {
.events = POLLOUT,
.revents = 0,
};
struct sockaddr_un peer;
socklen_t peer_size = sizeof(peer);
ret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
if (ret)
return ERR_PTR(-ret);
uuid_unparse(spc->fi->fsid, fsid);
for (i = 0; i < ndev; ++i) {
sp = &spc->progress[i];
sp_last = &spc->progress[i + ndev];
sp_shared = &spc->shared_progress[i];
sp->scrub_args.devid = sp_last->scrub_args.devid =
sp_shared->scrub_args.devid;
sp->fd = sp_last->fd = spc->fdmnt;
sp->stats.t_start = sp_last->stats.t_start =
sp_shared->stats.t_start;
sp->resumed = sp_last->resumed = sp_shared->resumed;
sp->skip = sp_last->skip = sp_shared->skip;
sp->stats.finished = sp_last->stats.finished =
sp_shared->stats.finished;
}
while (1) {
ret = poll(&accept_poll_fd, 1, 5 * 1000);
if (ret == -1)
return ERR_PTR(-errno);
if (ret)
peer_fd = accept(spc->prg_fd, (struct sockaddr *)&peer,
&peer_size);
gettimeofday(&tv, NULL);
this = (this + 1)%2;
last = (last + 1)%2;
for (i = 0; i < ndev; ++i) {
sp = &spc->progress[this * ndev + i];
sp_last = &spc->progress[last * ndev + i];
sp_shared = &spc->shared_progress[i];
if (sp->stats.finished)
continue;
progress_one_dev(sp);
sp->stats.duration = tv.tv_sec - sp->stats.t_start;
if (!sp->ret)
continue;
if (sp->ioctl_errno != ENOTCONN &&
sp->ioctl_errno != ENODEV)
return ERR_PTR(-sp->ioctl_errno);
/*
* scrub finished or device removed, check the
* finished flag. if unset, just use the last
* result we got for the current write and go
* on. flag should be set on next cycle, then.
*/
ret = pthread_mutex_lock(&sp_shared->progress_mutex);
if (ret)
return ERR_PTR(-ret);
if (!sp_shared->stats.finished) {
ret = pthread_mutex_unlock(
&sp_shared->progress_mutex);
if (ret)
return ERR_PTR(-ret);
memcpy(sp, sp_last, sizeof(*sp));
continue;
}
ret = pthread_mutex_unlock(&sp_shared->progress_mutex);
if (ret)
return ERR_PTR(-ret);
memcpy(sp, sp_shared, sizeof(*sp));
memcpy(sp_last, sp_shared, sizeof(*sp));
}
if (peer_fd != -1) {
write_poll_fd.fd = peer_fd;
ret = poll(&write_poll_fd, 1, 0);
if (ret == -1)
return ERR_PTR(-errno);
if (ret) {
ret = scrub_write_file(
peer_fd, fsid,
&spc->progress[this * ndev], ndev);
if (ret)
return ERR_PTR(ret);
}
close(peer_fd);
peer_fd = -1;
}
if (!spc->do_record)
continue;
ret = scrub_write_progress(spc->write_mutex, fsid,
&spc->progress[this * ndev], ndev);
if (ret)
return ERR_PTR(ret);
}
}
static struct scrub_file_record *last_dev_scrub(
struct scrub_file_record *const *const past_scrubs, u64 devid)
{
int i;
if (!past_scrubs || IS_ERR(past_scrubs))
return NULL;
for (i = 0; past_scrubs[i]; ++i)
if (past_scrubs[i]->devid == devid)
return past_scrubs[i];
return NULL;
}
int mkdir_p(char *path)
{
int i;
int ret;
for (i = 1; i < strlen(path); ++i) {
if (path[i] != '/')
continue;
path[i] = '\0';
ret = mkdir(path, 0777);
if (ret && errno != EEXIST)
return 1;
path[i] = '/';
}
return 0;
}
static const char * const cmd_scrub_start_usage[];
static const char * const cmd_scrub_resume_usage[];
static int scrub_start(int argc, char **argv, int resume)
{
int fdmnt;
int prg_fd = -1;
int fdres = -1;
int ret;
pid_t pid;
int c;
int i;
int err = 0;
int e_uncorrectable = 0;
int e_correctable = 0;
int print_raw = 0;
char *path;
int do_background = 1;
int do_wait = 0;
int do_print = 0;
int do_quiet = 0;
int do_record = 1;
int readonly = 0;
int do_stats_per_dev = 0;
int n_start = 0;
int n_skip = 0;
int n_resume = 0;
struct btrfs_ioctl_fs_info_args fi_args;
struct btrfs_ioctl_dev_info_args *di_args = NULL;
struct scrub_progress *sp = NULL;
struct scrub_fs_stat fs_stat;
struct timeval tv;
struct sockaddr_un addr = {
.sun_family = AF_UNIX,
};
pthread_t *t_devs = NULL;
pthread_t t_prog;
pthread_attr_t t_attr;
struct scrub_file_record **past_scrubs = NULL;
struct scrub_file_record *last_scrub = NULL;
char *datafile = strdup(SCRUB_DATA_FILE);
char fsid[37];
char sock_path[BTRFS_PATH_NAME_MAX + 1] = "";
struct scrub_progress_cycle spc;
pthread_mutex_t spc_write_mutex = PTHREAD_MUTEX_INITIALIZER;
void *terr;
u64 devid;
optind = 1;
while ((c = getopt(argc, argv, "BdqrR")) != -1) {
switch (c) {
case 'B':
do_background = 0;
do_wait = 1;
do_print = 1;
break;
case 'd':
do_stats_per_dev = 1;
break;
case 'q':
do_quiet = 1;
break;
case 'r':
readonly = 1;
break;
case 'R':
print_raw = 1;
break;
case '?':
default:
usage(resume ? cmd_scrub_resume_usage :
cmd_scrub_start_usage);
}
}
/* try to catch most error cases before forking */
if (check_argc_exact(argc - optind, 1)) {
usage(resume ? cmd_scrub_resume_usage :
cmd_scrub_start_usage);
}
spc.progress = NULL;
if (do_quiet && do_print)
do_print = 0;
if (mkdir_p(datafile)) {
ERR(!do_quiet, "WARNING: cannot create scrub data "
"file, mkdir %s failed: %s. Status recording "
"disabled\n", datafile, strerror(errno));
do_record = 0;
}
free(datafile);
path = argv[optind];
fdmnt = open_file_or_dir(path);
if (fdmnt < 0) {
ERR(!do_quiet, "ERROR: can't access '%s'\n", path);
return 12;
}
ret = get_fs_info(fdmnt, path, &fi_args, &di_args);
if (ret) {
ERR(!do_quiet, "ERROR: getting dev info for scrub failed: "
"%s\n", strerror(-ret));
err = 1;
goto out;
}
if (!fi_args.num_devices) {
ERR(!do_quiet, "ERROR: no devices found\n");
err = 1;
goto out;
}
uuid_unparse(fi_args.fsid, fsid);
fdres = scrub_open_file_r(SCRUB_DATA_FILE, fsid);
if (fdres < 0 && fdres != -ENOENT) {
ERR(!do_quiet, "WARNING: failed to open status file: "
"%s\n", strerror(-fdres));
} else if (fdres >= 0) {
past_scrubs = scrub_read_file(fdres, !do_quiet);
if (IS_ERR(past_scrubs))
ERR(!do_quiet, "WARNING: failed to read status file: "
"%s\n", strerror(-PTR_ERR(past_scrubs)));
close(fdres);
}
t_devs = malloc(fi_args.num_devices * sizeof(*t_devs));
sp = calloc(fi_args.num_devices, sizeof(*sp));
spc.progress = calloc(fi_args.num_devices * 2, sizeof(*spc.progress));
if (!t_devs || !sp || !spc.progress) {
ERR(!do_quiet, "ERROR: scrub failed: %s", strerror(errno));
err = 1;
goto out;
}
ret = pthread_attr_init(&t_attr);
if (ret) {
ERR(!do_quiet, "ERROR: pthread_attr_init failed: %s\n",
strerror(ret));
err = 1;
goto out;
}
for (i = 0; i < fi_args.num_devices; ++i) {
devid = di_args[i].devid;
ret = pthread_mutex_init(&sp[i].progress_mutex, NULL);
if (ret) {
ERR(!do_quiet, "ERROR: pthread_mutex_init failed: "
"%s\n", strerror(ret));
err = 1;
goto out;
}
last_scrub = last_dev_scrub(past_scrubs, devid);
sp[i].scrub_args.devid = devid;
sp[i].fd = fdmnt;
if (resume && last_scrub && (last_scrub->stats.canceled ||
!last_scrub->stats.finished)) {
++n_resume;
sp[i].scrub_args.start = last_scrub->p.last_physical;
sp[i].resumed = last_scrub;
} else if (resume) {
++n_skip;
sp[i].skip = 1;
sp[i].resumed = last_scrub;
continue;
} else {
++n_start;
sp[i].scrub_args.start = 0ll;
sp[i].resumed = NULL;
}
sp[i].skip = 0;
sp[i].scrub_args.end = (u64)-1ll;
sp[i].scrub_args.flags = readonly ? BTRFS_SCRUB_READONLY : 0;
}
if (!n_start && !n_resume) {
if (!do_quiet)
printf("scrub: nothing to resume for %s, fsid %s\n",
path, fsid);
err = 0;
goto out;
}
ret = prg_fd = socket(AF_UNIX, SOCK_STREAM, 0);
while (ret != -1) {
ret = scrub_datafile(SCRUB_PROGRESS_SOCKET_PATH, fsid, NULL,
sock_path, sizeof(sock_path));
/* ignore EOVERFLOW, try using a shorter path for the socket */
addr.sun_path[sizeof(addr.sun_path) - 1] = '\0';
strncpy(addr.sun_path, sock_path, sizeof(addr.sun_path) - 1);
ret = bind(prg_fd, (struct sockaddr *)&addr, sizeof(addr));
if (ret != -1 || errno != EADDRINUSE)
break;
/*
* bind failed with EADDRINUSE. so let's see if anyone answers
* when we make a call to the socket ...
*/
ret = connect(prg_fd, (struct sockaddr *)&addr, sizeof(addr));
if (!ret || errno != ECONNREFUSED) {
/* ... yes, so scrub must be running. error out */
fprintf(stderr, "ERROR: scrub already running\n");
close(prg_fd);
goto out;
}
/*
* ... no, this means someone left us alone with an unused
* socket in the file system. remove it and try again.
*/
ret = unlink(sock_path);
}
if (ret != -1)
ret = listen(prg_fd, 100);
if (ret == -1) {
ERR(!do_quiet, "WARNING: failed to open the progress status "
"socket at %s: %s. Progress cannot be queried\n",
sock_path[0] ? sock_path : SCRUB_PROGRESS_SOCKET_PATH,
strerror(errno));
if (prg_fd != -1) {
close(prg_fd);
prg_fd = -1;
if (sock_path[0])
unlink(sock_path);
}
}
if (do_record) {
/* write all-zero progress file for a start */
ret = scrub_write_progress(&spc_write_mutex, fsid, sp,
fi_args.num_devices);
if (ret) {
ERR(!do_quiet, "WARNING: failed to write the progress "
"status file: %s. Status recording disabled\n",
strerror(-ret));
do_record = 0;
}
}
if (do_background) {
pid = fork();
if (pid == -1) {
ERR(!do_quiet, "ERROR: cannot scrub, fork failed: "
"%s\n", strerror(errno));
err = 1;
goto out;
}
if (pid) {
int stat;
scrub_handle_sigint_parent();
if (!do_quiet)
printf("scrub %s on %s, fsid %s (pid=%d)\n",
n_start ? "started" : "resumed",
path, fsid, pid);
if (!do_wait) {
err = 0;
goto out;
}
ret = wait(&stat);
if (ret != pid) {
ERR(!do_quiet, "ERROR: wait failed: (ret=%d) "
"%s\n", ret, strerror(errno));
err = 1;
goto out;
}
if (!WIFEXITED(stat) || WEXITSTATUS(stat)) {
ERR(!do_quiet, "ERROR: scrub process failed\n");
err = WIFEXITED(stat) ? WEXITSTATUS(stat) : -1;
goto out;
}
err = 0;
goto out;
}
}
scrub_handle_sigint_child(fdmnt);
for (i = 0; i < fi_args.num_devices; ++i) {
if (sp[i].skip) {
sp[i].scrub_args.progress = sp[i].resumed->p;
sp[i].stats = sp[i].resumed->stats;
sp[i].ret = 0;
sp[i].stats.finished = 1;
continue;
}
devid = di_args[i].devid;
gettimeofday(&tv, NULL);
sp[i].stats.t_start = tv.tv_sec;
ret = pthread_create(&t_devs[i], &t_attr,
scrub_one_dev, &sp[i]);
if (ret) {
if (do_print)
fprintf(stderr, "ERROR: creating "
"scrub_one_dev[%llu] thread failed: "
"%s\n", devid, strerror(ret));
err = 1;
goto out;
}
}
spc.fdmnt = fdmnt;
spc.prg_fd = prg_fd;
spc.do_record = do_record;
spc.write_mutex = &spc_write_mutex;
spc.shared_progress = sp;
spc.fi = &fi_args;
ret = pthread_create(&t_prog, &t_attr, scrub_progress_cycle, &spc);
if (ret) {
if (do_print)
fprintf(stderr, "ERROR: creating progress thread "
"failed: %s\n", strerror(ret));
err = 1;
goto out;
}
err = 0;
for (i = 0; i < fi_args.num_devices; ++i) {
if (sp[i].skip)
continue;
devid = di_args[i].devid;
ret = pthread_join(t_devs[i], NULL);
if (ret) {
if (do_print)
fprintf(stderr, "ERROR: pthread_join failed "
"for scrub_one_dev[%llu]: %s\n", devid,
strerror(ret));
++err;
continue;
}
if (sp[i].ret && sp[i].ioctl_errno == ENODEV) {
if (do_print)
fprintf(stderr, "WARNING: device %lld not "
"present\n", devid);
continue;
}
if (sp[i].ret && sp[i].ioctl_errno == ECANCELED) {
++err;
} else if (sp[i].ret) {
if (do_print)
fprintf(stderr, "ERROR: scrubbing %s failed "
"for device id %lld (%s)\n", path,
devid, strerror(sp[i].ioctl_errno));
++err;
continue;
}
if (sp[i].scrub_args.progress.uncorrectable_errors > 0)
e_uncorrectable++;
if (sp[i].scrub_args.progress.corrected_errors > 0
|| sp[i].scrub_args.progress.unverified_errors > 0)
e_correctable++;
}
if (do_print) {
const char *append = "done";
if (!do_stats_per_dev)
init_fs_stat(&fs_stat);
for (i = 0; i < fi_args.num_devices; ++i) {
if (do_stats_per_dev) {
print_scrub_dev(&di_args[i],
&sp[i].scrub_args.progress,
print_raw,
sp[i].ret ? "canceled" : "done",
&sp[i].stats);
} else {
if (sp[i].ret)
append = "canceled";
add_to_fs_stat(&sp[i].scrub_args.progress,
&sp[i].stats, &fs_stat);
}
}
if (!do_stats_per_dev) {
printf("scrub %s for %s\n", append, fsid);
print_fs_stat(&fs_stat, print_raw);
}
}
ret = pthread_cancel(t_prog);
if (!ret)
ret = pthread_join(t_prog, &terr);
if (do_print && ret) {
fprintf(stderr, "ERROR: progress thead handling failed: %s\n",
strerror(ret));
}
if (do_print && terr && terr != PTHREAD_CANCELED) {
fprintf(stderr, "ERROR: recording progress "
"failed: %s\n", strerror(-PTR_ERR(terr)));
}
if (do_record) {
ret = scrub_write_progress(&spc_write_mutex, fsid, sp,
fi_args.num_devices);
if (ret && do_print) {
fprintf(stderr, "ERROR: failed to record the result: "
"%s\n", strerror(-ret));
}
}
scrub_handle_sigint_child(-1);
out:
free_history(past_scrubs);
free(di_args);
free(t_devs);
free(sp);
free(spc.progress);
if (prg_fd > -1) {
close(prg_fd);
if (sock_path[0])
unlink(sock_path);
}
close(fdmnt);
if (err)
return 1;
if (e_correctable)
return 7;
if (e_uncorrectable)
return 8;
return 0;
}
static const char * const cmd_scrub_start_usage[] = {
"btrfs scrub start [-Bdqr] <path>|<device>",
"Start a new scrub",
"",
"-B do not background",
"-d stats per device (-B only)",
"-q be quiet",
"-r read only mode",
NULL
};
static int cmd_scrub_start(int argc, char **argv)
{
return scrub_start(argc, argv, 0);
}
static const char * const cmd_scrub_cancel_usage[] = {
"btrfs scrub cancel <path>|<device>",
"Cancel a running scrub",
NULL
};
static int cmd_scrub_cancel(int argc, char **argv)
{
char *path;
int ret;
int fdmnt;
int err;
char mp[BTRFS_PATH_NAME_MAX + 1];
struct btrfs_fs_devices *fs_devices_mnt = NULL;
if (check_argc_exact(argc, 2))
usage(cmd_scrub_cancel_usage);
path = argv[1];
fdmnt = open_file_or_dir(path);
if (fdmnt < 0) {
fprintf(stderr, "ERROR: scrub cancel failed\n");
return 12;
}
again:
ret = ioctl(fdmnt, BTRFS_IOC_SCRUB_CANCEL, NULL);
err = errno;
close(fdmnt);
if (ret && err == EINVAL) {
/* path is no mounted btrfs. try if it's a device */
ret = check_mounted_where(fdmnt, path, mp, sizeof(mp),
&fs_devices_mnt);
close(fdmnt);
if (ret) {
fdmnt = open_file_or_dir(mp);
if (fdmnt >= 0) {
path = mp;
goto again;
}
}
}
if (ret) {
fprintf(stderr, "ERROR: scrub cancel failed on %s: %s\n", path,
err == ENOTCONN ? "not running" : strerror(errno));
return 1;
}
printf("scrub cancelled\n");
return 0;
}
static const char * const cmd_scrub_resume_usage[] = {
"btrfs scrub resume [-Bdqr] <path>|<device>",
"Resume previously canceled or interrupted scrub",
"",
"-B do not background",
"-d stats per device (-B only)",
"-q be quiet",
"-r read only mode",
NULL
};
static int cmd_scrub_resume(int argc, char **argv)
{
return scrub_start(argc, argv, 1);
}
static const char * const cmd_scrub_status_usage[] = {
"btrfs scrub status [-dR] <path>|<device>",
"Show status of running or finished scrub",
"",
"-d stats per device",
"-R print raw stats",
NULL
};
static int cmd_scrub_status(int argc, char **argv)
{
char *path;
struct btrfs_ioctl_fs_info_args fi_args;
struct btrfs_ioctl_dev_info_args *di_args = NULL;
struct scrub_file_record **past_scrubs = NULL;
struct scrub_file_record *last_scrub;
struct scrub_fs_stat fs_stat;
struct sockaddr_un addr = {
.sun_family = AF_UNIX,
};
int ret;
int i;
int fdmnt;
int print_raw = 0;
int do_stats_per_dev = 0;
int c;
char fsid[37];
int fdres = -1;
int err = 0;
optind = 1;
while ((c = getopt(argc, argv, "dR")) != -1) {
switch (c) {
case 'd':
do_stats_per_dev = 1;
break;
case 'R':
print_raw = 1;
break;
case '?':
default:
usage(cmd_scrub_status_usage);
}
}
if (check_argc_exact(argc - optind, 1))
usage(cmd_scrub_status_usage);
path = argv[optind];
fdmnt = open_file_or_dir(path);
if (fdmnt < 0) {
fprintf(stderr, "ERROR: can't access to '%s'\n", path);
return 12;
}
ret = get_fs_info(fdmnt, path, &fi_args, &di_args);
if (ret) {
fprintf(stderr, "ERROR: getting dev info for scrub failed: "
"%s\n", strerror(-ret));
err = 1;
goto out;
}
if (!fi_args.num_devices) {
fprintf(stderr, "ERROR: no devices found\n");
err = 1;
goto out;
}
uuid_unparse(fi_args.fsid, fsid);
fdres = socket(AF_UNIX, SOCK_STREAM, 0);
if (fdres == -1) {
fprintf(stderr, "ERROR: failed to create socket to "
"receive progress information: %s\n",
strerror(errno));
err = 1;
goto out;
}
scrub_datafile(SCRUB_PROGRESS_SOCKET_PATH, fsid,
NULL, addr.sun_path, sizeof(addr.sun_path));
/* ignore EOVERFLOW, just use shorter name and hope for the best */
addr.sun_path[sizeof(addr.sun_path) - 1] = '\0';
ret = connect(fdres, (struct sockaddr *)&addr, sizeof(addr));
if (ret == -1) {
fdres = scrub_open_file_r(SCRUB_DATA_FILE, fsid);
if (fdres < 0 && fdres != -ENOENT) {
fprintf(stderr, "WARNING: failed to open status file: "
"%s\n", strerror(-fdres));
err = 1;
goto out;
}
}
if (fdres >= 0) {
past_scrubs = scrub_read_file(fdres, 1);
if (IS_ERR(past_scrubs))
fprintf(stderr, "WARNING: failed to read status: %s\n",
strerror(-PTR_ERR(past_scrubs)));
}
printf("scrub status for %s\n", fsid);
if (do_stats_per_dev) {
for (i = 0; i < fi_args.num_devices; ++i) {
last_scrub = last_dev_scrub(past_scrubs,
di_args[i].devid);
if (!last_scrub) {
print_scrub_dev(&di_args[i], NULL, print_raw,
NULL, NULL);
continue;
}
print_scrub_dev(&di_args[i], &last_scrub->p, print_raw,
last_scrub->stats.finished ?
"history" : "status",
&last_scrub->stats);
}
} else {
init_fs_stat(&fs_stat);
for (i = 0; i < fi_args.num_devices; ++i) {
last_scrub = last_dev_scrub(past_scrubs,
di_args[i].devid);
if (!last_scrub)
continue;
add_to_fs_stat(&last_scrub->p, &last_scrub->stats,
&fs_stat);
}
print_fs_stat(&fs_stat, print_raw);
}
out:
free_history(past_scrubs);
free(di_args);
if (fdres > -1)
close(fdres);
return err;
}
const struct cmd_group scrub_cmd_group = {
scrub_cmd_group_usage, NULL, {
{ "start", cmd_scrub_start, cmd_scrub_start_usage, NULL, 0 },
{ "cancel", cmd_scrub_cancel, cmd_scrub_cancel_usage, NULL, 0 },
{ "resume", cmd_scrub_resume, cmd_scrub_resume_usage, NULL, 0 },
{ "status", cmd_scrub_status, cmd_scrub_status_usage, NULL, 0 },
{ 0, 0, 0, 0, 0 }
}
};
int cmd_scrub(int argc, char **argv)
{
return handle_command_group(&scrub_cmd_group, argc, argv);
}