btrfs-progs/ctree.h
2007-11-30 11:30:24 -05:00

1101 lines
27 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#ifndef __BTRFS__
#define __BTRFS__
#include "list.h"
#include "kerncompat.h"
#include "radix-tree.h"
#include "extent-cache.h"
struct btrfs_trans_handle;
#define BTRFS_MAGIC "_B2RfS_M"
#define BTRFS_ROOT_TREE_OBJECTID 1ULL
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
#define BTRFS_FS_TREE_OBJECTID 3ULL
#define BTRFS_ROOT_TREE_DIR_OBJECTID 4ULL
#define BTRFS_FIRST_FREE_OBJECTID 5ULL
/*
* we can actually store much bigger names, but lets not confuse the rest
* of linux
*/
#define BTRFS_NAME_LEN 255
/* 32 bytes in various csum fields */
#define BTRFS_CSUM_SIZE 32
/* four bytes for CRC32 */
#define BTRFS_CRC32_SIZE 4
#define BTRFS_FT_UNKNOWN 0
#define BTRFS_FT_REG_FILE 1
#define BTRFS_FT_DIR 2
#define BTRFS_FT_CHRDEV 3
#define BTRFS_FT_BLKDEV 4
#define BTRFS_FT_FIFO 5
#define BTRFS_FT_SOCK 6
#define BTRFS_FT_SYMLINK 7
#define BTRFS_FT_XATTR 8
#define BTRFS_FT_MAX 9
/*
* the key defines the order in the tree, and so it also defines (optimal)
* block layout. objectid corresonds to the inode number. The flags
* tells us things about the object, and is a kind of stream selector.
* so for a given inode, keys with flags of 1 might refer to the inode
* data, flags of 2 may point to file data in the btree and flags == 3
* may point to extents.
*
* offset is the starting byte offset for this key in the stream.
*
* btrfs_disk_key is in disk byte order. struct btrfs_key is always
* in cpu native order. Otherwise they are identical and their sizes
* should be the same (ie both packed)
*/
struct btrfs_disk_key {
__le64 objectid;
u8 type;
__le64 offset;
} __attribute__ ((__packed__));
struct btrfs_key {
u64 objectid;
u8 type;
u64 offset;
} __attribute__ ((__packed__));
/*
* every tree block (leaf or node) starts with this header.
*/
struct btrfs_header {
u8 csum[BTRFS_CSUM_SIZE];
u8 fsid[16]; /* FS specific uuid */
__le64 bytenr; /* which block this node is supposed to live in */
__le64 generation;
__le64 owner;
__le32 nritems;
__le16 flags;
u8 level;
} __attribute__ ((__packed__));
#define BTRFS_MAX_LEVEL 8
#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
sizeof(struct btrfs_header)) / \
(sizeof(struct btrfs_disk_key) + sizeof(u64)))
#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
struct btrfs_buffer;
/*
* the super block basically lists the main trees of the FS
* it currently lacks any block count etc etc
*/
struct btrfs_super_block {
u8 csum[BTRFS_CSUM_SIZE];
/* the first 3 fields must match struct btrfs_header */
u8 fsid[16]; /* FS specific uuid */
__le64 bytenr; /* this block number */
__le64 magic;
__le64 generation;
__le64 root;
__le64 total_bytes;
__le64 bytes_used;
__le64 root_dir_objectid;
__le32 sectorsize;
__le32 nodesize;
__le32 leafsize;
__le32 stripesize;
u8 root_level;
} __attribute__ ((__packed__));
/*
* A leaf is full of items. offset and size tell us where to find
* the item in the leaf (relative to the start of the data area)
*/
struct btrfs_item {
struct btrfs_disk_key key;
__le32 offset;
__le32 size;
} __attribute__ ((__packed__));
/*
* leaves have an item area and a data area:
* [item0, item1....itemN] [free space] [dataN...data1, data0]
*
* The data is separate from the items to get the keys closer together
* during searches.
*/
struct btrfs_leaf {
struct btrfs_header header;
struct btrfs_item items[];
} __attribute__ ((__packed__));
/*
* all non-leaf blocks are nodes, they hold only keys and pointers to
* other blocks
*/
struct btrfs_key_ptr {
struct btrfs_disk_key key;
__le64 blockptr;
} __attribute__ ((__packed__));
struct btrfs_node {
struct btrfs_header header;
struct btrfs_key_ptr ptrs[];
} __attribute__ ((__packed__));
/*
* btrfs_paths remember the path taken from the root down to the leaf.
* level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
* to any other levels that are present.
*
* The slots array records the index of the item or block pointer
* used while walking the tree.
*/
struct btrfs_path {
struct btrfs_buffer *nodes[BTRFS_MAX_LEVEL];
int slots[BTRFS_MAX_LEVEL];
};
/*
* items in the extent btree are used to record the objectid of the
* owner of the block and the number of references
*/
struct btrfs_extent_item {
__le32 refs;
__le64 owner;
} __attribute__ ((__packed__));
struct btrfs_inode_timespec {
__le64 sec;
__le32 nsec;
} __attribute__ ((__packed__));
/*
* there is no padding here on purpose. If you want to extent the inode,
* make a new item type
*/
struct btrfs_inode_item {
__le64 generation;
__le64 size;
__le64 nblocks;
__le64 block_group;
__le32 nlink;
__le32 uid;
__le32 gid;
__le32 mode;
__le32 rdev;
__le16 flags;
__le16 compat_flags;
struct btrfs_inode_timespec atime;
struct btrfs_inode_timespec ctime;
struct btrfs_inode_timespec mtime;
struct btrfs_inode_timespec otime;
} __attribute__ ((__packed__));
/* inline data is just a blob of bytes */
struct btrfs_inline_data_item {
u8 data;
} __attribute__ ((__packed__));
struct btrfs_dir_item {
struct btrfs_disk_key location;
__le16 data_len;
__le16 name_len;
u8 type;
} __attribute__ ((__packed__));
struct btrfs_root_item {
struct btrfs_inode_item inode;
__le64 root_dirid;
__le64 bytenr;
__le64 byte_limit;
__le64 bytes_used;
__le32 flags;
__le32 refs;
struct btrfs_disk_key drop_progress;
u8 drop_level;
u8 level;
} __attribute__ ((__packed__));
#define BTRFS_FILE_EXTENT_REG 0
#define BTRFS_FILE_EXTENT_INLINE 1
struct btrfs_file_extent_item {
__le64 generation;
u8 type;
/*
* disk space consumed by the extent, checksum blocks are included
* in these numbers
*/
__le64 disk_bytenr;
__le64 disk_num_bytes;
/*
* the logical offset in file blocks (no csums)
* this extent record is for. This allows a file extent to point
* into the middle of an existing extent on disk, sharing it
* between two snapshots (useful if some bytes in the middle of the
* extent have changed
*/
__le64 offset;
/*
* the logical number of file blocks (no csums included)
*/
__le64 num_bytes;
} __attribute__ ((__packed__));
struct btrfs_csum_item {
u8 csum[BTRFS_CSUM_SIZE];
} __attribute__ ((__packed__));
/* tag for the radix tree of block groups in ram */
#define BTRFS_BLOCK_GROUP_DIRTY 0
#define BTRFS_BLOCK_GROUP_SIZE (256 * 1024 * 1024)
#define BTRFS_BLOCK_GROUP_DATA 1
struct btrfs_block_group_item {
__le64 used;
u8 flags;
} __attribute__ ((__packed__));
struct btrfs_block_group_cache {
struct cache_extent cache;
struct btrfs_key key;
struct btrfs_block_group_item item;
int dirty;
};
struct btrfs_fs_info {
struct btrfs_root *fs_root;
struct btrfs_root *extent_root;
struct btrfs_root *tree_root;
struct btrfs_key last_insert;
struct cache_tree extent_cache;
struct cache_tree block_group_cache;
struct cache_tree pending_tree;
struct cache_tree pinned_tree;
struct cache_tree del_pending;
struct list_head trans;
struct list_head cache;
u64 last_inode_alloc;
u64 last_inode_alloc_dirid;
u64 generation;
int cache_size;
int fp;
struct btrfs_trans_handle *running_transaction;
struct btrfs_super_block *disk_super;
};
/*
* in ram representation of the tree. extent_root is used for all allocations
* and for the extent tree extent_root root.
*/
struct btrfs_root {
struct btrfs_buffer *node;
struct btrfs_buffer *commit_root;
struct btrfs_root_item root_item;
struct btrfs_key root_key;
struct btrfs_fs_info *fs_info;
/* data allocations are done in sectorsize units */
u32 sectorsize;
/* node allocations are done in nodesize units */
u32 nodesize;
/* leaf allocations are done in leafsize units */
u32 leafsize;
/* leaf allocations are done in leafsize units */
u32 stripesize;
int ref_cows;
u32 type;
};
/* the lower bits in the key flags defines the item type */
#define BTRFS_KEY_TYPE_MAX 256
#define BTRFS_KEY_TYPE_SHIFT 24
#define BTRFS_KEY_TYPE_MASK (((u32)BTRFS_KEY_TYPE_MAX - 1) << \
BTRFS_KEY_TYPE_SHIFT)
/*
* inode items have the data typically returned from stat and store other
* info about object characteristics. There is one for every file and dir in
* the FS
*/
#define BTRFS_INODE_ITEM_KEY 1
#define BTRFS_XATTR_ITEM_KEY 2
/* reserve 3-15 close to the inode for later flexibility */
/*
* dir items are the name -> inode pointers in a directory. There is one
* for every name in a directory.
*/
#define BTRFS_DIR_ITEM_KEY 16
#define BTRFS_DIR_INDEX_KEY 17
/*
* extent data is for file data
*/
#define BTRFS_EXTENT_DATA_KEY 18
/*
* csum items have the checksums for data in the extents
*/
#define BTRFS_CSUM_ITEM_KEY 19
/* reserve 20-31 for other file stuff */
/*
* root items point to tree roots. There are typically in the root
* tree used by the super block to find all the other trees
*/
#define BTRFS_ROOT_ITEM_KEY 32
/*
* extent items are in the extent map tree. These record which blocks
* are used, and how many references there are to each block
*/
#define BTRFS_EXTENT_ITEM_KEY 33
/*
* block groups give us hints into the extent allocation trees. Which
* blocks are free etc etc
*/
#define BTRFS_BLOCK_GROUP_ITEM_KEY 34
/*
* string items are for debugging. They just store a short string of
* data in the FS
*/
#define BTRFS_STRING_ITEM_KEY 253
static inline u64 btrfs_block_group_used(struct btrfs_block_group_item *bi)
{
return le64_to_cpu(bi->used);
}
static inline void btrfs_set_block_group_used(struct
btrfs_block_group_item *bi,
u64 val)
{
bi->used = cpu_to_le64(val);
}
static inline u64 btrfs_inode_generation(struct btrfs_inode_item *i)
{
return le64_to_cpu(i->generation);
}
static inline void btrfs_set_inode_generation(struct btrfs_inode_item *i,
u64 val)
{
i->generation = cpu_to_le64(val);
}
static inline u64 btrfs_inode_size(struct btrfs_inode_item *i)
{
return le64_to_cpu(i->size);
}
static inline void btrfs_set_inode_size(struct btrfs_inode_item *i, u64 val)
{
i->size = cpu_to_le64(val);
}
static inline u64 btrfs_inode_nblocks(struct btrfs_inode_item *i)
{
return le64_to_cpu(i->nblocks);
}
static inline void btrfs_set_inode_nblocks(struct btrfs_inode_item *i, u64 val)
{
i->nblocks = cpu_to_le64(val);
}
static inline u64 btrfs_inode_block_group(struct btrfs_inode_item *i)
{
return le64_to_cpu(i->block_group);
}
static inline void btrfs_set_inode_block_group(struct btrfs_inode_item *i,
u64 val)
{
i->block_group = cpu_to_le64(val);
}
static inline u32 btrfs_inode_nlink(struct btrfs_inode_item *i)
{
return le32_to_cpu(i->nlink);
}
static inline void btrfs_set_inode_nlink(struct btrfs_inode_item *i, u32 val)
{
i->nlink = cpu_to_le32(val);
}
static inline u32 btrfs_inode_uid(struct btrfs_inode_item *i)
{
return le32_to_cpu(i->uid);
}
static inline void btrfs_set_inode_uid(struct btrfs_inode_item *i, u32 val)
{
i->uid = cpu_to_le32(val);
}
static inline u32 btrfs_inode_gid(struct btrfs_inode_item *i)
{
return le32_to_cpu(i->gid);
}
static inline void btrfs_set_inode_gid(struct btrfs_inode_item *i, u32 val)
{
i->gid = cpu_to_le32(val);
}
static inline u32 btrfs_inode_mode(struct btrfs_inode_item *i)
{
return le32_to_cpu(i->mode);
}
static inline void btrfs_set_inode_mode(struct btrfs_inode_item *i, u32 val)
{
i->mode = cpu_to_le32(val);
}
static inline u32 btrfs_inode_rdev(struct btrfs_inode_item *i)
{
return le32_to_cpu(i->rdev);
}
static inline void btrfs_set_inode_rdev(struct btrfs_inode_item *i, u32 val)
{
i->rdev = cpu_to_le32(val);
}
static inline u16 btrfs_inode_flags(struct btrfs_inode_item *i)
{
return le16_to_cpu(i->flags);
}
static inline void btrfs_set_inode_flags(struct btrfs_inode_item *i, u16 val)
{
i->flags = cpu_to_le16(val);
}
static inline u16 btrfs_inode_compat_flags(struct btrfs_inode_item *i)
{
return le16_to_cpu(i->compat_flags);
}
static inline void btrfs_set_inode_compat_flags(struct btrfs_inode_item *i,
u16 val)
{
i->compat_flags = cpu_to_le16(val);
}
static inline u64 btrfs_timespec_sec(struct btrfs_inode_timespec *ts)
{
return le64_to_cpu(ts->sec);
}
static inline void btrfs_set_timespec_sec(struct btrfs_inode_timespec *ts,
u64 val)
{
ts->sec = cpu_to_le64(val);
}
static inline u32 btrfs_timespec_nsec(struct btrfs_inode_timespec *ts)
{
return le32_to_cpu(ts->nsec);
}
static inline void btrfs_set_timespec_nsec(struct btrfs_inode_timespec *ts,
u32 val)
{
ts->nsec = cpu_to_le32(val);
}
static inline u32 btrfs_extent_refs(struct btrfs_extent_item *ei)
{
return le32_to_cpu(ei->refs);
}
static inline void btrfs_set_extent_refs(struct btrfs_extent_item *ei, u32 val)
{
ei->refs = cpu_to_le32(val);
}
static inline u64 btrfs_extent_owner(struct btrfs_extent_item *ei)
{
return le64_to_cpu(ei->owner);
}
static inline void btrfs_set_extent_owner(struct btrfs_extent_item *ei, u64 val)
{
ei->owner = cpu_to_le64(val);
}
static inline u64 btrfs_node_blockptr(struct btrfs_node *n, int nr)
{
return le64_to_cpu(n->ptrs[nr].blockptr);
}
static inline void btrfs_set_node_blockptr(struct btrfs_node *n, int nr,
u64 val)
{
n->ptrs[nr].blockptr = cpu_to_le64(val);
}
static inline u32 btrfs_item_offset(struct btrfs_item *item)
{
return le32_to_cpu(item->offset);
}
static inline void btrfs_set_item_offset(struct btrfs_item *item, u32 val)
{
item->offset = cpu_to_le32(val);
}
static inline u32 btrfs_item_end(struct btrfs_item *item)
{
return le32_to_cpu(item->offset) + le32_to_cpu(item->size);
}
static inline u32 btrfs_item_size(struct btrfs_item *item)
{
return le32_to_cpu(item->size);
}
static inline void btrfs_set_item_size(struct btrfs_item *item, u32 val)
{
item->size = cpu_to_le32(val);
}
static inline u8 btrfs_dir_type(struct btrfs_dir_item *d)
{
return d->type;
}
static inline void btrfs_set_dir_type(struct btrfs_dir_item *d, u8 val)
{
d->type = val;
}
static inline u16 btrfs_dir_name_len(struct btrfs_dir_item *d)
{
return le16_to_cpu(d->name_len);
}
static inline void btrfs_set_dir_name_len(struct btrfs_dir_item *d, u16 val)
{
d->name_len = cpu_to_le16(val);
}
static inline u16 btrfs_dir_data_len(struct btrfs_dir_item *d)
{
return le16_to_cpu(d->data_len);
}
static inline void btrfs_set_dir_data_len(struct btrfs_dir_item *d, u16 val)
{
d->data_len = cpu_to_le16(val);
}
static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
struct btrfs_disk_key *disk)
{
cpu->offset = le64_to_cpu(disk->offset);
cpu->type = le32_to_cpu(disk->type);
cpu->objectid = le64_to_cpu(disk->objectid);
}
static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
struct btrfs_key *cpu)
{
disk->offset = cpu_to_le64(cpu->offset);
disk->type = cpu_to_le32(cpu->type);
disk->objectid = cpu_to_le64(cpu->objectid);
}
static inline u64 btrfs_disk_key_objectid(struct btrfs_disk_key *disk)
{
return le64_to_cpu(disk->objectid);
}
static inline void btrfs_set_disk_key_objectid(struct btrfs_disk_key *disk,
u64 val)
{
disk->objectid = cpu_to_le64(val);
}
static inline u64 btrfs_disk_key_offset(struct btrfs_disk_key *disk)
{
return le64_to_cpu(disk->offset);
}
static inline void btrfs_set_disk_key_offset(struct btrfs_disk_key *disk,
u64 val)
{
disk->offset = cpu_to_le64(val);
}
static inline u8 btrfs_disk_key_type(struct btrfs_disk_key *key)
{
return key->type;
}
static inline void btrfs_set_disk_key_type(struct btrfs_disk_key *key, u8 val)
{
key->type = val;
}
static inline u32 btrfs_key_type(struct btrfs_key *key)
{
return key->type;
}
static inline void btrfs_set_key_type(struct btrfs_key *key, u32 val)
{
key->type = val;
}
static inline u64 btrfs_header_bytenr(struct btrfs_header *h)
{
return le64_to_cpu(h->bytenr);
}
static inline void btrfs_set_header_bytenr(struct btrfs_header *h, u64 bytenr)
{
h->bytenr = cpu_to_le64(bytenr);
}
static inline u64 btrfs_header_generation(struct btrfs_header *h)
{
return le64_to_cpu(h->generation);
}
static inline void btrfs_set_header_generation(struct btrfs_header *h,
u64 val)
{
h->generation = cpu_to_le64(val);
}
static inline u64 btrfs_header_owner(struct btrfs_header *h)
{
return le64_to_cpu(h->owner);
}
static inline void btrfs_set_header_owner(struct btrfs_header *h,
u64 val)
{
h->owner = cpu_to_le64(val);
}
static inline u32 btrfs_header_nritems(struct btrfs_header *h)
{
return le32_to_cpu(h->nritems);
}
static inline void btrfs_set_header_nritems(struct btrfs_header *h, u32 val)
{
h->nritems = cpu_to_le32(val);
}
static inline u16 btrfs_header_flags(struct btrfs_header *h)
{
return le16_to_cpu(h->flags);
}
static inline void btrfs_set_header_flags(struct btrfs_header *h, u16 val)
{
h->flags = cpu_to_le16(val);
}
static inline int btrfs_header_level(struct btrfs_header *h)
{
return h->level;
}
static inline void btrfs_set_header_level(struct btrfs_header *h, int level)
{
BUG_ON(level > BTRFS_MAX_LEVEL);
h->level = level;
}
static inline int btrfs_is_leaf(struct btrfs_node *n)
{
return (btrfs_header_level(&n->header) == 0);
}
static inline u64 btrfs_root_bytenr(struct btrfs_root_item *item)
{
return le64_to_cpu(item->bytenr);
}
static inline void btrfs_set_root_bytenr(struct btrfs_root_item *item, u64 val)
{
item->bytenr = cpu_to_le64(val);
}
static inline u8 btrfs_root_level(struct btrfs_root_item *item)
{
return item->level;
}
static inline void btrfs_set_root_level(struct btrfs_root_item *item, u8 val)
{
item->level = val;
}
static inline u64 btrfs_root_dirid(struct btrfs_root_item *item)
{
return le64_to_cpu(item->root_dirid);
}
static inline void btrfs_set_root_dirid(struct btrfs_root_item *item, u64 val)
{
item->root_dirid = cpu_to_le64(val);
}
static inline u32 btrfs_root_refs(struct btrfs_root_item *item)
{
return le32_to_cpu(item->refs);
}
static inline void btrfs_set_root_refs(struct btrfs_root_item *item, u32 val)
{
item->refs = cpu_to_le32(val);
}
static inline u32 btrfs_root_flags(struct btrfs_root_item *item)
{
return le32_to_cpu(item->flags);
}
static inline void btrfs_set_root_flags(struct btrfs_root_item *item, u32 val)
{
item->flags = cpu_to_le32(val);
}
static inline void btrfs_set_root_bytes_used(struct btrfs_root_item *item,
u64 val)
{
item->bytes_used = cpu_to_le64(val);
}
static inline u64 btrfs_root_bytes_used(struct btrfs_root_item *item)
{
return le64_to_cpu(item->bytes_used);
}
static inline u64 btrfs_super_bytenr(struct btrfs_super_block *s)
{
return le64_to_cpu(s->bytenr);
}
static inline void btrfs_set_super_bytenr(struct btrfs_super_block *s, u64 val)
{
s->bytenr = cpu_to_le64(val);
}
static inline u64 btrfs_super_generation(struct btrfs_super_block *s)
{
return le64_to_cpu(s->generation);
}
static inline void btrfs_set_super_generation(struct btrfs_super_block *s,
u64 val)
{
s->generation = cpu_to_le64(val);
}
static inline u8 btrfs_super_root_level(struct btrfs_super_block *s)
{
return s->root_level;
}
static inline void btrfs_set_super_root_level(struct btrfs_super_block *s,
u8 val)
{
s->root_level = val;
}
static inline u64 btrfs_super_root(struct btrfs_super_block *s)
{
return le64_to_cpu(s->root);
}
static inline void btrfs_set_super_root(struct btrfs_super_block *s, u64 val)
{
s->root = cpu_to_le64(val);
}
static inline u64 btrfs_super_total_bytes(struct btrfs_super_block *s)
{
return le64_to_cpu(s->total_bytes);
}
static inline void btrfs_set_super_total_bytes(struct btrfs_super_block *s,
u64 val)
{
s->total_bytes = cpu_to_le64(val);
}
static inline u64 btrfs_super_bytes_used(struct btrfs_super_block *s)
{
return le64_to_cpu(s->bytes_used);
}
static inline void btrfs_set_super_bytes_used(struct btrfs_super_block *s,
u64 val)
{
s->bytes_used = cpu_to_le64(val);
}
static inline u32 btrfs_super_sectorsize(struct btrfs_super_block *s)
{
return le32_to_cpu(s->sectorsize);
}
static inline void btrfs_set_super_sectorsize(struct btrfs_super_block *s,
u32 val)
{
s->sectorsize = cpu_to_le32(val);
}
static inline u32 btrfs_super_nodesize(struct btrfs_super_block *s)
{
return le32_to_cpu(s->nodesize);
}
static inline void btrfs_set_super_nodesize(struct btrfs_super_block *s,
u32 val)
{
s->nodesize = cpu_to_le32(val);
}
static inline u32 btrfs_super_leafsize(struct btrfs_super_block *s)
{
return le32_to_cpu(s->leafsize);
}
static inline void btrfs_set_super_leafsize(struct btrfs_super_block *s,
u32 val)
{
s->leafsize = cpu_to_le32(val);
}
static inline u32 btrfs_super_stripesize(struct btrfs_super_block *s)
{
return le32_to_cpu(s->stripesize);
}
static inline void btrfs_set_super_stripesize(struct btrfs_super_block *s,
u32 val)
{
s->stripesize = cpu_to_le32(val);
}
static inline u64 btrfs_super_root_dir(struct btrfs_super_block *s)
{
return le64_to_cpu(s->root_dir_objectid);
}
static inline void btrfs_set_super_root_dir(struct btrfs_super_block *s, u64
val)
{
s->root_dir_objectid = cpu_to_le64(val);
}
static inline u8 *btrfs_leaf_data(struct btrfs_leaf *l)
{
return (u8 *)l->items;
}
static inline int btrfs_file_extent_type(struct btrfs_file_extent_item *e)
{
return e->type;
}
static inline void btrfs_set_file_extent_type(struct btrfs_file_extent_item *e,
u8 val)
{
e->type = val;
}
static inline char *btrfs_file_extent_inline_start(struct
btrfs_file_extent_item *e)
{
return (char *)(&e->disk_bytenr);
}
static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
{
return (unsigned long)(&((struct
btrfs_file_extent_item *)NULL)->disk_bytenr) + datasize;
}
static inline u32 btrfs_file_extent_inline_len(struct btrfs_item *e)
{
struct btrfs_file_extent_item *fe = NULL;
return btrfs_item_size(e) - (unsigned long)(&fe->disk_bytenr);
}
static inline u64 btrfs_file_extent_disk_bytenr(struct btrfs_file_extent_item
*e)
{
return le64_to_cpu(e->disk_bytenr);
}
static inline void btrfs_set_file_extent_disk_bytenr(struct
btrfs_file_extent_item
*e, u64 val)
{
e->disk_bytenr = cpu_to_le64(val);
}
static inline u64 btrfs_file_extent_generation(struct btrfs_file_extent_item *e)
{
return le64_to_cpu(e->generation);
}
static inline void btrfs_set_file_extent_generation(struct
btrfs_file_extent_item *e,
u64 val)
{
e->generation = cpu_to_le64(val);
}
static inline u64 btrfs_file_extent_disk_num_bytes(struct
btrfs_file_extent_item *e)
{
return le64_to_cpu(e->disk_num_bytes);
}
static inline void btrfs_set_file_extent_disk_num_bytes(struct
btrfs_file_extent_item
*e, u64 val)
{
e->disk_num_bytes = cpu_to_le64(val);
}
static inline u64 btrfs_file_extent_offset(struct btrfs_file_extent_item *e)
{
return le64_to_cpu(e->offset);
}
static inline void btrfs_set_file_extent_offset(struct btrfs_file_extent_item
*e, u64 val)
{
e->offset = cpu_to_le64(val);
}
static inline u64 btrfs_file_extent_num_bytes(struct btrfs_file_extent_item
*e)
{
return le64_to_cpu(e->num_bytes);
}
static inline void btrfs_set_file_extent_num_bytes(struct
btrfs_file_extent_item *e,
u64 val)
{
e->num_bytes = cpu_to_le64(val);
}
/* helper function to cast into the data area of the leaf. */
#define btrfs_item_ptr(leaf, slot, type) \
((type *)(btrfs_leaf_data(leaf) + \
btrfs_item_offset((leaf)->items + (slot))))
static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
{
if (level == 0)
return root->leafsize;
return root->nodesize;
}
int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2);
int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, u32 data_size);
struct btrfs_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u32 blocksize);
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_buffer *buf);
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 bytenr, u64 num_bytes, int pin);
int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_path *p, int
ins_len, int cow);
void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p);
void btrfs_init_path(struct btrfs_path *p);
int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_path *path);
int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, void *data, u32 data_size);
int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, struct btrfs_key
*cpu_key, u32 data_size);
int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf);
int btrfs_drop_snapshot(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_buffer *snap);
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, struct
btrfs_root *root);
int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct btrfs_key *key);
int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_root_item
*item);
int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_key *key, struct btrfs_root_item
*item);
int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
btrfs_root_item *item, struct btrfs_key *key);
int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, char *name, int name_len, u64 dir,
struct btrfs_key *location, u8 type);
int btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, u64 dir, char *name,
int name_len, int mod);
int btrfs_match_dir_item_name(struct btrfs_root *root, struct btrfs_path *path,
char *name, int name_len);
int btrfs_find_free_objectid(struct btrfs_trans_handle *trans,
struct btrfs_root *fs_root,
u64 dirid, u64 *objectid);
int btrfs_insert_inode(struct btrfs_trans_handle *trans, struct btrfs_root
*root, u64 objectid, struct btrfs_inode_item
*inode_item);
int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
*root, struct btrfs_path *path, u64 objectid, int mod);
int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
struct btrfs_root *root);
int btrfs_free_block_groups(struct btrfs_fs_info *info);
int btrfs_read_block_groups(struct btrfs_root *root);
int btrfs_insert_block_group(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_key *key,
struct btrfs_block_group_item *bi);
#endif