btrfs-progs/extent-tree.c
2007-11-30 11:30:24 -05:00

789 lines
21 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
static int finish_current_insert(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root);
static int run_pending(struct btrfs_trans_handle *trans, struct btrfs_root
*extent_root);
static int inc_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 bytenr, u32 blocksize)
{
struct btrfs_path path;
int ret;
struct btrfs_key key;
struct btrfs_leaf *l;
struct btrfs_extent_item *item;
u32 refs;
btrfs_init_path(&path);
key.objectid = bytenr;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
key.offset = blocksize;
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path,
0, 1);
if (ret != 0)
BUG();
BUG_ON(ret != 0);
l = &path.nodes[0]->leaf;
item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
refs = btrfs_extent_refs(item);
btrfs_set_extent_refs(item, refs + 1);
BUG_ON(list_empty(&path.nodes[0]->dirty));
btrfs_release_path(root->fs_info->extent_root, &path);
finish_current_insert(trans, root->fs_info->extent_root);
run_pending(trans, root->fs_info->extent_root);
return 0;
}
static int lookup_block_ref(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 bytenr, u32 blocksize, u32 *refs)
{
struct btrfs_path path;
int ret;
struct btrfs_key key;
struct btrfs_leaf *l;
struct btrfs_extent_item *item;
btrfs_init_path(&path);
key.objectid = bytenr;
key.offset = blocksize;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key, &path,
0, 0);
if (ret != 0)
BUG();
l = &path.nodes[0]->leaf;
item = btrfs_item_ptr(l, path.slots[0], struct btrfs_extent_item);
*refs = btrfs_extent_refs(item);
btrfs_release_path(root->fs_info->extent_root, &path);
return 0;
}
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_buffer *buf)
{
u64 bytenr;
int i;
if (!root->ref_cows)
return 0;
if (btrfs_is_leaf(&buf->node))
return 0;
for (i = 0; i < btrfs_header_nritems(&buf->node.header); i++) {
bytenr = btrfs_node_blockptr(&buf->node, i);
inc_block_ref(trans, root, bytenr, root->nodesize);
}
return 0;
}
static int write_one_cache_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_block_group_cache *cache)
{
int ret;
int pending_ret;
struct btrfs_root *extent_root = root->fs_info->extent_root;
struct btrfs_block_group_item *bi;
ret = btrfs_search_slot(trans, root->fs_info->extent_root,
&cache->key, path, 0, 1);
BUG_ON(ret);
bi = btrfs_item_ptr(&path->nodes[0]->leaf, path->slots[0],
struct btrfs_block_group_item);
memcpy(bi, &cache->item, sizeof(*bi));
dirty_tree_block(trans, extent_root, path->nodes[0]);
btrfs_release_path(extent_root, path);
finish_current_insert(trans, root);
pending_ret = run_pending(trans, root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return 0;
}
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_block_group_cache *bg;
struct cache_extent *cache;
int err = 0;
int werr = 0;
struct cache_tree *bg_cache = &root->fs_info->block_group_cache;
struct btrfs_path path;
btrfs_init_path(&path);
u64 start = 0;
while(1) {
cache = find_first_cache_extent(bg_cache, start);
if (!cache)
break;
bg = container_of(cache, struct btrfs_block_group_cache,
cache);
start = cache->start + cache->size;
if (bg->dirty) {
err = write_one_cache_group(trans, root,
&path, bg);
if (err)
werr = err;
}
bg->dirty = 0;
}
return werr;
}
static int update_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 bytenr, u64 num, int alloc)
{
struct btrfs_block_group_cache *bg;
struct cache_extent *cache;
struct btrfs_fs_info *info = root->fs_info;
u64 total = num;
u64 old_val;
u64 byte_in_group;
while(total) {
cache = find_first_cache_extent(&info->block_group_cache,
bytenr);
if (!cache)
return -1;
bg = container_of(cache, struct btrfs_block_group_cache,
cache);
bg->dirty = 1;
byte_in_group = bytenr - bg->key.objectid;
old_val = btrfs_block_group_used(&bg->item);
if (total > bg->key.offset - byte_in_group)
num = bg->key.offset - byte_in_group;
else
num = total;
total -= num;
bytenr += num;
if (alloc)
old_val += num;
else
old_val -= num;
btrfs_set_block_group_used(&bg->item, old_val);
}
return 0;
}
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
btrfs_root *root)
{
u64 first = 0;
struct cache_extent *pe;
struct cache_extent *next;
pe = find_first_cache_extent(&root->fs_info->pinned_tree, 0);
if (pe)
first = pe->start;
while(pe) {
next = next_cache_extent(pe);
remove_cache_extent(&root->fs_info->pinned_tree, pe);
free_cache_extent(pe);
pe = next;
}
root->fs_info->last_insert.objectid = first;
root->fs_info->last_insert.offset = 0;
return 0;
}
static int finish_current_insert(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root)
{
struct btrfs_key ins;
struct btrfs_extent_item extent_item;
int ret;
struct btrfs_fs_info *info = extent_root->fs_info;
struct cache_extent *pe;
struct cache_extent *next;
struct cache_tree *pending_tree = &info->pending_tree;
btrfs_set_extent_refs(&extent_item, 1);
btrfs_set_extent_owner(&extent_item, extent_root->root_key.objectid);
ins.offset = 1;
btrfs_set_key_type(&ins, BTRFS_EXTENT_ITEM_KEY);
pe = find_first_cache_extent(pending_tree, 0);
while(pe) {
ins.offset = pe->size;
ins.objectid = pe->start;
remove_cache_extent(pending_tree, pe);
next = next_cache_extent(pe);
if (!next)
next = find_first_cache_extent(pending_tree, 0);
free_cache_extent(pe);
pe = next;
ret = btrfs_insert_item(trans, extent_root, &ins, &extent_item,
sizeof(extent_item));
if (ret) {
btrfs_print_tree(extent_root, extent_root->node);
}
BUG_ON(ret);
}
return 0;
}
/*
* remove an extent from the root, returns 0 on success
*/
static int __free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 bytenr, u64 num_bytes, int pin)
{
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
int ret;
struct btrfs_extent_item *ei;
u32 refs;
key.objectid = bytenr;
btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
key.offset = num_bytes;
btrfs_init_path(&path);
ret = btrfs_search_slot(trans, extent_root, &key, &path, -1, 1);
if (ret) {
btrfs_print_tree(extent_root, extent_root->node);
printf("failed to find %llu\n",
(unsigned long long)key.objectid);
BUG();
}
ei = btrfs_item_ptr(&path.nodes[0]->leaf, path.slots[0],
struct btrfs_extent_item);
BUG_ON(ei->refs == 0);
refs = btrfs_extent_refs(ei) - 1;
btrfs_set_extent_refs(ei, refs);
if (refs == 0) {
u64 super_bytes_used, root_bytes_used;
if (pin) {
int err;
err = insert_cache_extent(&info->pinned_tree,
bytenr, num_bytes);
BUG_ON(err);
}
super_bytes_used = btrfs_super_bytes_used(info->disk_super);
btrfs_set_super_bytes_used(info->disk_super,
super_bytes_used - num_bytes);
root_bytes_used = btrfs_root_bytes_used(&root->root_item);
btrfs_set_root_bytes_used(&root->root_item,
root_bytes_used - num_bytes);
ret = btrfs_del_item(trans, extent_root, &path);
if (!pin && extent_root->fs_info->last_insert.objectid >
bytenr)
extent_root->fs_info->last_insert.objectid = bytenr;
if (ret)
BUG();
ret = update_block_group(trans, root, bytenr, num_bytes, 0);
BUG_ON(ret);
}
btrfs_release_path(extent_root, &path);
finish_current_insert(trans, extent_root);
return ret;
}
/*
* find all the blocks marked as pending in the radix tree and remove
* them from the extent map
*/
static int del_pending_extents(struct btrfs_trans_handle *trans, struct
btrfs_root *extent_root)
{
int ret;
struct cache_extent *pe;
struct cache_extent *next;
struct cache_tree *del_pending = &extent_root->fs_info->del_pending;
pe = find_first_cache_extent(del_pending, 0);
while(pe) {
remove_cache_extent(del_pending, pe);
ret = __free_extent(trans, extent_root,
pe->start, pe->size, 1);
BUG_ON(ret);
next = next_cache_extent(pe);
if (!next)
next = find_first_cache_extent(del_pending, 0);
free_cache_extent(pe);
pe = next;
}
return 0;
}
static int run_pending(struct btrfs_trans_handle *trans, struct btrfs_root
*extent_root)
{
del_pending_extents(trans, extent_root);
return 0;
}
/*
* remove an extent from the root, returns 0 on success
*/
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 bytenr, u64 num_bytes, int pin)
{
struct btrfs_root *extent_root = root->fs_info->extent_root;
int pending_ret;
int ret;
if (root == extent_root) {
ret = insert_cache_extent(&root->fs_info->del_pending,
bytenr, num_bytes);
BUG_ON(ret);
return 0;
}
ret = __free_extent(trans, root, bytenr, num_bytes, pin);
pending_ret = run_pending(trans, root->fs_info->extent_root);
return ret ? ret : pending_ret;
}
static u64 stripe_align(struct btrfs_root *root, u64 val)
{
u64 mask = ((u64)root->stripesize - 1);
u64 ret = (val + mask) & ~mask;
return ret;
}
/*
* walks the btree of allocated extents and find a hole of a given size.
* The key ins is changed to record the hole:
* ins->objectid == block start
* ins->flags = BTRFS_EXTENT_ITEM_KEY
* ins->offset == number of blocks
* Any available blocks before search_start are skipped.
*/
static int find_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*orig_root, u64 total_needed, u64 search_start,
u64 search_end, struct btrfs_key *ins)
{
struct btrfs_path path;
struct btrfs_key key;
int ret;
u64 hole_size = 0;
int slot = 0;
u64 last_byte = 0;
u64 aligned;
int start_found;
struct btrfs_leaf *l;
struct btrfs_root * root = orig_root->fs_info->extent_root;
if (root->fs_info->last_insert.objectid > search_start)
search_start = root->fs_info->last_insert.objectid;
search_start = stripe_align(root, search_start);
btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
check_failed:
btrfs_init_path(&path);
ins->objectid = search_start;
ins->offset = 0;
start_found = 0;
ret = btrfs_search_slot(trans, root, ins, &path, 0, 0);
if (ret < 0)
goto error;
if (path.slots[0] > 0)
path.slots[0]--;
while (1) {
l = &path.nodes[0]->leaf;
slot = path.slots[0];
if (slot >= btrfs_header_nritems(&l->header)) {
ret = btrfs_next_leaf(root, &path);
if (ret == 0)
continue;
if (ret < 0)
goto error;
if (!start_found) {
aligned = stripe_align(root, search_start);
ins->objectid = aligned;
ins->offset = (u64)-1 - aligned;
start_found = 1;
goto check_pending;
}
ins->objectid = stripe_align(root,
last_byte > search_start ?
last_byte : search_start);
ins->offset = (u64)-1 - ins->objectid;
goto check_pending;
}
btrfs_disk_key_to_cpu(&key, &l->items[slot].key);
if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
goto next;
if (key.objectid >= search_start) {
if (start_found) {
if (last_byte < search_start)
last_byte = search_start;
aligned = stripe_align(root, last_byte);
hole_size = key.objectid - aligned;
if (key.objectid > aligned &&
hole_size > total_needed) {
ins->objectid = aligned;
ins->offset = hole_size;
goto check_pending;
}
}
}
start_found = 1;
last_byte = key.objectid + key.offset;
next:
path.slots[0]++;
}
// FIXME -ENOSPC
check_pending:
/* we have to make sure we didn't find an extent that has already
* been allocated by the map tree or the original allocation
*/
btrfs_release_path(root, &path);
BUG_ON(ins->objectid < search_start);
if (find_cache_extent(&root->fs_info->pinned_tree,
ins->objectid, total_needed)) {
search_start = ins->objectid + total_needed;
goto check_failed;
}
if (find_cache_extent(&root->fs_info->pending_tree,
ins->objectid, total_needed)) {
search_start = ins->objectid + total_needed;
goto check_failed;
}
root->fs_info->last_insert.objectid = ins->objectid;
ins->offset = total_needed;
return 0;
error:
btrfs_release_path(root, &path);
return ret;
}
/*
* finds a free extent and does all the dirty work required for allocation
* returns the key for the extent through ins, and a tree buffer for
* the first block of the extent through buf.
*
* returns 0 if everything worked, non-zero otherwise.
*/
static int alloc_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 owner,
u64 num_bytes, u64 search_start,
u64 search_end, struct btrfs_key *ins)
{
int ret;
int pending_ret;
u64 super_bytes_used, root_bytes_used;
struct btrfs_fs_info *info = root->fs_info;
struct btrfs_root *extent_root = info->extent_root;
struct btrfs_extent_item extent_item;
btrfs_set_extent_refs(&extent_item, 1);
btrfs_set_extent_owner(&extent_item, owner);
ret = find_free_extent(trans, root, num_bytes, search_start,
search_end, ins);
if (ret)
return ret;
super_bytes_used = btrfs_super_bytes_used(info->disk_super);
btrfs_set_super_bytes_used(info->disk_super, super_bytes_used +
num_bytes);
root_bytes_used = btrfs_root_bytes_used(&root->root_item);
btrfs_set_root_bytes_used(&root->root_item, root_bytes_used +
num_bytes);
if (root == extent_root) {
ret = insert_cache_extent(&root->fs_info->pending_tree,
ins->objectid, ins->offset);
BUG_ON(ret);
return 0;
}
ret = btrfs_insert_item(trans, extent_root, ins, &extent_item,
sizeof(extent_item));
finish_current_insert(trans, extent_root);
pending_ret = run_pending(trans, extent_root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return 0;
}
/*
* helper function to allocate a block for a given tree
* returns the tree buffer or NULL.
*/
struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u32 blocksize)
{
struct btrfs_key ins;
int ret;
struct btrfs_buffer *buf;
ret = alloc_extent(trans, root, root->root_key.objectid,
blocksize, 0, (unsigned long)-1, &ins);
if (ret) {
BUG();
return NULL;
}
ret = update_block_group(trans, root, ins.objectid, ins.offset, 1);
buf = find_tree_block(root, ins.objectid, blocksize);
btrfs_set_header_generation(&buf->node.header,
root->root_key.offset + 1);
btrfs_set_header_bytenr(&buf->node.header, buf->bytenr);
memcpy(buf->node.header.fsid, root->fs_info->disk_super->fsid,
sizeof(buf->node.header.fsid));
dirty_tree_block(trans, root, buf);
return buf;
}
/*
* helper function for drop_snapshot, this walks down the tree dropping ref
* counts as it goes.
*/
static int walk_down_tree(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int *level)
{
struct btrfs_buffer *next;
struct btrfs_buffer *cur;
u64 bytenr;
int ret;
u32 refs;
ret = lookup_block_ref(trans, root, path->nodes[*level]->bytenr,
btrfs_level_size(root, *level), &refs);
BUG_ON(ret);
if (refs > 1)
goto out;
/*
* walk down to the last node level and free all the leaves
*/
while(*level > 0) {
u32 size = btrfs_level_size(root, *level - 1);
cur = path->nodes[*level];
if (path->slots[*level] >=
btrfs_header_nritems(&cur->node.header))
break;
bytenr = btrfs_node_blockptr(&cur->node, path->slots[*level]);
ret = lookup_block_ref(trans, root, bytenr, size, &refs);
if (refs != 1 || *level == 1) {
path->slots[*level]++;
ret = btrfs_free_extent(trans, root, bytenr, size, 1);
BUG_ON(ret);
continue;
}
BUG_ON(ret);
next = read_tree_block(root, bytenr, size);
if (path->nodes[*level-1])
btrfs_block_release(root, path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(&next->node.header);
path->slots[*level] = 0;
}
out:
ret = btrfs_free_extent(trans, root, path->nodes[*level]->bytenr,
btrfs_level_size(root, *level), 1);
btrfs_block_release(root, path->nodes[*level]);
path->nodes[*level] = NULL;
*level += 1;
BUG_ON(ret);
return 0;
}
/*
* helper for dropping snapshots. This walks back up the tree in the path
* to find the first node higher up where we haven't yet gone through
* all the slots
*/
static int walk_up_tree(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, int *level)
{
int i;
int slot;
int ret;
for(i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
slot = path->slots[i];
if (slot <
btrfs_header_nritems(&path->nodes[i]->node.header)- 1) {
path->slots[i]++;
*level = i;
return 0;
} else {
ret = btrfs_free_extent(trans, root,
path->nodes[*level]->bytenr,
btrfs_level_size(root, *level), 1);
btrfs_block_release(root, path->nodes[*level]);
path->nodes[*level] = NULL;
*level = i + 1;
BUG_ON(ret);
}
}
return 1;
}
/*
* drop the reference count on the tree rooted at 'snap'. This traverses
* the tree freeing any blocks that have a ref count of zero after being
* decremented.
*/
int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_buffer *snap)
{
int ret = 0;
int wret;
int level;
struct btrfs_path path;
int i;
int orig_level;
btrfs_init_path(&path);
level = btrfs_header_level(&snap->node.header);
orig_level = level;
path.nodes[level] = snap;
path.slots[level] = 0;
while(1) {
wret = walk_down_tree(trans, root, &path, &level);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
wret = walk_up_tree(trans, root, &path, &level);
if (wret > 0)
break;
if (wret < 0)
ret = wret;
}
for (i = 0; i <= orig_level; i++) {
if (path.nodes[i]) {
btrfs_block_release(root, path.nodes[i]);
}
}
return ret;
}
int btrfs_free_block_groups(struct btrfs_fs_info *info)
{
struct btrfs_block_group_cache *bg;
struct cache_extent *cache;
while(1) {
cache = find_first_cache_extent(&info->block_group_cache, 0);
if (!cache)
break;
bg = container_of(cache, struct btrfs_block_group_cache,
cache);
remove_cache_extent(&info->block_group_cache, cache);
free(bg);
}
return 0;
}
int btrfs_read_block_groups(struct btrfs_root *root)
{
struct btrfs_path path;
int ret;
int err = 0;
struct btrfs_block_group_item *bi;
struct btrfs_block_group_cache *bg;
struct cache_tree *bg_cache;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_leaf *leaf;
u64 group_size = BTRFS_BLOCK_GROUP_SIZE;
root = root->fs_info->extent_root;
bg_cache = &root->fs_info->block_group_cache;
key.objectid = 0;
key.offset = group_size;
btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
btrfs_init_path(&path);
while(1) {
ret = btrfs_search_slot(NULL, root->fs_info->extent_root,
&key, &path, 0, 0);
if (ret != 0) {
err = ret;
break;
}
leaf = &path.nodes[0]->leaf;
btrfs_disk_key_to_cpu(&found_key,
&leaf->items[path.slots[0]].key);
bg = malloc(sizeof(*bg));
if (!bg) {
err = -1;
break;
}
bi = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_block_group_item);
memcpy(&bg->item, bi, sizeof(*bi));
memcpy(&bg->key, &found_key, sizeof(found_key));
key.objectid = found_key.objectid + found_key.offset;
btrfs_release_path(root, &path);
bg->cache.start = found_key.objectid;
bg->cache.size = found_key.offset;
bg->dirty = 0;
ret = insert_existing_cache_extent(bg_cache, &bg->cache);
BUG_ON(ret);
if (key.objectid >=
btrfs_super_total_bytes(root->fs_info->disk_super))
break;
}
btrfs_release_path(root, &path);
return 0;
}
int btrfs_insert_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_key *key,
struct btrfs_block_group_item *bi)
{
int ret;
int pending_ret;
root = root->fs_info->extent_root;
ret = btrfs_insert_item(trans, root, key, bi, sizeof(*bi));
finish_current_insert(trans, root);
pending_ret = run_pending(trans, root);
if (ret)
return ret;
if (pending_ret)
return pending_ret;
return ret;
}