btrfs-progs/utils.c
Axel Burri c5dc299aff btrfs-progs: prevent incorrect use of subvol_strip_mountpoint
Add additional bound checks to prevent memory corruption on incorrect
usage of subvol_strip_mountpoint. Assert sane return value by properly
comparing the mount point to the full_path before stripping it off.

Mitigates issue: "btrfs send -p" fails if source and parent subvolumes
are on different mountpoints (memory corruption):

    https://github.com/kdave/btrfs-progs/issues/96

Note that this does not properly fix this bug, but prevents a possible
security issue by unexpected usage of "btrfs send -p".

Issue: #96
Pull-request: #98
Signed-off-by: Axel Burri <axel@tty0.ch>
Signed-off-by: David Sterba <dsterba@suse.com>
2018-02-19 19:07:02 +01:00

2735 lines
58 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
* Copyright (C) 2008 Morey Roof. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <uuid/uuid.h>
#include <fcntl.h>
#include <unistd.h>
#include <mntent.h>
#include <ctype.h>
#include <linux/loop.h>
#include <linux/major.h>
#include <linux/kdev_t.h>
#include <limits.h>
#include <blkid/blkid.h>
#include <sys/vfs.h>
#include <sys/statfs.h>
#include <linux/magic.h>
#include <getopt.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "crc32c.h"
#include "utils.h"
#include "volumes.h"
#include "ioctl.h"
#include "commands.h"
#include "mkfs/common.h"
#ifndef BLKDISCARD
#define BLKDISCARD _IO(0x12,119)
#endif
static int btrfs_scan_done = 0;
static int rand_seed_initlized = 0;
static unsigned short rand_seed[3];
struct btrfs_config bconf;
/*
* Discard the given range in one go
*/
static int discard_range(int fd, u64 start, u64 len)
{
u64 range[2] = { start, len };
if (ioctl(fd, BLKDISCARD, &range) < 0)
return errno;
return 0;
}
/*
* Discard blocks in the given range in 1G chunks, the process is interruptible
*/
static int discard_blocks(int fd, u64 start, u64 len)
{
while (len > 0) {
/* 1G granularity */
u64 chunk_size = min_t(u64, len, SZ_1G);
int ret;
ret = discard_range(fd, start, chunk_size);
if (ret)
return ret;
len -= chunk_size;
start += chunk_size;
}
return 0;
}
int test_uuid_unique(char *fs_uuid)
{
int unique = 1;
blkid_dev_iterate iter = NULL;
blkid_dev dev = NULL;
blkid_cache cache = NULL;
if (blkid_get_cache(&cache, NULL) < 0) {
printf("ERROR: lblkid cache get failed\n");
return 1;
}
blkid_probe_all(cache);
iter = blkid_dev_iterate_begin(cache);
blkid_dev_set_search(iter, "UUID", fs_uuid);
while (blkid_dev_next(iter, &dev) == 0) {
dev = blkid_verify(cache, dev);
if (dev) {
unique = 0;
break;
}
}
blkid_dev_iterate_end(iter);
blkid_put_cache(cache);
return unique;
}
u64 btrfs_device_size(int fd, struct stat *st)
{
u64 size;
if (S_ISREG(st->st_mode)) {
return st->st_size;
}
if (!S_ISBLK(st->st_mode)) {
return 0;
}
if (ioctl(fd, BLKGETSIZE64, &size) >= 0) {
return size;
}
return 0;
}
static int zero_blocks(int fd, off_t start, size_t len)
{
char *buf = malloc(len);
int ret = 0;
ssize_t written;
if (!buf)
return -ENOMEM;
memset(buf, 0, len);
written = pwrite(fd, buf, len, start);
if (written != len)
ret = -EIO;
free(buf);
return ret;
}
#define ZERO_DEV_BYTES SZ_2M
/* don't write outside the device by clamping the region to the device size */
static int zero_dev_clamped(int fd, off_t start, ssize_t len, u64 dev_size)
{
off_t end = max(start, start + len);
#ifdef __sparc__
/* and don't overwrite the disk labels on sparc */
start = max(start, 1024);
end = max(end, 1024);
#endif
start = min_t(u64, start, dev_size);
end = min_t(u64, end, dev_size);
return zero_blocks(fd, start, end - start);
}
int btrfs_add_to_fsid(struct btrfs_trans_handle *trans,
struct btrfs_root *root, int fd, const char *path,
u64 device_total_bytes, u32 io_width, u32 io_align,
u32 sectorsize)
{
struct btrfs_super_block *disk_super;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_super_block *super = fs_info->super_copy;
struct btrfs_device *device;
struct btrfs_dev_item *dev_item;
char *buf = NULL;
u64 fs_total_bytes;
u64 num_devs;
int ret;
device_total_bytes = (device_total_bytes / sectorsize) * sectorsize;
device = calloc(1, sizeof(*device));
if (!device) {
ret = -ENOMEM;
goto out;
}
buf = calloc(1, sectorsize);
if (!buf) {
ret = -ENOMEM;
goto out;
}
disk_super = (struct btrfs_super_block *)buf;
dev_item = &disk_super->dev_item;
uuid_generate(device->uuid);
device->devid = 0;
device->type = 0;
device->io_width = io_width;
device->io_align = io_align;
device->sector_size = sectorsize;
device->fd = fd;
device->writeable = 1;
device->total_bytes = device_total_bytes;
device->bytes_used = 0;
device->total_ios = 0;
device->dev_root = fs_info->dev_root;
device->name = strdup(path);
if (!device->name) {
ret = -ENOMEM;
goto out;
}
INIT_LIST_HEAD(&device->dev_list);
ret = btrfs_add_device(trans, fs_info, device);
if (ret)
goto out;
fs_total_bytes = btrfs_super_total_bytes(super) + device_total_bytes;
btrfs_set_super_total_bytes(super, fs_total_bytes);
num_devs = btrfs_super_num_devices(super) + 1;
btrfs_set_super_num_devices(super, num_devs);
memcpy(disk_super, super, sizeof(*disk_super));
btrfs_set_super_bytenr(disk_super, BTRFS_SUPER_INFO_OFFSET);
btrfs_set_stack_device_id(dev_item, device->devid);
btrfs_set_stack_device_type(dev_item, device->type);
btrfs_set_stack_device_io_align(dev_item, device->io_align);
btrfs_set_stack_device_io_width(dev_item, device->io_width);
btrfs_set_stack_device_sector_size(dev_item, device->sector_size);
btrfs_set_stack_device_total_bytes(dev_item, device->total_bytes);
btrfs_set_stack_device_bytes_used(dev_item, device->bytes_used);
memcpy(&dev_item->uuid, device->uuid, BTRFS_UUID_SIZE);
ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET);
BUG_ON(ret != sectorsize);
free(buf);
list_add(&device->dev_list, &fs_info->fs_devices->devices);
device->fs_devices = fs_info->fs_devices;
return 0;
out:
free(device);
free(buf);
return ret;
}
static int btrfs_wipe_existing_sb(int fd)
{
const char *off = NULL;
size_t len = 0;
loff_t offset;
char buf[BUFSIZ];
int ret = 0;
blkid_probe pr = NULL;
pr = blkid_new_probe();
if (!pr)
return -1;
if (blkid_probe_set_device(pr, fd, 0, 0)) {
ret = -1;
goto out;
}
ret = blkid_probe_lookup_value(pr, "SBMAGIC_OFFSET", &off, NULL);
if (!ret)
ret = blkid_probe_lookup_value(pr, "SBMAGIC", NULL, &len);
if (ret || len == 0 || off == NULL) {
/*
* If lookup fails, the probe did not find any values, eg. for
* a file image or a loop device. Soft error.
*/
ret = 1;
goto out;
}
offset = strtoll(off, NULL, 10);
if (len > sizeof(buf))
len = sizeof(buf);
memset(buf, 0, len);
ret = pwrite(fd, buf, len, offset);
if (ret < 0) {
error("cannot wipe existing superblock: %m");
ret = -1;
} else if (ret != len) {
error("cannot wipe existing superblock: wrote %d of %zd", ret, len);
ret = -1;
}
fsync(fd);
out:
blkid_free_probe(pr);
return ret;
}
int btrfs_prepare_device(int fd, const char *file, u64 *block_count_ret,
u64 max_block_count, unsigned opflags)
{
u64 block_count;
struct stat st;
int i, ret;
ret = fstat(fd, &st);
if (ret < 0) {
error("unable to stat %s: %m", file);
return 1;
}
block_count = btrfs_device_size(fd, &st);
if (block_count == 0) {
error("unable to determine size of %s", file);
return 1;
}
if (max_block_count)
block_count = min(block_count, max_block_count);
if (opflags & PREP_DEVICE_DISCARD) {
/*
* We intentionally ignore errors from the discard ioctl. It
* is not necessary for the mkfs functionality but just an
* optimization.
*/
if (discard_range(fd, 0, 0) == 0) {
if (opflags & PREP_DEVICE_VERBOSE)
printf("Performing full device TRIM %s (%s) ...\n",
file, pretty_size(block_count));
discard_blocks(fd, 0, block_count);
}
}
ret = zero_dev_clamped(fd, 0, ZERO_DEV_BYTES, block_count);
for (i = 0 ; !ret && i < BTRFS_SUPER_MIRROR_MAX; i++)
ret = zero_dev_clamped(fd, btrfs_sb_offset(i),
BTRFS_SUPER_INFO_SIZE, block_count);
if (!ret && (opflags & PREP_DEVICE_ZERO_END))
ret = zero_dev_clamped(fd, block_count - ZERO_DEV_BYTES,
ZERO_DEV_BYTES, block_count);
if (ret < 0) {
error("failed to zero device '%s': %s", file, strerror(-ret));
return 1;
}
ret = btrfs_wipe_existing_sb(fd);
if (ret < 0) {
error("cannot wipe superblocks on %s", file);
return 1;
}
*block_count_ret = block_count;
return 0;
}
int btrfs_make_root_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid)
{
int ret;
struct btrfs_inode_item inode_item;
time_t now = time(NULL);
memset(&inode_item, 0, sizeof(inode_item));
btrfs_set_stack_inode_generation(&inode_item, trans->transid);
btrfs_set_stack_inode_size(&inode_item, 0);
btrfs_set_stack_inode_nlink(&inode_item, 1);
btrfs_set_stack_inode_nbytes(&inode_item, root->fs_info->nodesize);
btrfs_set_stack_inode_mode(&inode_item, S_IFDIR | 0755);
btrfs_set_stack_timespec_sec(&inode_item.atime, now);
btrfs_set_stack_timespec_nsec(&inode_item.atime, 0);
btrfs_set_stack_timespec_sec(&inode_item.ctime, now);
btrfs_set_stack_timespec_nsec(&inode_item.ctime, 0);
btrfs_set_stack_timespec_sec(&inode_item.mtime, now);
btrfs_set_stack_timespec_nsec(&inode_item.mtime, 0);
btrfs_set_stack_timespec_sec(&inode_item.otime, now);
btrfs_set_stack_timespec_nsec(&inode_item.otime, 0);
if (root->fs_info->tree_root == root)
btrfs_set_super_root_dir(root->fs_info->super_copy, objectid);
ret = btrfs_insert_inode(trans, root, objectid, &inode_item);
if (ret)
goto error;
ret = btrfs_insert_inode_ref(trans, root, "..", 2, objectid, objectid, 0);
if (ret)
goto error;
btrfs_set_root_dirid(&root->root_item, objectid);
ret = 0;
error:
return ret;
}
/*
* checks if a path is a block device node
* Returns negative errno on failure, otherwise
* returns 1 for blockdev, 0 for not-blockdev
*/
int is_block_device(const char *path)
{
struct stat statbuf;
if (stat(path, &statbuf) < 0)
return -errno;
return !!S_ISBLK(statbuf.st_mode);
}
/*
* check if given path is a mount point
* return 1 if yes. 0 if no. -1 for error
*/
int is_mount_point(const char *path)
{
FILE *f;
struct mntent *mnt;
int ret = 0;
f = setmntent("/proc/self/mounts", "r");
if (f == NULL)
return -1;
while ((mnt = getmntent(f)) != NULL) {
if (strcmp(mnt->mnt_dir, path))
continue;
ret = 1;
break;
}
endmntent(f);
return ret;
}
int is_reg_file(const char *path)
{
struct stat statbuf;
if (stat(path, &statbuf) < 0)
return -errno;
return S_ISREG(statbuf.st_mode);
}
int is_path_exist(const char *path)
{
struct stat statbuf;
int ret;
ret = stat(path, &statbuf);
if (ret < 0) {
if (errno == ENOENT)
return 0;
else
return -errno;
}
return 1;
}
/*
* This function checks if the given input parameter is
* an uuid or a path
* return <0 : some error in the given input
* return BTRFS_ARG_UNKNOWN: unknown input
* return BTRFS_ARG_UUID: given input is uuid
* return BTRFS_ARG_MNTPOINT: given input is path
* return BTRFS_ARG_REG: given input is regular file
* return BTRFS_ARG_BLKDEV: given input is block device
*/
int check_arg_type(const char *input)
{
uuid_t uuid;
char path[PATH_MAX];
if (!input)
return -EINVAL;
if (realpath(input, path)) {
if (is_block_device(path) == 1)
return BTRFS_ARG_BLKDEV;
if (is_mount_point(path) == 1)
return BTRFS_ARG_MNTPOINT;
if (is_reg_file(path))
return BTRFS_ARG_REG;
return BTRFS_ARG_UNKNOWN;
}
if (strlen(input) == (BTRFS_UUID_UNPARSED_SIZE - 1) &&
!uuid_parse(input, uuid))
return BTRFS_ARG_UUID;
return BTRFS_ARG_UNKNOWN;
}
/*
* Find the mount point for a mounted device.
* On success, returns 0 with mountpoint in *mp.
* On failure, returns -errno (not mounted yields -EINVAL)
* Is noisy on failures, expects to be given a mounted device.
*/
int get_btrfs_mount(const char *dev, char *mp, size_t mp_size)
{
int ret;
int fd = -1;
ret = is_block_device(dev);
if (ret <= 0) {
if (!ret) {
error("not a block device: %s", dev);
ret = -EINVAL;
} else {
error("cannot check %s: %s", dev, strerror(-ret));
}
goto out;
}
fd = open(dev, O_RDONLY);
if (fd < 0) {
ret = -errno;
error("cannot open %s: %m", dev);
goto out;
}
ret = check_mounted_where(fd, dev, mp, mp_size, NULL);
if (!ret) {
ret = -EINVAL;
} else { /* mounted, all good */
ret = 0;
}
out:
if (fd != -1)
close(fd);
return ret;
}
/*
* Given a pathname, return a filehandle to:
* the original pathname or,
* if the pathname is a mounted btrfs device, to its mountpoint.
*
* On error, return -1, errno should be set.
*/
int open_path_or_dev_mnt(const char *path, DIR **dirstream, int verbose)
{
char mp[PATH_MAX];
int ret;
if (is_block_device(path)) {
ret = get_btrfs_mount(path, mp, sizeof(mp));
if (ret < 0) {
/* not a mounted btrfs dev */
error_on(verbose, "'%s' is not a mounted btrfs device",
path);
errno = EINVAL;
return -1;
}
ret = open_file_or_dir(mp, dirstream);
error_on(verbose && ret < 0, "can't access '%s': %m",
path);
} else {
ret = btrfs_open_dir(path, dirstream, 1);
}
return ret;
}
/*
* Do the following checks before calling open_file_or_dir():
* 1: path is in a btrfs filesystem
* 2: path is a directory if dir_only is 1
*/
int btrfs_open(const char *path, DIR **dirstream, int verbose, int dir_only)
{
struct statfs stfs;
struct stat st;
int ret;
if (statfs(path, &stfs) != 0) {
error_on(verbose, "cannot access '%s': %m", path);
return -1;
}
if (stfs.f_type != BTRFS_SUPER_MAGIC) {
error_on(verbose, "not a btrfs filesystem: %s", path);
return -2;
}
if (stat(path, &st) != 0) {
error_on(verbose, "cannot access '%s': %m", path);
return -1;
}
if (dir_only && !S_ISDIR(st.st_mode)) {
error_on(verbose, "not a directory: %s", path);
return -3;
}
ret = open_file_or_dir(path, dirstream);
if (ret < 0) {
error_on(verbose, "cannot access '%s': %m", path);
}
return ret;
}
int btrfs_open_dir(const char *path, DIR **dirstream, int verbose)
{
return btrfs_open(path, dirstream, verbose, 1);
}
int btrfs_open_file_or_dir(const char *path, DIR **dirstream, int verbose)
{
return btrfs_open(path, dirstream, verbose, 0);
}
/* checks if a device is a loop device */
static int is_loop_device (const char* device) {
struct stat statbuf;
if(stat(device, &statbuf) < 0)
return -errno;
return (S_ISBLK(statbuf.st_mode) &&
MAJOR(statbuf.st_rdev) == LOOP_MAJOR);
}
/*
* Takes a loop device path (e.g. /dev/loop0) and returns
* the associated file (e.g. /images/my_btrfs.img) using
* loopdev API
*/
static int resolve_loop_device_with_loopdev(const char* loop_dev, char* loop_file)
{
int fd;
int ret;
struct loop_info64 lo64;
fd = open(loop_dev, O_RDONLY | O_NONBLOCK);
if (fd < 0)
return -errno;
ret = ioctl(fd, LOOP_GET_STATUS64, &lo64);
if (ret < 0) {
ret = -errno;
goto out;
}
memcpy(loop_file, lo64.lo_file_name, sizeof(lo64.lo_file_name));
loop_file[sizeof(lo64.lo_file_name)] = 0;
out:
close(fd);
return ret;
}
/* Takes a loop device path (e.g. /dev/loop0) and returns
* the associated file (e.g. /images/my_btrfs.img) */
static int resolve_loop_device(const char* loop_dev, char* loop_file,
int max_len)
{
int ret;
FILE *f;
char fmt[20];
char p[PATH_MAX];
char real_loop_dev[PATH_MAX];
if (!realpath(loop_dev, real_loop_dev))
return -errno;
snprintf(p, PATH_MAX, "/sys/block/%s/loop/backing_file", strrchr(real_loop_dev, '/'));
if (!(f = fopen(p, "r"))) {
if (errno == ENOENT)
/*
* It's possibly a partitioned loop device, which is
* resolvable with loopdev API.
*/
return resolve_loop_device_with_loopdev(loop_dev, loop_file);
return -errno;
}
snprintf(fmt, 20, "%%%i[^\n]", max_len-1);
ret = fscanf(f, fmt, loop_file);
fclose(f);
if (ret == EOF)
return -errno;
return 0;
}
/*
* Checks whether a and b are identical or device
* files associated with the same block device
*/
static int is_same_blk_file(const char* a, const char* b)
{
struct stat st_buf_a, st_buf_b;
char real_a[PATH_MAX];
char real_b[PATH_MAX];
if (!realpath(a, real_a))
strncpy_null(real_a, a);
if (!realpath(b, real_b))
strncpy_null(real_b, b);
/* Identical path? */
if (strcmp(real_a, real_b) == 0)
return 1;
if (stat(a, &st_buf_a) < 0 || stat(b, &st_buf_b) < 0) {
if (errno == ENOENT)
return 0;
return -errno;
}
/* Same blockdevice? */
if (S_ISBLK(st_buf_a.st_mode) && S_ISBLK(st_buf_b.st_mode) &&
st_buf_a.st_rdev == st_buf_b.st_rdev) {
return 1;
}
/* Hardlink? */
if (st_buf_a.st_dev == st_buf_b.st_dev &&
st_buf_a.st_ino == st_buf_b.st_ino) {
return 1;
}
return 0;
}
/* checks if a and b are identical or device
* files associated with the same block device or
* if one file is a loop device that uses the other
* file.
*/
static int is_same_loop_file(const char* a, const char* b)
{
char res_a[PATH_MAX];
char res_b[PATH_MAX];
const char* final_a = NULL;
const char* final_b = NULL;
int ret;
/* Resolve a if it is a loop device */
if((ret = is_loop_device(a)) < 0) {
if (ret == -ENOENT)
return 0;
return ret;
} else if (ret) {
ret = resolve_loop_device(a, res_a, sizeof(res_a));
if (ret < 0) {
if (errno != EPERM)
return ret;
} else {
final_a = res_a;
}
} else {
final_a = a;
}
/* Resolve b if it is a loop device */
if ((ret = is_loop_device(b)) < 0) {
if (ret == -ENOENT)
return 0;
return ret;
} else if (ret) {
ret = resolve_loop_device(b, res_b, sizeof(res_b));
if (ret < 0) {
if (errno != EPERM)
return ret;
} else {
final_b = res_b;
}
} else {
final_b = b;
}
return is_same_blk_file(final_a, final_b);
}
/* Checks if a file exists and is a block or regular file*/
static int is_existing_blk_or_reg_file(const char* filename)
{
struct stat st_buf;
if(stat(filename, &st_buf) < 0) {
if(errno == ENOENT)
return 0;
else
return -errno;
}
return (S_ISBLK(st_buf.st_mode) || S_ISREG(st_buf.st_mode));
}
/* Checks if a file is used (directly or indirectly via a loop device)
* by a device in fs_devices
*/
static int blk_file_in_dev_list(struct btrfs_fs_devices* fs_devices,
const char* file)
{
int ret;
struct btrfs_device *device;
list_for_each_entry(device, &fs_devices->devices, dev_list) {
if((ret = is_same_loop_file(device->name, file)))
return ret;
}
return 0;
}
/*
* Resolve a pathname to a device mapper node to /dev/mapper/<name>
* Returns NULL on invalid input or malloc failure; Other failures
* will be handled by the caller using the input pathame.
*/
char *canonicalize_dm_name(const char *ptname)
{
FILE *f;
size_t sz;
char path[PATH_MAX], name[PATH_MAX], *res = NULL;
if (!ptname || !*ptname)
return NULL;
snprintf(path, sizeof(path), "/sys/block/%s/dm/name", ptname);
if (!(f = fopen(path, "r")))
return NULL;
/* read <name>\n from sysfs */
if (fgets(name, sizeof(name), f) && (sz = strlen(name)) > 1) {
name[sz - 1] = '\0';
snprintf(path, sizeof(path), "/dev/mapper/%s", name);
if (access(path, F_OK) == 0)
res = strdup(path);
}
fclose(f);
return res;
}
/*
* Resolve a pathname to a canonical device node, e.g. /dev/sda1 or
* to a device mapper pathname.
* Returns NULL on invalid input or malloc failure; Other failures
* will be handled by the caller using the input pathame.
*/
char *canonicalize_path(const char *path)
{
char *canonical, *p;
if (!path || !*path)
return NULL;
canonical = realpath(path, NULL);
if (!canonical)
return strdup(path);
p = strrchr(canonical, '/');
if (p && strncmp(p, "/dm-", 4) == 0 && isdigit(*(p + 4))) {
char *dm = canonicalize_dm_name(p + 1);
if (dm) {
free(canonical);
return dm;
}
}
return canonical;
}
/*
* returns 1 if the device was mounted, < 0 on error or 0 if everything
* is safe to continue.
*/
int check_mounted(const char* file)
{
int fd;
int ret;
fd = open(file, O_RDONLY);
if (fd < 0) {
error("mount check: cannot open %s: %m", file);
return -errno;
}
ret = check_mounted_where(fd, file, NULL, 0, NULL);
close(fd);
return ret;
}
int check_mounted_where(int fd, const char *file, char *where, int size,
struct btrfs_fs_devices **fs_dev_ret)
{
int ret;
u64 total_devs = 1;
int is_btrfs;
struct btrfs_fs_devices *fs_devices_mnt = NULL;
FILE *f;
struct mntent *mnt;
/* scan the initial device */
ret = btrfs_scan_one_device(fd, file, &fs_devices_mnt,
&total_devs, BTRFS_SUPER_INFO_OFFSET, SBREAD_DEFAULT);
is_btrfs = (ret >= 0);
/* scan other devices */
if (is_btrfs && total_devs > 1) {
ret = btrfs_scan_devices();
if (ret)
return ret;
}
/* iterate over the list of currently mounted filesystems */
if ((f = setmntent ("/proc/self/mounts", "r")) == NULL)
return -errno;
while ((mnt = getmntent (f)) != NULL) {
if(is_btrfs) {
if(strcmp(mnt->mnt_type, "btrfs") != 0)
continue;
ret = blk_file_in_dev_list(fs_devices_mnt, mnt->mnt_fsname);
} else {
/* ignore entries in the mount table that are not
associated with a file*/
if((ret = is_existing_blk_or_reg_file(mnt->mnt_fsname)) < 0)
goto out_mntloop_err;
else if(!ret)
continue;
ret = is_same_loop_file(file, mnt->mnt_fsname);
}
if(ret < 0)
goto out_mntloop_err;
else if(ret)
break;
}
/* Did we find an entry in mnt table? */
if (mnt && size && where) {
strncpy(where, mnt->mnt_dir, size);
where[size-1] = 0;
}
if (fs_dev_ret)
*fs_dev_ret = fs_devices_mnt;
ret = (mnt != NULL);
out_mntloop_err:
endmntent (f);
return ret;
}
struct pending_dir {
struct list_head list;
char name[PATH_MAX];
};
int btrfs_register_one_device(const char *fname)
{
struct btrfs_ioctl_vol_args args;
int fd;
int ret;
fd = open("/dev/btrfs-control", O_RDWR);
if (fd < 0) {
warning(
"failed to open /dev/btrfs-control, skipping device registration: %m");
return -errno;
}
memset(&args, 0, sizeof(args));
strncpy_null(args.name, fname);
ret = ioctl(fd, BTRFS_IOC_SCAN_DEV, &args);
if (ret < 0) {
error("device scan failed on '%s': %m", fname);
ret = -errno;
}
close(fd);
return ret;
}
/*
* Register all devices in the fs_uuid list created in the user
* space. Ensure btrfs_scan_devices() is called before this func.
*/
int btrfs_register_all_devices(void)
{
int err = 0;
int ret = 0;
struct btrfs_fs_devices *fs_devices;
struct btrfs_device *device;
struct list_head *all_uuids;
all_uuids = btrfs_scanned_uuids();
list_for_each_entry(fs_devices, all_uuids, list) {
list_for_each_entry(device, &fs_devices->devices, dev_list) {
if (*device->name)
err = btrfs_register_one_device(device->name);
if (err)
ret++;
}
}
return ret;
}
int btrfs_device_already_in_root(struct btrfs_root *root, int fd,
int super_offset)
{
struct btrfs_super_block *disk_super;
char *buf;
int ret = 0;
buf = malloc(BTRFS_SUPER_INFO_SIZE);
if (!buf) {
ret = -ENOMEM;
goto out;
}
ret = pread(fd, buf, BTRFS_SUPER_INFO_SIZE, super_offset);
if (ret != BTRFS_SUPER_INFO_SIZE)
goto brelse;
ret = 0;
disk_super = (struct btrfs_super_block *)buf;
/*
* Accept devices from the same filesystem, allow partially created
* structures.
*/
if (btrfs_super_magic(disk_super) != BTRFS_MAGIC &&
btrfs_super_magic(disk_super) != BTRFS_MAGIC_PARTIAL)
goto brelse;
if (!memcmp(disk_super->fsid, root->fs_info->super_copy->fsid,
BTRFS_FSID_SIZE))
ret = 1;
brelse:
free(buf);
out:
return ret;
}
/*
* Note: this function uses a static per-thread buffer. Do not call this
* function more than 10 times within one argument list!
*/
const char *pretty_size_mode(u64 size, unsigned mode)
{
static __thread int ps_index = 0;
static __thread char ps_array[10][32];
char *ret;
ret = ps_array[ps_index];
ps_index++;
ps_index %= 10;
(void)pretty_size_snprintf(size, ret, 32, mode);
return ret;
}
static const char* unit_suffix_binary[] =
{ "B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB"};
static const char* unit_suffix_decimal[] =
{ "B", "kB", "MB", "GB", "TB", "PB", "EB"};
int pretty_size_snprintf(u64 size, char *str, size_t str_size, unsigned unit_mode)
{
int num_divs;
float fraction;
u64 base = 0;
int mult = 0;
const char** suffix = NULL;
u64 last_size;
int negative;
if (str_size == 0)
return 0;
negative = !!(unit_mode & UNITS_NEGATIVE);
unit_mode &= ~UNITS_NEGATIVE;
if ((unit_mode & ~UNITS_MODE_MASK) == UNITS_RAW) {
if (negative)
snprintf(str, str_size, "%lld", size);
else
snprintf(str, str_size, "%llu", size);
return 0;
}
if ((unit_mode & ~UNITS_MODE_MASK) == UNITS_BINARY) {
base = 1024;
mult = 1024;
suffix = unit_suffix_binary;
} else if ((unit_mode & ~UNITS_MODE_MASK) == UNITS_DECIMAL) {
base = 1000;
mult = 1000;
suffix = unit_suffix_decimal;
}
/* Unknown mode */
if (!base) {
fprintf(stderr, "INTERNAL ERROR: unknown unit base, mode %d\n",
unit_mode);
assert(0);
return -1;
}
num_divs = 0;
last_size = size;
switch (unit_mode & UNITS_MODE_MASK) {
case UNITS_TBYTES: base *= mult; num_divs++;
case UNITS_GBYTES: base *= mult; num_divs++;
case UNITS_MBYTES: base *= mult; num_divs++;
case UNITS_KBYTES: num_divs++;
break;
case UNITS_BYTES:
base = 1;
num_divs = 0;
break;
default:
if (negative) {
s64 ssize = (s64)size;
s64 last_ssize = ssize;
while ((ssize < 0 ? -ssize : ssize) >= mult) {
last_ssize = ssize;
ssize /= mult;
num_divs++;
}
last_size = (u64)last_ssize;
} else {
while (size >= mult) {
last_size = size;
size /= mult;
num_divs++;
}
}
/*
* If the value is smaller than base, we didn't do any
* division, in that case, base should be 1, not original
* base, or the unit will be wrong
*/
if (num_divs == 0)
base = 1;
}
if (num_divs >= ARRAY_SIZE(unit_suffix_binary)) {
str[0] = '\0';
printf("INTERNAL ERROR: unsupported unit suffix, index %d\n",
num_divs);
assert(0);
return -1;
}
if (negative) {
fraction = (float)(s64)last_size / base;
} else {
fraction = (float)last_size / base;
}
return snprintf(str, str_size, "%.2f%s", fraction, suffix[num_divs]);
}
/*
* __strncpy_null - strncpy with null termination
* @dest: the target array
* @src: the source string
* @n: maximum bytes to copy (size of *dest)
*
* Like strncpy, but ensures destination is null-terminated.
*
* Copies the string pointed to by src, including the terminating null
* byte ('\0'), to the buffer pointed to by dest, up to a maximum
* of n bytes. Then ensure that dest is null-terminated.
*/
char *__strncpy_null(char *dest, const char *src, size_t n)
{
strncpy(dest, src, n);
if (n > 0)
dest[n - 1] = '\0';
return dest;
}
/*
* Checks to make sure that the label matches our requirements.
* Returns:
0 if everything is safe and usable
-1 if the label is too long
*/
static int check_label(const char *input)
{
int len = strlen(input);
if (len > BTRFS_LABEL_SIZE - 1) {
error("label %s is too long (max %d)", input,
BTRFS_LABEL_SIZE - 1);
return -1;
}
return 0;
}
static int set_label_unmounted(const char *dev, const char *label)
{
struct btrfs_trans_handle *trans;
struct btrfs_root *root;
int ret;
ret = check_mounted(dev);
if (ret < 0) {
error("checking mount status of %s failed: %d", dev, ret);
return -1;
}
if (ret > 0) {
error("device %s is mounted, use mount point", dev);
return -1;
}
/* Open the super_block at the default location
* and as read-write.
*/
root = open_ctree(dev, 0, OPEN_CTREE_WRITES);
if (!root) /* errors are printed by open_ctree() */
return -1;
trans = btrfs_start_transaction(root, 1);
BUG_ON(IS_ERR(trans));
__strncpy_null(root->fs_info->super_copy->label, label, BTRFS_LABEL_SIZE - 1);
btrfs_commit_transaction(trans, root);
/* Now we close it since we are done. */
close_ctree(root);
return 0;
}
static int set_label_mounted(const char *mount_path, const char *labelp)
{
int fd;
char label[BTRFS_LABEL_SIZE];
fd = open(mount_path, O_RDONLY | O_NOATIME);
if (fd < 0) {
error("unable to access %s: %m", mount_path);
return -1;
}
memset(label, 0, sizeof(label));
__strncpy_null(label, labelp, BTRFS_LABEL_SIZE - 1);
if (ioctl(fd, BTRFS_IOC_SET_FSLABEL, label) < 0) {
error("unable to set label of %s: %m", mount_path);
close(fd);
return -1;
}
close(fd);
return 0;
}
int get_label_unmounted(const char *dev, char *label)
{
struct btrfs_root *root;
int ret;
ret = check_mounted(dev);
if (ret < 0) {
error("checking mount status of %s failed: %d", dev, ret);
return -1;
}
/* Open the super_block at the default location
* and as read-only.
*/
root = open_ctree(dev, 0, 0);
if(!root)
return -1;
__strncpy_null(label, root->fs_info->super_copy->label,
BTRFS_LABEL_SIZE - 1);
/* Now we close it since we are done. */
close_ctree(root);
return 0;
}
/*
* If a partition is mounted, try to get the filesystem label via its
* mounted path rather than device. Return the corresponding error
* the user specified the device path.
*/
int get_label_mounted(const char *mount_path, char *labelp)
{
char label[BTRFS_LABEL_SIZE];
int fd;
int ret;
fd = open(mount_path, O_RDONLY | O_NOATIME);
if (fd < 0) {
error("unable to access %s: %m", mount_path);
return -1;
}
memset(label, '\0', sizeof(label));
ret = ioctl(fd, BTRFS_IOC_GET_FSLABEL, label);
if (ret < 0) {
if (errno != ENOTTY)
error("unable to get label of %s: %m", mount_path);
ret = -errno;
close(fd);
return ret;
}
__strncpy_null(labelp, label, BTRFS_LABEL_SIZE - 1);
close(fd);
return 0;
}
int get_label(const char *btrfs_dev, char *label)
{
int ret;
ret = is_existing_blk_or_reg_file(btrfs_dev);
if (!ret)
ret = get_label_mounted(btrfs_dev, label);
else if (ret > 0)
ret = get_label_unmounted(btrfs_dev, label);
return ret;
}
int set_label(const char *btrfs_dev, const char *label)
{
int ret;
if (check_label(label))
return -1;
ret = is_existing_blk_or_reg_file(btrfs_dev);
if (!ret)
ret = set_label_mounted(btrfs_dev, label);
else if (ret > 0)
ret = set_label_unmounted(btrfs_dev, label);
return ret;
}
/*
* A not-so-good version fls64. No fascinating optimization since
* no one except parse_size use it
*/
static int fls64(u64 x)
{
int i;
for (i = 0; i <64; i++)
if (x << i & (1ULL << 63))
return 64 - i;
return 64 - i;
}
u64 parse_size(char *s)
{
char c;
char *endptr;
u64 mult = 1;
u64 ret;
if (!s) {
error("size value is empty");
exit(1);
}
if (s[0] == '-') {
error("size value '%s' is less equal than 0", s);
exit(1);
}
ret = strtoull(s, &endptr, 10);
if (endptr == s) {
error("size value '%s' is invalid", s);
exit(1);
}
if (endptr[0] && endptr[1]) {
error("illegal suffix contains character '%c' in wrong position",
endptr[1]);
exit(1);
}
/*
* strtoll returns LLONG_MAX when overflow, if this happens,
* need to call strtoull to get the real size
*/
if (errno == ERANGE && ret == ULLONG_MAX) {
error("size value '%s' is too large for u64", s);
exit(1);
}
if (endptr[0]) {
c = tolower(endptr[0]);
switch (c) {
case 'e':
mult *= 1024;
/* fallthrough */
case 'p':
mult *= 1024;
/* fallthrough */
case 't':
mult *= 1024;
/* fallthrough */
case 'g':
mult *= 1024;
/* fallthrough */
case 'm':
mult *= 1024;
/* fallthrough */
case 'k':
mult *= 1024;
/* fallthrough */
case 'b':
break;
default:
error("unknown size descriptor '%c'", c);
exit(1);
}
}
/* Check whether ret * mult overflow */
if (fls64(ret) + fls64(mult) - 1 > 64) {
error("size value '%s' is too large for u64", s);
exit(1);
}
ret *= mult;
return ret;
}
u64 parse_qgroupid(const char *p)
{
char *s = strchr(p, '/');
const char *ptr_src_end = p + strlen(p);
char *ptr_parse_end = NULL;
u64 level;
u64 id;
int fd;
int ret = 0;
if (p[0] == '/')
goto path;
/* Numeric format like '0/257' is the primary case */
if (!s) {
id = strtoull(p, &ptr_parse_end, 10);
if (ptr_parse_end != ptr_src_end)
goto path;
return id;
}
level = strtoull(p, &ptr_parse_end, 10);
if (ptr_parse_end != s)
goto path;
id = strtoull(s + 1, &ptr_parse_end, 10);
if (ptr_parse_end != ptr_src_end)
goto path;
return (level << BTRFS_QGROUP_LEVEL_SHIFT) | id;
path:
/* Path format like subv at 'my_subvol' is the fallback case */
ret = test_issubvolume(p);
if (ret < 0 || !ret)
goto err;
fd = open(p, O_RDONLY);
if (fd < 0)
goto err;
ret = lookup_path_rootid(fd, &id);
if (ret)
error("failed to lookup root id: %s", strerror(-ret));
close(fd);
if (ret < 0)
goto err;
return id;
err:
error("invalid qgroupid or subvolume path: %s", p);
exit(-1);
}
int open_file_or_dir3(const char *fname, DIR **dirstream, int open_flags)
{
int ret;
struct stat st;
int fd;
ret = stat(fname, &st);
if (ret < 0) {
return -1;
}
if (S_ISDIR(st.st_mode)) {
*dirstream = opendir(fname);
if (!*dirstream)
return -1;
fd = dirfd(*dirstream);
} else if (S_ISREG(st.st_mode) || S_ISLNK(st.st_mode)) {
fd = open(fname, open_flags);
} else {
/*
* we set this on purpose, in case the caller output
* strerror(errno) as success
*/
errno = EINVAL;
return -1;
}
if (fd < 0) {
fd = -1;
if (*dirstream) {
closedir(*dirstream);
*dirstream = NULL;
}
}
return fd;
}
int open_file_or_dir(const char *fname, DIR **dirstream)
{
return open_file_or_dir3(fname, dirstream, O_RDWR);
}
void close_file_or_dir(int fd, DIR *dirstream)
{
int old_errno;
old_errno = errno;
if (dirstream) {
closedir(dirstream);
} else if (fd >= 0) {
close(fd);
}
errno = old_errno;
}
int get_device_info(int fd, u64 devid,
struct btrfs_ioctl_dev_info_args *di_args)
{
int ret;
di_args->devid = devid;
memset(&di_args->uuid, '\0', sizeof(di_args->uuid));
ret = ioctl(fd, BTRFS_IOC_DEV_INFO, di_args);
return ret < 0 ? -errno : 0;
}
static u64 find_max_device_id(struct btrfs_ioctl_search_args *search_args,
int nr_items)
{
struct btrfs_dev_item *dev_item;
char *buf = search_args->buf;
buf += (nr_items - 1) * (sizeof(struct btrfs_ioctl_search_header)
+ sizeof(struct btrfs_dev_item));
buf += sizeof(struct btrfs_ioctl_search_header);
dev_item = (struct btrfs_dev_item *)buf;
return btrfs_stack_device_id(dev_item);
}
static int search_chunk_tree_for_fs_info(int fd,
struct btrfs_ioctl_fs_info_args *fi_args)
{
int ret;
int max_items;
u64 start_devid = 1;
struct btrfs_ioctl_search_args search_args;
struct btrfs_ioctl_search_key *search_key = &search_args.key;
fi_args->num_devices = 0;
max_items = BTRFS_SEARCH_ARGS_BUFSIZE
/ (sizeof(struct btrfs_ioctl_search_header)
+ sizeof(struct btrfs_dev_item));
search_key->tree_id = BTRFS_CHUNK_TREE_OBJECTID;
search_key->min_objectid = BTRFS_DEV_ITEMS_OBJECTID;
search_key->max_objectid = BTRFS_DEV_ITEMS_OBJECTID;
search_key->min_type = BTRFS_DEV_ITEM_KEY;
search_key->max_type = BTRFS_DEV_ITEM_KEY;
search_key->min_transid = 0;
search_key->max_transid = (u64)-1;
search_key->nr_items = max_items;
search_key->max_offset = (u64)-1;
again:
search_key->min_offset = start_devid;
ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &search_args);
if (ret < 0)
return -errno;
fi_args->num_devices += (u64)search_key->nr_items;
if (search_key->nr_items == max_items) {
start_devid = find_max_device_id(&search_args,
search_key->nr_items) + 1;
goto again;
}
/* get the lastest max_id to stay consistent with the num_devices */
if (search_key->nr_items == 0)
/*
* last tree_search returns an empty buf, use the devid of
* the last dev_item of the previous tree_search
*/
fi_args->max_id = start_devid - 1;
else
fi_args->max_id = find_max_device_id(&search_args,
search_key->nr_items);
return 0;
}
/*
* For a given path, fill in the ioctl fs_ and info_ args.
* If the path is a btrfs mountpoint, fill info for all devices.
* If the path is a btrfs device, fill in only that device.
*
* The path provided must be either on a mounted btrfs fs,
* or be a mounted btrfs device.
*
* Returns 0 on success, or a negative errno.
*/
int get_fs_info(const char *path, struct btrfs_ioctl_fs_info_args *fi_args,
struct btrfs_ioctl_dev_info_args **di_ret)
{
int fd = -1;
int ret = 0;
int ndevs = 0;
u64 last_devid = 0;
int replacing = 0;
struct btrfs_fs_devices *fs_devices_mnt = NULL;
struct btrfs_ioctl_dev_info_args *di_args;
struct btrfs_ioctl_dev_info_args tmp;
char mp[PATH_MAX];
DIR *dirstream = NULL;
memset(fi_args, 0, sizeof(*fi_args));
if (is_block_device(path) == 1) {
struct btrfs_super_block *disk_super;
char buf[BTRFS_SUPER_INFO_SIZE];
/* Ensure it's mounted, then set path to the mountpoint */
fd = open(path, O_RDONLY);
if (fd < 0) {
ret = -errno;
error("cannot open %s: %m", path);
goto out;
}
ret = check_mounted_where(fd, path, mp, sizeof(mp),
&fs_devices_mnt);
if (!ret) {
ret = -EINVAL;
goto out;
}
if (ret < 0)
goto out;
path = mp;
/* Only fill in this one device */
fi_args->num_devices = 1;
disk_super = (struct btrfs_super_block *)buf;
ret = btrfs_read_dev_super(fd, disk_super,
BTRFS_SUPER_INFO_OFFSET, 0);
if (ret < 0) {
ret = -EIO;
goto out;
}
last_devid = btrfs_stack_device_id(&disk_super->dev_item);
fi_args->max_id = last_devid;
memcpy(fi_args->fsid, fs_devices_mnt->fsid, BTRFS_FSID_SIZE);
close(fd);
}
/* at this point path must not be for a block device */
fd = open_file_or_dir(path, &dirstream);
if (fd < 0) {
ret = -errno;
goto out;
}
/* fill in fi_args if not just a single device */
if (fi_args->num_devices != 1) {
ret = ioctl(fd, BTRFS_IOC_FS_INFO, fi_args);
if (ret < 0) {
ret = -errno;
goto out;
}
/*
* The fs_args->num_devices does not include seed devices
*/
ret = search_chunk_tree_for_fs_info(fd, fi_args);
if (ret)
goto out;
/*
* search_chunk_tree_for_fs_info() will lacks the devid 0
* so manual probe for it here.
*/
ret = get_device_info(fd, 0, &tmp);
if (!ret) {
fi_args->num_devices++;
ndevs++;
replacing = 1;
if (last_devid == 0)
last_devid++;
}
}
if (!fi_args->num_devices)
goto out;
di_args = *di_ret = malloc((fi_args->num_devices) * sizeof(*di_args));
if (!di_args) {
ret = -errno;
goto out;
}
if (replacing)
memcpy(di_args, &tmp, sizeof(tmp));
for (; last_devid <= fi_args->max_id; last_devid++) {
ret = get_device_info(fd, last_devid, &di_args[ndevs]);
if (ret == -ENODEV)
continue;
if (ret)
goto out;
ndevs++;
}
/*
* only when the only dev we wanted to find is not there then
* let any error be returned
*/
if (fi_args->num_devices != 1) {
BUG_ON(ndevs == 0);
ret = 0;
}
out:
close_file_or_dir(fd, dirstream);
return ret;
}
int get_fsid(const char *path, u8 *fsid, int silent)
{
int ret;
int fd;
struct btrfs_ioctl_fs_info_args args;
fd = open(path, O_RDONLY);
if (fd < 0) {
ret = -errno;
if (!silent)
error("failed to open %s: %s", path,
strerror(-ret));
goto out;
}
ret = ioctl(fd, BTRFS_IOC_FS_INFO, &args);
if (ret < 0) {
ret = -errno;
goto out;
}
memcpy(fsid, args.fsid, BTRFS_FSID_SIZE);
ret = 0;
out:
if (fd != -1)
close(fd);
return ret;
}
int is_seen_fsid(u8 *fsid, struct seen_fsid *seen_fsid_hash[])
{
u8 hash = fsid[0];
int slot = hash % SEEN_FSID_HASH_SIZE;
struct seen_fsid *seen = seen_fsid_hash[slot];
while (seen) {
if (memcmp(seen->fsid, fsid, BTRFS_FSID_SIZE) == 0)
return 1;
seen = seen->next;
}
return 0;
}
int add_seen_fsid(u8 *fsid, struct seen_fsid *seen_fsid_hash[],
int fd, DIR *dirstream)
{
u8 hash = fsid[0];
int slot = hash % SEEN_FSID_HASH_SIZE;
struct seen_fsid *seen = seen_fsid_hash[slot];
struct seen_fsid *alloc;
if (!seen)
goto insert;
while (1) {
if (memcmp(seen->fsid, fsid, BTRFS_FSID_SIZE) == 0)
return -EEXIST;
if (!seen->next)
break;
seen = seen->next;
}
insert:
alloc = malloc(sizeof(*alloc));
if (!alloc)
return -ENOMEM;
alloc->next = NULL;
memcpy(alloc->fsid, fsid, BTRFS_FSID_SIZE);
alloc->fd = fd;
alloc->dirstream = dirstream;
if (seen)
seen->next = alloc;
else
seen_fsid_hash[slot] = alloc;
return 0;
}
void free_seen_fsid(struct seen_fsid *seen_fsid_hash[])
{
int slot;
struct seen_fsid *seen;
struct seen_fsid *next;
for (slot = 0; slot < SEEN_FSID_HASH_SIZE; slot++) {
seen = seen_fsid_hash[slot];
while (seen) {
next = seen->next;
close_file_or_dir(seen->fd, seen->dirstream);
free(seen);
seen = next;
}
seen_fsid_hash[slot] = NULL;
}
}
static int group_profile_devs_min(u64 flag)
{
switch (flag & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
case 0: /* single */
case BTRFS_BLOCK_GROUP_DUP:
return 1;
case BTRFS_BLOCK_GROUP_RAID0:
case BTRFS_BLOCK_GROUP_RAID1:
case BTRFS_BLOCK_GROUP_RAID5:
return 2;
case BTRFS_BLOCK_GROUP_RAID6:
return 3;
case BTRFS_BLOCK_GROUP_RAID10:
return 4;
default:
return -1;
}
}
int test_num_disk_vs_raid(u64 metadata_profile, u64 data_profile,
u64 dev_cnt, int mixed, int ssd)
{
u64 allowed = 0;
u64 profile = metadata_profile | data_profile;
switch (dev_cnt) {
default:
case 4:
allowed |= BTRFS_BLOCK_GROUP_RAID10;
case 3:
allowed |= BTRFS_BLOCK_GROUP_RAID6;
case 2:
allowed |= BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID5;
case 1:
allowed |= BTRFS_BLOCK_GROUP_DUP;
}
if (dev_cnt > 1 && profile & BTRFS_BLOCK_GROUP_DUP) {
warning("DUP is not recommended on filesystem with multiple devices");
}
if (metadata_profile & ~allowed) {
fprintf(stderr,
"ERROR: unable to create FS with metadata profile %s "
"(have %llu devices but %d devices are required)\n",
btrfs_group_profile_str(metadata_profile), dev_cnt,
group_profile_devs_min(metadata_profile));
return 1;
}
if (data_profile & ~allowed) {
fprintf(stderr,
"ERROR: unable to create FS with data profile %s "
"(have %llu devices but %d devices are required)\n",
btrfs_group_profile_str(data_profile), dev_cnt,
group_profile_devs_min(data_profile));
return 1;
}
if (dev_cnt == 3 && profile & BTRFS_BLOCK_GROUP_RAID6) {
warning("RAID6 is not recommended on filesystem with 3 devices only");
}
if (dev_cnt == 2 && profile & BTRFS_BLOCK_GROUP_RAID5) {
warning("RAID5 is not recommended on filesystem with 2 devices only");
}
warning_on(!mixed && (data_profile & BTRFS_BLOCK_GROUP_DUP) && ssd,
"DUP may not actually lead to 2 copies on the device, see manual page");
return 0;
}
int group_profile_max_safe_loss(u64 flags)
{
switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
case 0: /* single */
case BTRFS_BLOCK_GROUP_DUP:
case BTRFS_BLOCK_GROUP_RAID0:
return 0;
case BTRFS_BLOCK_GROUP_RAID1:
case BTRFS_BLOCK_GROUP_RAID5:
case BTRFS_BLOCK_GROUP_RAID10:
return 1;
case BTRFS_BLOCK_GROUP_RAID6:
return 2;
default:
return -1;
}
}
int btrfs_scan_devices(void)
{
int fd = -1;
int ret;
u64 num_devices;
struct btrfs_fs_devices *tmp_devices;
blkid_dev_iterate iter = NULL;
blkid_dev dev = NULL;
blkid_cache cache = NULL;
char path[PATH_MAX];
if (btrfs_scan_done)
return 0;
if (blkid_get_cache(&cache, NULL) < 0) {
error("blkid cache get failed");
return 1;
}
blkid_probe_all(cache);
iter = blkid_dev_iterate_begin(cache);
blkid_dev_set_search(iter, "TYPE", "btrfs");
while (blkid_dev_next(iter, &dev) == 0) {
dev = blkid_verify(cache, dev);
if (!dev)
continue;
/* if we are here its definitely a btrfs disk*/
strncpy_null(path, blkid_dev_devname(dev));
fd = open(path, O_RDONLY);
if (fd < 0) {
error("cannot open %s: %m", path);
continue;
}
ret = btrfs_scan_one_device(fd, path, &tmp_devices,
&num_devices, BTRFS_SUPER_INFO_OFFSET,
SBREAD_DEFAULT);
if (ret) {
error("cannot scan %s: %s", path, strerror(-ret));
close (fd);
continue;
}
close(fd);
}
blkid_dev_iterate_end(iter);
blkid_put_cache(cache);
btrfs_scan_done = 1;
return 0;
}
/*
* This reads a line from the stdin and only returns non-zero if the
* first whitespace delimited token is a case insensitive match with yes
* or y.
*/
int ask_user(const char *question)
{
char buf[30] = {0,};
char *saveptr = NULL;
char *answer;
printf("%s [y/N]: ", question);
return fgets(buf, sizeof(buf) - 1, stdin) &&
(answer = strtok_r(buf, " \t\n\r", &saveptr)) &&
(!strcasecmp(answer, "yes") || !strcasecmp(answer, "y"));
}
/*
* return 0 if a btrfs mount point is found
* return 1 if a mount point is found but not btrfs
* return <0 if something goes wrong
*/
int find_mount_root(const char *path, char **mount_root)
{
FILE *mnttab;
int fd;
struct mntent *ent;
int len;
int ret;
int not_btrfs = 1;
int longest_matchlen = 0;
char *longest_match = NULL;
fd = open(path, O_RDONLY | O_NOATIME);
if (fd < 0)
return -errno;
close(fd);
mnttab = setmntent("/proc/self/mounts", "r");
if (!mnttab)
return -errno;
while ((ent = getmntent(mnttab))) {
len = strlen(ent->mnt_dir);
if (strncmp(ent->mnt_dir, path, len) == 0) {
/* match found and use the latest match */
if (longest_matchlen <= len) {
free(longest_match);
longest_matchlen = len;
longest_match = strdup(ent->mnt_dir);
not_btrfs = strcmp(ent->mnt_type, "btrfs");
}
}
}
endmntent(mnttab);
if (!longest_match)
return -ENOENT;
if (not_btrfs) {
free(longest_match);
return 1;
}
ret = 0;
*mount_root = realpath(longest_match, NULL);
if (!*mount_root)
ret = -errno;
free(longest_match);
return ret;
}
/*
* Test if path is a directory
* Returns:
* 0 - path exists but it is not a directory
* 1 - path exists and it is a directory
* < 0 - error
*/
int test_isdir(const char *path)
{
struct stat st;
int ret;
ret = stat(path, &st);
if (ret < 0)
return -errno;
return !!S_ISDIR(st.st_mode);
}
void units_set_mode(unsigned *units, unsigned mode)
{
unsigned base = *units & UNITS_MODE_MASK;
*units = base | mode;
}
void units_set_base(unsigned *units, unsigned base)
{
unsigned mode = *units & ~UNITS_MODE_MASK;
*units = base | mode;
}
int find_next_key(struct btrfs_path *path, struct btrfs_key *key)
{
int level;
for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
if (!path->nodes[level])
break;
if (path->slots[level] + 1 >=
btrfs_header_nritems(path->nodes[level]))
continue;
if (level == 0)
btrfs_item_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
else
btrfs_node_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
return 0;
}
return 1;
}
const char* btrfs_group_type_str(u64 flag)
{
u64 mask = BTRFS_BLOCK_GROUP_TYPE_MASK |
BTRFS_SPACE_INFO_GLOBAL_RSV;
switch (flag & mask) {
case BTRFS_BLOCK_GROUP_DATA:
return "Data";
case BTRFS_BLOCK_GROUP_SYSTEM:
return "System";
case BTRFS_BLOCK_GROUP_METADATA:
return "Metadata";
case BTRFS_BLOCK_GROUP_DATA|BTRFS_BLOCK_GROUP_METADATA:
return "Data+Metadata";
case BTRFS_SPACE_INFO_GLOBAL_RSV:
return "GlobalReserve";
default:
return "unknown";
}
}
const char* btrfs_group_profile_str(u64 flag)
{
switch (flag & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
case 0:
return "single";
case BTRFS_BLOCK_GROUP_RAID0:
return "RAID0";
case BTRFS_BLOCK_GROUP_RAID1:
return "RAID1";
case BTRFS_BLOCK_GROUP_RAID5:
return "RAID5";
case BTRFS_BLOCK_GROUP_RAID6:
return "RAID6";
case BTRFS_BLOCK_GROUP_DUP:
return "DUP";
case BTRFS_BLOCK_GROUP_RAID10:
return "RAID10";
default:
return "unknown";
}
}
u64 disk_size(const char *path)
{
struct statfs sfs;
if (statfs(path, &sfs) < 0)
return 0;
else
return sfs.f_bsize * sfs.f_blocks;
}
u64 get_partition_size(const char *dev)
{
u64 result;
int fd = open(dev, O_RDONLY);
if (fd < 0)
return 0;
if (ioctl(fd, BLKGETSIZE64, &result) < 0) {
close(fd);
return 0;
}
close(fd);
return result;
}
/*
* Check if the BTRFS_IOC_TREE_SEARCH_V2 ioctl is supported on a given
* filesystem, opened at fd
*/
int btrfs_tree_search2_ioctl_supported(int fd)
{
struct btrfs_ioctl_search_args_v2 *args2;
struct btrfs_ioctl_search_key *sk;
int args2_size = 1024;
char args2_buf[args2_size];
int ret;
args2 = (struct btrfs_ioctl_search_args_v2 *)args2_buf;
sk = &(args2->key);
/*
* Search for the extent tree item in the root tree.
*/
sk->tree_id = BTRFS_ROOT_TREE_OBJECTID;
sk->min_objectid = BTRFS_EXTENT_TREE_OBJECTID;
sk->max_objectid = BTRFS_EXTENT_TREE_OBJECTID;
sk->min_type = BTRFS_ROOT_ITEM_KEY;
sk->max_type = BTRFS_ROOT_ITEM_KEY;
sk->min_offset = 0;
sk->max_offset = (u64)-1;
sk->min_transid = 0;
sk->max_transid = (u64)-1;
sk->nr_items = 1;
args2->buf_size = args2_size - sizeof(struct btrfs_ioctl_search_args_v2);
ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH_V2, args2);
if (ret == -EOPNOTSUPP)
return 0;
else if (ret == 0)
return 1;
return ret;
}
int btrfs_check_nodesize(u32 nodesize, u32 sectorsize, u64 features)
{
if (nodesize < sectorsize) {
error("illegal nodesize %u (smaller than %u)",
nodesize, sectorsize);
return -1;
} else if (nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
error("illegal nodesize %u (larger than %u)",
nodesize, BTRFS_MAX_METADATA_BLOCKSIZE);
return -1;
} else if (nodesize & (sectorsize - 1)) {
error("illegal nodesize %u (not aligned to %u)",
nodesize, sectorsize);
return -1;
} else if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS &&
nodesize != sectorsize) {
error("illegal nodesize %u (not equal to %u for mixed block group)",
nodesize, sectorsize);
return -1;
}
return 0;
}
/*
* Copy a path argument from SRC to DEST and check the SRC length if it's at
* most PATH_MAX and fits into DEST. DESTLEN is supposed to be exact size of
* the buffer.
* The destination buffer is zero terminated.
* Return < 0 for error, 0 otherwise.
*/
int arg_copy_path(char *dest, const char *src, int destlen)
{
size_t len = strlen(src);
if (len >= PATH_MAX || len >= destlen)
return -ENAMETOOLONG;
__strncpy_null(dest, src, destlen);
return 0;
}
unsigned int get_unit_mode_from_arg(int *argc, char *argv[], int df_mode)
{
unsigned int unit_mode = UNITS_DEFAULT;
int arg_i;
int arg_end;
for (arg_i = 0; arg_i < *argc; arg_i++) {
if (!strcmp(argv[arg_i], "--"))
break;
if (!strcmp(argv[arg_i], "--raw")) {
unit_mode = UNITS_RAW;
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "--human-readable")) {
unit_mode = UNITS_HUMAN_BINARY;
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "--iec")) {
units_set_mode(&unit_mode, UNITS_BINARY);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "--si")) {
units_set_mode(&unit_mode, UNITS_DECIMAL);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "--kbytes")) {
units_set_base(&unit_mode, UNITS_KBYTES);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "--mbytes")) {
units_set_base(&unit_mode, UNITS_MBYTES);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "--gbytes")) {
units_set_base(&unit_mode, UNITS_GBYTES);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "--tbytes")) {
units_set_base(&unit_mode, UNITS_TBYTES);
argv[arg_i] = NULL;
continue;
}
if (!df_mode)
continue;
if (!strcmp(argv[arg_i], "-b")) {
unit_mode = UNITS_RAW;
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "-h")) {
unit_mode = UNITS_HUMAN_BINARY;
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "-H")) {
unit_mode = UNITS_HUMAN_DECIMAL;
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "-k")) {
units_set_base(&unit_mode, UNITS_KBYTES);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "-m")) {
units_set_base(&unit_mode, UNITS_MBYTES);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "-g")) {
units_set_base(&unit_mode, UNITS_GBYTES);
argv[arg_i] = NULL;
continue;
}
if (!strcmp(argv[arg_i], "-t")) {
units_set_base(&unit_mode, UNITS_TBYTES);
argv[arg_i] = NULL;
continue;
}
}
for (arg_i = 0, arg_end = 0; arg_i < *argc; arg_i++) {
if (!argv[arg_i])
continue;
argv[arg_end] = argv[arg_i];
arg_end++;
}
*argc = arg_end;
return unit_mode;
}
u64 div_factor(u64 num, int factor)
{
if (factor == 10)
return num;
num *= factor;
num /= 10;
return num;
}
/*
* Get the length of the string converted from a u64 number.
*
* Result is equal to log10(num) + 1, but without the use of math library.
*/
int count_digits(u64 num)
{
int ret = 0;
if (num == 0)
return 1;
while (num > 0) {
ret++;
num /= 10;
}
return ret;
}
int string_is_numerical(const char *str)
{
if (!str)
return 0;
if (!(*str >= '0' && *str <= '9'))
return 0;
while (*str >= '0' && *str <= '9')
str++;
if (*str != '\0')
return 0;
return 1;
}
int prefixcmp(const char *str, const char *prefix)
{
for (; ; str++, prefix++)
if (!*prefix)
return 0;
else if (*str != *prefix)
return (unsigned char)*prefix - (unsigned char)*str;
}
/* Subvolume helper functions */
/*
* test if name is a correct subvolume name
* this function return
* 0-> name is not a correct subvolume name
* 1-> name is a correct subvolume name
*/
int test_issubvolname(const char *name)
{
return name[0] != '\0' && !strchr(name, '/') &&
strcmp(name, ".") && strcmp(name, "..");
}
/*
* Test if path is a subvolume
* Returns:
* 0 - path exists but it is not a subvolume
* 1 - path exists and it is a subvolume
* < 0 - error
*/
int test_issubvolume(const char *path)
{
struct stat st;
struct statfs stfs;
int res;
res = stat(path, &st);
if (res < 0)
return -errno;
if (st.st_ino != BTRFS_FIRST_FREE_OBJECTID || !S_ISDIR(st.st_mode))
return 0;
res = statfs(path, &stfs);
if (res < 0)
return -errno;
return (int)stfs.f_type == BTRFS_SUPER_MAGIC;
}
const char *subvol_strip_mountpoint(const char *mnt, const char *full_path)
{
int len = strlen(mnt);
if (!len)
return full_path;
if ((strncmp(mnt, full_path, len) != 0) || (full_path[len] != '/')) {
error("not on mount point: %s", mnt);
exit(1);
}
if (mnt[len - 1] != '/')
len += 1;
return full_path + len;
}
/*
* Returns
* <0: Std error
* 0: All fine
* 1: Error; and error info printed to the terminal. Fixme.
* 2: If the fullpath is root tree instead of subvol tree
*/
int get_subvol_info(const char *fullpath, struct root_info *get_ri)
{
u64 sv_id;
int ret = 1;
int fd = -1;
int mntfd = -1;
char *mnt = NULL;
const char *svpath = NULL;
DIR *dirstream1 = NULL;
DIR *dirstream2 = NULL;
ret = test_issubvolume(fullpath);
if (ret < 0)
return ret;
if (!ret) {
error("not a subvolume: %s", fullpath);
return 1;
}
ret = find_mount_root(fullpath, &mnt);
if (ret < 0)
return ret;
if (ret > 0) {
error("%s doesn't belong to btrfs mount point", fullpath);
return 1;
}
ret = 1;
svpath = subvol_strip_mountpoint(mnt, fullpath);
fd = btrfs_open_dir(fullpath, &dirstream1, 1);
if (fd < 0)
goto out;
ret = btrfs_list_get_path_rootid(fd, &sv_id);
if (ret)
goto out;
mntfd = btrfs_open_dir(mnt, &dirstream2, 1);
if (mntfd < 0)
goto out;
memset(get_ri, 0, sizeof(*get_ri));
get_ri->root_id = sv_id;
if (sv_id == BTRFS_FS_TREE_OBJECTID)
ret = btrfs_get_toplevel_subvol(mntfd, get_ri);
else
ret = btrfs_get_subvol(mntfd, get_ri);
if (ret)
error("can't find '%s': %d", svpath, ret);
out:
close_file_or_dir(mntfd, dirstream2);
close_file_or_dir(fd, dirstream1);
free(mnt);
return ret;
}
int get_subvol_info_by_rootid(const char *mnt, struct root_info *get_ri, u64 r_id)
{
int fd;
int ret;
DIR *dirstream = NULL;
fd = btrfs_open_dir(mnt, &dirstream, 1);
if (fd < 0)
return -EINVAL;
memset(get_ri, 0, sizeof(*get_ri));
get_ri->root_id = r_id;
if (r_id == BTRFS_FS_TREE_OBJECTID)
ret = btrfs_get_toplevel_subvol(fd, get_ri);
else
ret = btrfs_get_subvol(fd, get_ri);
if (ret)
error("can't find rootid '%llu' on '%s': %d", r_id, mnt, ret);
close_file_or_dir(fd, dirstream);
return ret;
}
int get_subvol_info_by_uuid(const char *mnt, struct root_info *get_ri, u8 *uuid_arg)
{
int fd;
int ret;
DIR *dirstream = NULL;
fd = btrfs_open_dir(mnt, &dirstream, 1);
if (fd < 0)
return -EINVAL;
memset(get_ri, 0, sizeof(*get_ri));
uuid_copy(get_ri->uuid, uuid_arg);
ret = btrfs_get_subvol(fd, get_ri);
if (ret) {
char uuid_parsed[BTRFS_UUID_UNPARSED_SIZE];
uuid_unparse(uuid_arg, uuid_parsed);
error("can't find uuid '%s' on '%s': %d",
uuid_parsed, mnt, ret);
}
close_file_or_dir(fd, dirstream);
return ret;
}
/* Set the seed manually */
void init_rand_seed(u64 seed)
{
int i;
/* only use the last 48 bits */
for (i = 0; i < 3; i++) {
rand_seed[i] = (unsigned short)(seed ^ (unsigned short)(-1));
seed >>= 16;
}
rand_seed_initlized = 1;
}
static void __init_seed(void)
{
struct timeval tv;
int ret;
int fd;
if(rand_seed_initlized)
return;
/* Use urandom as primary seed source. */
fd = open("/dev/urandom", O_RDONLY);
if (fd >= 0) {
ret = read(fd, rand_seed, sizeof(rand_seed));
close(fd);
if (ret < sizeof(rand_seed))
goto fallback;
} else {
fallback:
/* Use time and pid as fallback seed */
warning("failed to read /dev/urandom, use time and pid as random seed");
gettimeofday(&tv, 0);
rand_seed[0] = getpid() ^ (tv.tv_sec & 0xFFFF);
rand_seed[1] = getppid() ^ (tv.tv_usec & 0xFFFF);
rand_seed[2] = (tv.tv_sec ^ tv.tv_usec) >> 16;
}
rand_seed_initlized = 1;
}
u32 rand_u32(void)
{
__init_seed();
/*
* Don't use nrand48, its range is [0,2^31) The highest bit will alwasy
* be 0. Use jrand48 to include the highest bit.
*/
return (u32)jrand48(rand_seed);
}
/* Return random number in range [0, upper) */
unsigned int rand_range(unsigned int upper)
{
__init_seed();
/*
* Use the full 48bits to mod, which would be more uniformly
* distributed
*/
return (unsigned int)(jrand48(rand_seed) % upper);
}
int rand_int(void)
{
return (int)(rand_u32());
}
u64 rand_u64(void)
{
u64 ret = 0;
ret += rand_u32();
ret <<= 32;
ret += rand_u32();
return ret;
}
u16 rand_u16(void)
{
return (u16)(rand_u32());
}
u8 rand_u8(void)
{
return (u8)(rand_u32());
}
void btrfs_config_init(void)
{
}
/* Returns total size of main memory in bytes, -1UL if error. */
unsigned long total_memory(void)
{
struct sysinfo si;
if (sysinfo(&si) < 0) {
error("can't determine memory size");
return -1UL;
}
return si.totalram * si.mem_unit; /* bytes */
}
void print_device_info(struct btrfs_device *device, char *prefix)
{
if (prefix)
printf("%s", prefix);
printf("Device: id = %llu, name = %s\n",
device->devid, device->name);
}
void print_all_devices(struct list_head *devices)
{
struct btrfs_device *dev;
printf("All Devices:\n");
list_for_each_entry(dev, devices, dev_list)
print_device_info(dev, "\t");
printf("\n");
}