btrfs-progs/image/main.c
David Sterba 6edd4b2121 btrfs-progs: factor string helpers out of utils.c
Utils is the catch-all file, we can now separate some string utility
functions.

Signed-off-by: David Sterba <dsterba@suse.com>
2022-10-11 09:06:13 +02:00

3279 lines
79 KiB
C

/*
* Copyright (C) 2008 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/stat.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <getopt.h>
#include <errno.h>
#include <stdbool.h>
#include <stddef.h>
#include <string.h>
#include <time.h>
#include <zlib.h>
#include "kernel-lib/list.h"
#include "kernel-lib/rbtree.h"
#include "kernel-lib/rbtree_types.h"
#include "kernel-lib/sizes.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/transaction.h"
#include "kernel-shared/volumes.h"
#include "kernel-shared/extent_io.h"
#include "crypto/crc32c.h"
#include "common/internal.h"
#include "common/messages.h"
#include "common/box.h"
#include "common/utils.h"
#include "common/extent-cache.h"
#include "common/help.h"
#include "common/device-utils.h"
#include "common/open-utils.h"
#include "common/string-utils.h"
#include "image/metadump.h"
#include "image/sanitize.h"
#include "ioctl.h"
#define MAX_WORKER_THREADS (32)
const struct dump_version dump_versions[] = {
/*
* The original format, which only supports tree blocks and free space
* cache dump.
*/
{ .version = 0,
.max_pending_size = SZ_256K,
.magic_cpu = 0xbd5c25e27295668bULL,
.extra_sb_flags = 1 },
#if EXPERIMENTAL
/*
* The new format, with much larger item size to contain any data
* extents.
*/
{ .version = 1,
.max_pending_size = SZ_256M,
.magic_cpu = 0x31765f506d55445fULL, /* ascii _DUmP_v1, no null */
.extra_sb_flags = 0 },
#endif
};
const struct dump_version *current_version = &dump_versions[0];
struct async_work {
struct list_head list;
struct list_head ordered;
u64 start;
u64 size;
u8 *buffer;
size_t bufsize;
int error;
};
struct metadump_struct {
struct btrfs_root *root;
FILE *out;
union {
struct meta_cluster cluster;
char meta_cluster_bytes[BLOCK_SIZE];
};
pthread_t threads[MAX_WORKER_THREADS];
size_t num_threads;
pthread_mutex_t mutex;
pthread_cond_t cond;
struct rb_root name_tree;
struct extent_io_tree seen;
struct list_head list;
struct list_head ordered;
size_t num_items;
size_t num_ready;
u64 pending_start;
u64 pending_size;
int compress_level;
int done;
int data;
enum sanitize_mode sanitize_names;
int error;
};
struct mdrestore_struct {
FILE *in;
FILE *out;
pthread_t threads[MAX_WORKER_THREADS];
size_t num_threads;
pthread_mutex_t mutex;
pthread_cond_t cond;
/*
* Records system chunk ranges, so restore can use this to determine
* if an item is in chunk tree range.
*/
struct cache_tree sys_chunks;
struct rb_root chunk_tree;
struct rb_root physical_tree;
struct list_head list;
struct list_head overlapping_chunks;
struct btrfs_super_block *original_super;
size_t num_items;
u32 nodesize;
u64 devid;
u64 alloced_chunks;
u64 last_physical_offset;
/* An quicker checker for if a item is in sys chunk range */
u64 sys_chunk_end;
u8 uuid[BTRFS_UUID_SIZE];
u8 fsid[BTRFS_FSID_SIZE];
int compress_method;
int done;
int error;
int old_restore;
int fixup_offset;
int multi_devices;
int clear_space_cache;
struct btrfs_fs_info *info;
};
static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size);
static void csum_block(u8 *buf, size_t len)
{
u16 csum_size = btrfs_csum_type_size(BTRFS_CSUM_TYPE_CRC32);
u8 result[csum_size];
u32 crc = ~(u32)0;
crc = crc32c(crc, buf + BTRFS_CSUM_SIZE, len - BTRFS_CSUM_SIZE);
put_unaligned_le32(~crc, result);
memcpy(buf, result, csum_size);
}
static int has_name(struct btrfs_key *key)
{
switch (key->type) {
case BTRFS_DIR_ITEM_KEY:
case BTRFS_DIR_INDEX_KEY:
case BTRFS_INODE_REF_KEY:
case BTRFS_INODE_EXTREF_KEY:
case BTRFS_XATTR_ITEM_KEY:
return 1;
default:
break;
}
return 0;
}
static int chunk_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
{
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, l);
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, l);
if (fuzz && ins->logical >= entry->logical &&
ins->logical < entry->logical + entry->bytes)
return 0;
if (ins->logical < entry->logical)
return -1;
else if (ins->logical > entry->logical)
return 1;
return 0;
}
static int physical_cmp(struct rb_node *a, struct rb_node *b, int fuzz)
{
struct fs_chunk *entry = rb_entry(a, struct fs_chunk, p);
struct fs_chunk *ins = rb_entry(b, struct fs_chunk, p);
if (fuzz && ins->physical >= entry->physical &&
ins->physical < entry->physical + entry->bytes)
return 0;
if (fuzz && entry->physical >= ins->physical &&
entry->physical < ins->physical + ins->bytes)
return 0;
if (ins->physical < entry->physical)
return -1;
else if (ins->physical > entry->physical)
return 1;
return 0;
}
static void tree_insert(struct rb_root *root, struct rb_node *ins,
int (*cmp)(struct rb_node *a, struct rb_node *b,
int fuzz))
{
struct rb_node ** p = &root->rb_node;
struct rb_node * parent = NULL;
int dir;
while(*p) {
parent = *p;
dir = cmp(*p, ins, 1);
if (dir < 0)
p = &(*p)->rb_left;
else if (dir > 0)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(ins, parent, p);
rb_insert_color(ins, root);
}
static struct rb_node *tree_search(struct rb_root *root,
struct rb_node *search,
int (*cmp)(struct rb_node *a,
struct rb_node *b, int fuzz),
int fuzz)
{
struct rb_node *n = root->rb_node;
int dir;
while (n) {
dir = cmp(n, search, fuzz);
if (dir < 0)
n = n->rb_left;
else if (dir > 0)
n = n->rb_right;
else
return n;
}
return NULL;
}
static u64 logical_to_physical(struct mdrestore_struct *mdres, u64 logical,
u64 *size, u64 *physical_dup)
{
struct fs_chunk *fs_chunk;
struct rb_node *entry;
struct fs_chunk search;
u64 offset;
if (logical == BTRFS_SUPER_INFO_OFFSET)
return logical;
search.logical = logical;
entry = tree_search(&mdres->chunk_tree, &search.l, chunk_cmp, 1);
if (!entry) {
if (mdres->in != stdin)
warning("cannot find a chunk, using logical");
return logical;
}
fs_chunk = rb_entry(entry, struct fs_chunk, l);
if (fs_chunk->logical > logical || fs_chunk->logical + fs_chunk->bytes < logical)
BUG();
offset = search.logical - fs_chunk->logical;
if (physical_dup) {
/* Only in dup case, physical_dup is not equal to 0 */
if (fs_chunk->physical_dup)
*physical_dup = fs_chunk->physical_dup + offset;
else
*physical_dup = 0;
}
*size = min(*size, fs_chunk->bytes + fs_chunk->logical - logical);
return fs_chunk->physical + offset;
}
/*
* zero inline extents and csum items
*/
static void zero_items(struct metadump_struct *md, u8 *dst,
struct extent_buffer *src)
{
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u32 nritems = btrfs_header_nritems(src);
size_t size;
unsigned long ptr;
int i, extent_type;
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(src, &key, i);
if (key.type == BTRFS_CSUM_ITEM_KEY) {
size = btrfs_item_size(src, i);
memset(dst + btrfs_leaf_data(src) +
btrfs_item_offset(src, i), 0, size);
continue;
}
if (md->sanitize_names && has_name(&key)) {
sanitize_name(md->sanitize_names, &md->name_tree, dst,
src, &key, i);
continue;
}
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
extent_type = btrfs_file_extent_type(src, fi);
if (extent_type != BTRFS_FILE_EXTENT_INLINE)
continue;
ptr = btrfs_file_extent_inline_start(fi);
size = btrfs_file_extent_inline_item_len(src, i);
memset(dst + ptr, 0, size);
}
}
/*
* copy buffer and zero useless data in the buffer
*/
static void copy_buffer(struct metadump_struct *md, u8 *dst,
struct extent_buffer *src)
{
int level;
size_t size;
u32 nritems;
memcpy(dst, src->data, src->len);
if (src->start == BTRFS_SUPER_INFO_OFFSET)
return;
level = btrfs_header_level(src);
nritems = btrfs_header_nritems(src);
if (nritems == 0) {
size = sizeof(struct btrfs_header);
memset(dst + size, 0, src->len - size);
} else if (level == 0) {
size = btrfs_leaf_data(src) +
btrfs_item_offset(src, nritems - 1) -
btrfs_item_nr_offset(src, nritems);
memset(dst + btrfs_item_nr_offset(src, nritems), 0, size);
zero_items(md, dst, src);
} else {
size = offsetof(struct btrfs_node, ptrs) +
sizeof(struct btrfs_key_ptr) * nritems;
memset(dst + size, 0, src->len - size);
}
csum_block(dst, src->len);
}
static void *dump_worker(void *data)
{
struct metadump_struct *md = (struct metadump_struct *)data;
struct async_work *async;
int ret;
while (1) {
pthread_mutex_lock(&md->mutex);
while (list_empty(&md->list)) {
if (md->done) {
pthread_mutex_unlock(&md->mutex);
goto out;
}
pthread_cond_wait(&md->cond, &md->mutex);
}
async = list_entry(md->list.next, struct async_work, list);
list_del_init(&async->list);
pthread_mutex_unlock(&md->mutex);
if (md->compress_level > 0) {
u8 *orig = async->buffer;
async->bufsize = compressBound(async->size);
async->buffer = malloc(async->bufsize);
if (!async->buffer) {
error("not enough memory for async buffer");
pthread_mutex_lock(&md->mutex);
if (!md->error)
md->error = -ENOMEM;
pthread_mutex_unlock(&md->mutex);
pthread_exit(NULL);
}
ret = compress2(async->buffer,
(unsigned long *)&async->bufsize,
orig, async->size, md->compress_level);
if (ret != Z_OK)
async->error = 1;
free(orig);
}
pthread_mutex_lock(&md->mutex);
md->num_ready++;
pthread_mutex_unlock(&md->mutex);
}
out:
pthread_exit(NULL);
}
static void meta_cluster_init(struct metadump_struct *md, u64 start)
{
struct meta_cluster_header *header;
md->num_items = 0;
md->num_ready = 0;
header = &md->cluster.header;
header->magic = cpu_to_le64(current_version->magic_cpu);
header->bytenr = cpu_to_le64(start);
header->nritems = cpu_to_le32(0);
header->compress = md->compress_level > 0 ?
COMPRESS_ZLIB : COMPRESS_NONE;
}
static void metadump_destroy(struct metadump_struct *md, int num_threads)
{
int i;
struct rb_node *n;
pthread_mutex_lock(&md->mutex);
md->done = 1;
pthread_cond_broadcast(&md->cond);
pthread_mutex_unlock(&md->mutex);
for (i = 0; i < num_threads; i++)
pthread_join(md->threads[i], NULL);
pthread_cond_destroy(&md->cond);
pthread_mutex_destroy(&md->mutex);
while ((n = rb_first(&md->name_tree))) {
struct name *name;
name = rb_entry(n, struct name, n);
rb_erase(n, &md->name_tree);
free(name->val);
free(name->sub);
free(name);
}
extent_io_tree_cleanup(&md->seen);
}
static int metadump_init(struct metadump_struct *md, struct btrfs_root *root,
FILE *out, int num_threads, int compress_level,
bool dump_data, enum sanitize_mode sanitize_names)
{
int i, ret = 0;
/* We need larger item/cluster limit for data extents */
if (dump_data)
current_version = &dump_versions[1];
memset(md, 0, sizeof(*md));
INIT_LIST_HEAD(&md->list);
INIT_LIST_HEAD(&md->ordered);
extent_io_tree_init(&md->seen);
md->root = root;
md->out = out;
md->pending_start = (u64)-1;
md->compress_level = compress_level;
md->sanitize_names = sanitize_names;
if (sanitize_names == SANITIZE_COLLISIONS)
crc32c_optimization_init();
md->name_tree.rb_node = NULL;
md->num_threads = num_threads;
pthread_cond_init(&md->cond, NULL);
pthread_mutex_init(&md->mutex, NULL);
meta_cluster_init(md, 0);
if (!num_threads)
return 0;
for (i = 0; i < num_threads; i++) {
ret = pthread_create(md->threads + i, NULL, dump_worker, md);
if (ret)
break;
}
if (ret)
metadump_destroy(md, i + 1);
return ret;
}
static int write_zero(FILE *out, size_t size)
{
static char zero[BLOCK_SIZE];
return fwrite(zero, size, 1, out);
}
static int write_buffers(struct metadump_struct *md, u64 *next)
{
struct meta_cluster_header *header = &md->cluster.header;
struct meta_cluster_item *item;
struct async_work *async;
u64 bytenr = 0;
u32 nritems = 0;
int ret;
int err = 0;
if (list_empty(&md->ordered))
goto out;
/* wait until all buffers are compressed */
while (!err && md->num_items > md->num_ready) {
struct timespec ts = {
.tv_sec = 0,
.tv_nsec = 10000000,
};
pthread_mutex_unlock(&md->mutex);
nanosleep(&ts, NULL);
pthread_mutex_lock(&md->mutex);
err = md->error;
}
if (err) {
errno = -err;
error("one of the threads failed: %m");
goto out;
}
/* setup and write index block */
list_for_each_entry(async, &md->ordered, ordered) {
item = &md->cluster.items[nritems];
item->bytenr = cpu_to_le64(async->start);
item->size = cpu_to_le32(async->bufsize);
nritems++;
}
header->nritems = cpu_to_le32(nritems);
ret = fwrite(&md->cluster, BLOCK_SIZE, 1, md->out);
if (ret != 1) {
error("unable to write out cluster: %m");
return -errno;
}
/* write buffers */
bytenr += le64_to_cpu(header->bytenr) + BLOCK_SIZE;
while (!list_empty(&md->ordered)) {
async = list_entry(md->ordered.next, struct async_work,
ordered);
list_del_init(&async->ordered);
bytenr += async->bufsize;
if (!err)
ret = fwrite(async->buffer, async->bufsize, 1,
md->out);
if (ret != 1) {
error("unable to write out cluster: %m");
err = -errno;
ret = 0;
}
free(async->buffer);
free(async);
}
/* zero unused space in the last block */
if (!err && bytenr & BLOCK_MASK) {
size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
bytenr += size;
ret = write_zero(md->out, size);
if (ret != 1) {
error("unable to zero out buffer: %m");
err = -errno;
}
}
out:
*next = bytenr;
return err;
}
static int read_data_extent(struct metadump_struct *md,
struct async_work *async)
{
struct btrfs_root *root = md->root;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 bytes_left = async->size;
u64 logical = async->start;
u64 offset = 0;
u64 read_len;
int num_copies;
int cur_mirror;
int ret;
num_copies = btrfs_num_copies(root->fs_info, logical, bytes_left);
/* Try our best to read data, just like read_tree_block() */
for (cur_mirror = 1; cur_mirror <= num_copies; cur_mirror++) {
while (bytes_left) {
read_len = bytes_left;
ret = read_data_from_disk(fs_info,
(char *)(async->buffer + offset),
logical, &read_len, cur_mirror);
if (ret < 0)
break;
offset += read_len;
logical += read_len;
bytes_left -= read_len;
}
}
if (bytes_left)
return -EIO;
return 0;
}
static int get_dev_fd(struct btrfs_root *root)
{
struct btrfs_device *dev;
dev = list_first_entry(&root->fs_info->fs_devices->devices,
struct btrfs_device, dev_list);
return dev->fd;
}
static int flush_pending(struct metadump_struct *md, int done)
{
struct async_work *async = NULL;
struct extent_buffer *eb;
u64 start = 0;
u64 size;
size_t offset;
int ret = 0;
if (md->pending_size) {
async = calloc(1, sizeof(*async));
if (!async)
return -ENOMEM;
async->start = md->pending_start;
async->size = md->pending_size;
async->bufsize = async->size;
async->buffer = malloc(async->bufsize);
if (!async->buffer) {
free(async);
return -ENOMEM;
}
offset = 0;
start = async->start;
size = async->size;
if (md->data) {
ret = read_data_extent(md, async);
if (ret) {
free(async->buffer);
free(async);
return ret;
}
}
/*
* Balance can make the mapping not cover the super block, so
* just copy directly from one of the devices.
*/
if (start == BTRFS_SUPER_INFO_OFFSET) {
int fd = get_dev_fd(md->root);
ret = pread64(fd, async->buffer, size, start);
if (ret < size) {
free(async->buffer);
free(async);
error("unable to read superblock at %llu: %m",
(unsigned long long)start);
return -errno;
}
size = 0;
ret = 0;
}
while (!md->data && size > 0) {
u64 this_read = min((u64)md->root->fs_info->nodesize,
size);
eb = read_tree_block(md->root->fs_info, start, 0);
if (!extent_buffer_uptodate(eb)) {
free(async->buffer);
free(async);
error("unable to read metadata block %llu",
(unsigned long long)start);
return -EIO;
}
copy_buffer(md, async->buffer + offset, eb);
free_extent_buffer(eb);
start += this_read;
offset += this_read;
size -= this_read;
}
md->pending_start = (u64)-1;
md->pending_size = 0;
} else if (!done) {
return 0;
}
pthread_mutex_lock(&md->mutex);
if (async) {
list_add_tail(&async->ordered, &md->ordered);
md->num_items++;
if (md->compress_level > 0) {
list_add_tail(&async->list, &md->list);
pthread_cond_signal(&md->cond);
} else {
md->num_ready++;
}
}
if (md->num_items >= ITEMS_PER_CLUSTER || done) {
ret = write_buffers(md, &start);
if (ret) {
errno = -ret;
error("unable to write buffers: %m");
} else {
meta_cluster_init(md, start);
}
}
pthread_mutex_unlock(&md->mutex);
return ret;
}
static int add_extent(u64 start, u64 size, struct metadump_struct *md,
int data)
{
int ret;
if (md->data != data ||
md->pending_size + size > current_version->max_pending_size ||
md->pending_start + md->pending_size != start) {
ret = flush_pending(md, 0);
if (ret)
return ret;
md->pending_start = start;
}
readahead_tree_block(md->root->fs_info, start, 0);
md->pending_size += size;
md->data = data;
return 0;
}
static int copy_tree_blocks(struct btrfs_root *root, struct extent_buffer *eb,
struct metadump_struct *metadump, int root_tree)
{
struct extent_buffer *tmp;
struct btrfs_root_item *ri;
struct btrfs_key key;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 bytenr;
int level;
int nritems = 0;
int i = 0;
int ret;
bytenr = btrfs_header_bytenr(eb);
if (test_range_bit(&metadump->seen, bytenr,
bytenr + fs_info->nodesize - 1, EXTENT_DIRTY, 1))
return 0;
set_extent_dirty(&metadump->seen, bytenr,
bytenr + fs_info->nodesize - 1);
ret = add_extent(btrfs_header_bytenr(eb), fs_info->nodesize,
metadump, 0);
if (ret) {
error("unable to add metadata block %llu: %d",
btrfs_header_bytenr(eb), ret);
return ret;
}
if (btrfs_header_level(eb) == 0 && !root_tree)
return 0;
level = btrfs_header_level(eb);
nritems = btrfs_header_nritems(eb);
for (i = 0; i < nritems; i++) {
if (level == 0) {
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_ROOT_ITEM_KEY)
continue;
ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
bytenr = btrfs_disk_root_bytenr(eb, ri);
tmp = read_tree_block(fs_info, bytenr, 0);
if (!extent_buffer_uptodate(tmp)) {
error("unable to read log root block");
return -EIO;
}
ret = copy_tree_blocks(root, tmp, metadump, 0);
free_extent_buffer(tmp);
if (ret)
return ret;
} else {
bytenr = btrfs_node_blockptr(eb, i);
tmp = read_tree_block(fs_info, bytenr, 0);
if (!extent_buffer_uptodate(tmp)) {
error("unable to read log root block");
return -EIO;
}
ret = copy_tree_blocks(root, tmp, metadump, root_tree);
free_extent_buffer(tmp);
if (ret)
return ret;
}
}
return 0;
}
static int copy_log_trees(struct btrfs_root *root,
struct metadump_struct *metadump)
{
u64 blocknr = btrfs_super_log_root(root->fs_info->super_copy);
if (blocknr == 0)
return 0;
if (!root->fs_info->log_root_tree ||
!root->fs_info->log_root_tree->node) {
error("unable to copy tree log, it has not been setup");
return -EIO;
}
return copy_tree_blocks(root, root->fs_info->log_root_tree->node,
metadump, 1);
}
static int copy_space_cache(struct btrfs_root *root,
struct metadump_struct *metadump,
struct btrfs_path *path)
{
struct extent_buffer *leaf;
struct btrfs_file_extent_item *fi;
struct btrfs_key key;
u64 bytenr, num_bytes;
int ret;
root = root->fs_info->tree_root;
key.objectid = 0;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0) {
error("free space inode not found: %d", ret);
return ret;
}
leaf = path->nodes[0];
while (1) {
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0) {
error("cannot go to next leaf %d", ret);
return ret;
}
if (ret > 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.type != BTRFS_EXTENT_DATA_KEY) {
path->slots[0]++;
continue;
}
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) !=
BTRFS_FILE_EXTENT_REG) {
path->slots[0]++;
continue;
}
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
ret = add_extent(bytenr, num_bytes, metadump, 1);
if (ret) {
error("unable to add space cache blocks %d", ret);
btrfs_release_path(path);
return ret;
}
path->slots[0]++;
}
return 0;
}
static int copy_from_extent_tree(struct metadump_struct *metadump,
struct btrfs_path *path, bool dump_data)
{
struct btrfs_root *extent_root;
struct extent_buffer *leaf;
struct btrfs_extent_item *ei;
struct btrfs_key key;
u64 bytenr;
u64 num_bytes;
int ret;
extent_root = btrfs_extent_root(metadump->root->fs_info, 0);
bytenr = BTRFS_SUPER_INFO_OFFSET + BTRFS_SUPER_INFO_SIZE;
key.objectid = bytenr;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
if (ret < 0) {
error("extent root not found: %d", ret);
return ret;
}
ret = 0;
leaf = path->nodes[0];
while (1) {
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(extent_root, path);
if (ret < 0) {
error("cannot go to next leaf %d", ret);
break;
}
if (ret > 0) {
ret = 0;
break;
}
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid < bytenr ||
(key.type != BTRFS_EXTENT_ITEM_KEY &&
key.type != BTRFS_METADATA_ITEM_KEY)) {
path->slots[0]++;
continue;
}
bytenr = key.objectid;
if (key.type == BTRFS_METADATA_ITEM_KEY) {
num_bytes = extent_root->fs_info->nodesize;
} else {
num_bytes = key.offset;
}
if (num_bytes == 0) {
error("extent length 0 at bytenr %llu key type %d",
(unsigned long long)bytenr, key.type);
ret = -EIO;
break;
}
if (btrfs_item_size(leaf, path->slots[0]) >= sizeof(*ei)) {
ei = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_extent_item);
if (btrfs_extent_flags(leaf, ei) &
BTRFS_EXTENT_FLAG_TREE_BLOCK ||
(dump_data && (btrfs_extent_flags(leaf, ei) &
BTRFS_EXTENT_FLAG_DATA))) {
bool is_data;
is_data = btrfs_extent_flags(leaf, ei) &
BTRFS_EXTENT_FLAG_DATA;
ret = add_extent(bytenr, num_bytes, metadump,
is_data);
if (ret) {
error("unable to add block %llu: %d",
(unsigned long long)bytenr, ret);
break;
}
}
} else {
error(
"either extent tree is corrupted or deprecated extent ref format");
ret = -EIO;
break;
}
bytenr += num_bytes;
}
btrfs_release_path(path);
return ret;
}
static int create_metadump(const char *input, FILE *out, int num_threads,
int compress_level, enum sanitize_mode sanitize,
int walk_trees, bool dump_data)
{
struct btrfs_root *root;
struct btrfs_path path;
struct metadump_struct metadump;
int ret;
int err = 0;
root = open_ctree(input, 0, OPEN_CTREE_ALLOW_TRANSID_MISMATCH);
if (!root) {
error("open ctree failed");
return -EIO;
}
ret = metadump_init(&metadump, root, out, num_threads,
compress_level, dump_data, sanitize);
if (ret) {
error("failed to initialize metadump: %d", ret);
close_ctree(root);
return ret;
}
ret = add_extent(BTRFS_SUPER_INFO_OFFSET, BTRFS_SUPER_INFO_SIZE,
&metadump, 0);
if (ret) {
error("unable to add metadata: %d", ret);
err = ret;
goto out;
}
btrfs_init_path(&path);
if (walk_trees) {
ret = copy_tree_blocks(root, root->fs_info->chunk_root->node,
&metadump, 1);
if (ret) {
err = ret;
goto out;
}
ret = copy_tree_blocks(root, root->fs_info->tree_root->node,
&metadump, 1);
if (ret) {
err = ret;
goto out;
}
} else {
ret = copy_from_extent_tree(&metadump, &path, dump_data);
if (ret) {
err = ret;
goto out;
}
}
ret = copy_log_trees(root, &metadump);
if (ret) {
err = ret;
goto out;
}
ret = copy_space_cache(root, &metadump, &path);
out:
ret = flush_pending(&metadump, 1);
if (ret) {
if (!err)
err = ret;
error("failed to flush pending data: %d", ret);
}
metadump_destroy(&metadump, num_threads);
btrfs_release_path(&path);
ret = close_ctree(root);
return err ? err : ret;
}
static void update_super_old(u8 *buffer)
{
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
struct btrfs_chunk *chunk;
struct btrfs_disk_key *key;
u32 sectorsize = btrfs_super_sectorsize(super);
u64 flags = btrfs_super_flags(super);
if (current_version->extra_sb_flags)
flags |= BTRFS_SUPER_FLAG_METADUMP;
btrfs_set_super_flags(super, flags);
key = (struct btrfs_disk_key *)(super->sys_chunk_array);
chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
sizeof(struct btrfs_disk_key));
btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
btrfs_set_disk_key_offset(key, 0);
btrfs_set_stack_chunk_length(chunk, (u64)-1);
btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
btrfs_set_stack_chunk_io_align(chunk, sectorsize);
btrfs_set_stack_chunk_io_width(chunk, sectorsize);
btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
btrfs_set_stack_chunk_num_stripes(chunk, 1);
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
chunk->stripe.devid = super->dev_item.devid;
btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
}
static int update_super(struct mdrestore_struct *mdres, u8 *buffer)
{
struct btrfs_super_block *super = (struct btrfs_super_block *)buffer;
struct btrfs_chunk *chunk;
struct btrfs_disk_key *disk_key;
struct btrfs_key key;
u64 flags = btrfs_super_flags(super);
u32 new_array_size = 0;
u32 array_size;
u32 cur = 0;
u8 *ptr, *write_ptr;
int old_num_stripes;
/* No need to fix, use all data as is */
if (btrfs_super_num_devices(mdres->original_super) == 1) {
new_array_size = btrfs_super_sys_array_size(super);
goto finish;
}
write_ptr = ptr = super->sys_chunk_array;
array_size = btrfs_super_sys_array_size(super);
while (cur < array_size) {
disk_key = (struct btrfs_disk_key *)ptr;
btrfs_disk_key_to_cpu(&key, disk_key);
new_array_size += sizeof(*disk_key);
memmove(write_ptr, ptr, sizeof(*disk_key));
write_ptr += sizeof(*disk_key);
ptr += sizeof(*disk_key);
cur += sizeof(*disk_key);
if (key.type == BTRFS_CHUNK_ITEM_KEY) {
u64 type, physical, physical_dup, size = 0;
chunk = (struct btrfs_chunk *)ptr;
old_num_stripes = btrfs_stack_chunk_num_stripes(chunk);
chunk = (struct btrfs_chunk *)write_ptr;
memmove(write_ptr, ptr, sizeof(*chunk));
btrfs_set_stack_chunk_sub_stripes(chunk, 0);
type = btrfs_stack_chunk_type(chunk);
if (type & BTRFS_BLOCK_GROUP_DUP) {
new_array_size += sizeof(struct btrfs_stripe);
write_ptr += sizeof(struct btrfs_stripe);
} else {
btrfs_set_stack_chunk_num_stripes(chunk, 1);
btrfs_set_stack_chunk_type(chunk,
BTRFS_BLOCK_GROUP_SYSTEM);
}
chunk->stripe.devid = super->dev_item.devid;
physical = logical_to_physical(mdres, key.offset,
&size, &physical_dup);
if (size != (u64)-1)
btrfs_set_stack_stripe_offset(&chunk->stripe,
physical);
memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid,
BTRFS_UUID_SIZE);
new_array_size += sizeof(*chunk);
} else {
error("bogus key in the sys array %d", key.type);
return -EIO;
}
write_ptr += sizeof(*chunk);
ptr += btrfs_chunk_item_size(old_num_stripes);
cur += btrfs_chunk_item_size(old_num_stripes);
}
finish:
if (mdres->clear_space_cache)
btrfs_set_super_cache_generation(super, 0);
if (current_version->extra_sb_flags)
flags |= BTRFS_SUPER_FLAG_METADUMP_V2;
btrfs_set_super_flags(super, flags);
btrfs_set_super_sys_array_size(super, new_array_size);
btrfs_set_super_num_devices(super, 1);
csum_block(buffer, BTRFS_SUPER_INFO_SIZE);
return 0;
}
static struct extent_buffer *alloc_dummy_eb(u64 bytenr, u32 size)
{
struct extent_buffer *eb;
eb = calloc(1, sizeof(struct extent_buffer) + size);
if (!eb)
return NULL;
eb->start = bytenr;
eb->len = size;
return eb;
}
static void truncate_item(struct extent_buffer *eb, int slot, u32 new_size)
{
u32 nritems;
u32 old_size;
u32 old_data_start;
u32 size_diff;
u32 data_end;
int i;
old_size = btrfs_item_size(eb, slot);
if (old_size == new_size)
return;
nritems = btrfs_header_nritems(eb);
data_end = btrfs_item_offset(eb, nritems - 1);
old_data_start = btrfs_item_offset(eb, slot);
size_diff = old_size - new_size;
for (i = slot; i < nritems; i++) {
u32 ioff;
ioff = btrfs_item_offset(eb, i);
btrfs_set_item_offset(eb, i, ioff + size_diff);
}
memmove_extent_buffer(eb, btrfs_leaf_data(eb) + data_end + size_diff,
btrfs_leaf_data(eb) + data_end,
old_data_start + new_size - data_end);
btrfs_set_item_size(eb, slot, new_size);
}
static int fixup_chunk_tree_block(struct mdrestore_struct *mdres,
struct async_work *async, u8 *buffer,
size_t size)
{
struct extent_buffer *eb;
size_t size_left = size;
u64 bytenr = async->start;
int i;
if (btrfs_super_num_devices(mdres->original_super) == 1)
return 0;
if (size_left % mdres->nodesize)
return 0;
eb = alloc_dummy_eb(bytenr, mdres->nodesize);
if (!eb)
return -ENOMEM;
while (size_left) {
eb->start = bytenr;
memcpy(eb->data, buffer, mdres->nodesize);
if (btrfs_header_bytenr(eb) != bytenr)
break;
if (memcmp(mdres->fsid,
eb->data + offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE))
break;
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID)
goto next;
if (btrfs_header_level(eb) != 0)
goto next;
for (i = 0; i < btrfs_header_nritems(eb); i++) {
struct btrfs_chunk *chunk;
struct btrfs_key key;
u64 type, physical, physical_dup, size = (u64)-1;
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_CHUNK_ITEM_KEY)
continue;
size = 0;
physical = logical_to_physical(mdres, key.offset,
&size, &physical_dup);
if (!physical_dup)
truncate_item(eb, i, sizeof(*chunk));
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
/* Zero out the RAID profile */
type = btrfs_chunk_type(eb, chunk);
type &= (BTRFS_BLOCK_GROUP_DATA |
BTRFS_BLOCK_GROUP_SYSTEM |
BTRFS_BLOCK_GROUP_METADATA |
BTRFS_BLOCK_GROUP_DUP);
btrfs_set_chunk_type(eb, chunk, type);
if (!physical_dup)
btrfs_set_chunk_num_stripes(eb, chunk, 1);
btrfs_set_chunk_sub_stripes(eb, chunk, 0);
btrfs_set_stripe_devid_nr(eb, chunk, 0, mdres->devid);
if (size != (u64)-1)
btrfs_set_stripe_offset_nr(eb, chunk, 0,
physical);
/* update stripe 2 offset */
if (physical_dup)
btrfs_set_stripe_offset_nr(eb, chunk, 1,
physical_dup);
write_extent_buffer(eb, mdres->uuid,
(unsigned long)btrfs_stripe_dev_uuid_nr(
chunk, 0),
BTRFS_UUID_SIZE);
}
memcpy(buffer, eb->data, eb->len);
csum_block(buffer, eb->len);
next:
size_left -= mdres->nodesize;
buffer += mdres->nodesize;
bytenr += mdres->nodesize;
}
free(eb);
return 0;
}
static void write_backup_supers(int fd, u8 *buf)
{
struct btrfs_super_block *super = (struct btrfs_super_block *)buf;
struct stat st;
u64 size;
u64 bytenr;
int i;
int ret;
if (fstat(fd, &st)) {
error(
"cannot stat restore point, won't be able to write backup supers: %m");
return;
}
size = btrfs_device_size(fd, &st);
for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
bytenr = btrfs_sb_offset(i);
if (bytenr + BTRFS_SUPER_INFO_SIZE > size)
break;
btrfs_set_super_bytenr(super, bytenr);
csum_block(buf, BTRFS_SUPER_INFO_SIZE);
ret = pwrite64(fd, buf, BTRFS_SUPER_INFO_SIZE, bytenr);
if (ret < BTRFS_SUPER_INFO_SIZE) {
if (ret < 0)
error(
"problem writing out backup super block %d: %m", i);
else
error("short write writing out backup super block");
break;
}
}
}
/*
* Restore one item.
*
* For uncompressed data, it's just reading from work->buf then write to output.
* For compressed data, since we can have very large decompressed data
* (up to 256M), we need to consider memory usage. So here we will fill buffer
* then write the decompressed buffer to output.
*/
static int restore_one_work(struct mdrestore_struct *mdres,
struct async_work *async, u8 *buffer, int bufsize)
{
z_stream strm;
/* Offset inside work->buffer */
int buf_offset = 0;
/* Offset for output */
int out_offset = 0;
int out_len;
int outfd = fileno(mdres->out);
int compress_method = mdres->compress_method;
int ret;
ASSERT(is_power_of_2(bufsize));
if (compress_method == COMPRESS_ZLIB) {
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = async->bufsize;
strm.next_in = async->buffer;
strm.avail_out = 0;
strm.next_out = Z_NULL;
ret = inflateInit(&strm);
if (ret != Z_OK) {
error("failed to initialize decompress parameters: %d", ret);
return ret;
}
}
while (buf_offset < async->bufsize) {
bool compress_end = false;
int read_size = min_t(u64, async->bufsize - buf_offset, bufsize);
/* Read part */
if (compress_method == COMPRESS_ZLIB) {
if (strm.avail_out == 0) {
strm.avail_out = bufsize;
strm.next_out = buffer;
}
pthread_mutex_unlock(&mdres->mutex);
ret = inflate(&strm, Z_NO_FLUSH);
pthread_mutex_lock(&mdres->mutex);
switch (ret) {
case Z_NEED_DICT:
ret = Z_DATA_ERROR;
__attribute__ ((fallthrough));
case Z_DATA_ERROR:
case Z_MEM_ERROR:
goto out;
}
if (ret == Z_STREAM_END) {
ret = 0;
compress_end = true;
}
out_len = bufsize - strm.avail_out;
} else {
/* No compress, read as much data as possible */
memcpy(buffer, async->buffer + buf_offset, read_size);
buf_offset += read_size;
out_len = read_size;
}
/* Fixup part */
if (!mdres->multi_devices) {
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
memcpy(mdres->original_super, buffer,
BTRFS_SUPER_INFO_SIZE);
if (mdres->old_restore) {
update_super_old(buffer);
} else {
ret = update_super(mdres, buffer);
if (ret < 0)
goto out;
}
} else if (!mdres->old_restore) {
ret = fixup_chunk_tree_block(mdres, async,
buffer, out_len);
if (ret)
goto out;
}
}
/* Write part */
if (!mdres->fixup_offset) {
int size = out_len;
off_t offset = 0;
while (size) {
u64 logical = async->start + out_offset + offset;
u64 chunk_size = size;
u64 physical_dup = 0;
u64 bytenr;
if (!mdres->multi_devices && !mdres->old_restore)
bytenr = logical_to_physical(mdres,
logical, &chunk_size,
&physical_dup);
else
bytenr = logical;
ret = pwrite64(outfd, buffer + offset, chunk_size, bytenr);
if (ret != chunk_size)
goto write_error;
if (physical_dup)
ret = pwrite64(outfd, buffer + offset,
chunk_size, physical_dup);
if (ret != chunk_size)
goto write_error;
size -= chunk_size;
offset += chunk_size;
continue;
}
} else if (async->start != BTRFS_SUPER_INFO_OFFSET) {
ret = write_data_to_disk(mdres->info, buffer,
async->start, out_len);
if (ret) {
error("failed to write data");
exit(1);
}
}
/* backup super blocks are already there at fixup_offset stage */
if (async->start == BTRFS_SUPER_INFO_OFFSET &&
!mdres->multi_devices)
write_backup_supers(outfd, buffer);
out_offset += out_len;
if (compress_end) {
inflateEnd(&strm);
break;
}
}
return ret;
write_error:
if (ret < 0) {
error("unable to write to device: %m");
ret = -errno;
} else {
error("short write");
ret = -EIO;
}
out:
if (compress_method == COMPRESS_ZLIB)
inflateEnd(&strm);
return ret;
}
static void *restore_worker(void *data)
{
struct mdrestore_struct *mdres = (struct mdrestore_struct *)data;
struct async_work *async;
u8 *buffer;
int ret;
int buffer_size = SZ_512K;
buffer = malloc(buffer_size);
if (!buffer) {
error("not enough memory for restore worker buffer");
pthread_mutex_lock(&mdres->mutex);
if (!mdres->error)
mdres->error = -ENOMEM;
pthread_mutex_unlock(&mdres->mutex);
pthread_exit(NULL);
}
while (1) {
pthread_mutex_lock(&mdres->mutex);
while (!mdres->nodesize || list_empty(&mdres->list)) {
if (mdres->done) {
pthread_mutex_unlock(&mdres->mutex);
goto out;
}
pthread_cond_wait(&mdres->cond, &mdres->mutex);
}
async = list_entry(mdres->list.next, struct async_work, list);
list_del_init(&async->list);
ret = restore_one_work(mdres, async, buffer, buffer_size);
if (ret < 0) {
mdres->error = ret;
pthread_mutex_unlock(&mdres->mutex);
goto out;
}
mdres->num_items--;
pthread_mutex_unlock(&mdres->mutex);
free(async->buffer);
free(async);
}
out:
free(buffer);
pthread_exit(NULL);
}
static void mdrestore_destroy(struct mdrestore_struct *mdres, int num_threads)
{
struct rb_node *n;
int i;
while ((n = rb_first(&mdres->chunk_tree))) {
struct fs_chunk *entry;
entry = rb_entry(n, struct fs_chunk, l);
rb_erase(n, &mdres->chunk_tree);
rb_erase(&entry->p, &mdres->physical_tree);
free(entry);
}
free_extent_cache_tree(&mdres->sys_chunks);
pthread_mutex_lock(&mdres->mutex);
mdres->done = 1;
pthread_cond_broadcast(&mdres->cond);
pthread_mutex_unlock(&mdres->mutex);
for (i = 0; i < num_threads; i++)
pthread_join(mdres->threads[i], NULL);
pthread_cond_destroy(&mdres->cond);
pthread_mutex_destroy(&mdres->mutex);
free(mdres->original_super);
}
static int detect_version(FILE *in)
{
struct meta_cluster *cluster;
u8 buf[BLOCK_SIZE];
bool found = false;
int i;
int ret;
if (fseek(in, 0, SEEK_SET) < 0) {
error("seek failed: %m");
return -errno;
}
ret = fread(buf, BLOCK_SIZE, 1, in);
if (!ret) {
error("failed to read header");
return -EIO;
}
fseek(in, 0, SEEK_SET);
cluster = (struct meta_cluster *)buf;
for (i = 0; i < ARRAY_SIZE(dump_versions); i++) {
if (le64_to_cpu(cluster->header.magic) ==
dump_versions[i].magic_cpu) {
found = true;
current_version = &dump_versions[i];
break;
}
}
if (!found) {
error("unrecognized header format");
return -EINVAL;
}
return 0;
}
static int mdrestore_init(struct mdrestore_struct *mdres,
FILE *in, FILE *out, int old_restore,
int num_threads, int fixup_offset,
struct btrfs_fs_info *info, int multi_devices)
{
int i, ret = 0;
ret = detect_version(in);
if (ret < 0)
return ret;
memset(mdres, 0, sizeof(*mdres));
pthread_cond_init(&mdres->cond, NULL);
pthread_mutex_init(&mdres->mutex, NULL);
INIT_LIST_HEAD(&mdres->list);
INIT_LIST_HEAD(&mdres->overlapping_chunks);
cache_tree_init(&mdres->sys_chunks);
mdres->in = in;
mdres->out = out;
mdres->old_restore = old_restore;
mdres->chunk_tree.rb_node = NULL;
mdres->fixup_offset = fixup_offset;
mdres->info = info;
mdres->multi_devices = multi_devices;
mdres->clear_space_cache = 0;
mdres->last_physical_offset = 0;
mdres->alloced_chunks = 0;
mdres->original_super = malloc(BTRFS_SUPER_INFO_SIZE);
if (!mdres->original_super)
return -ENOMEM;
if (!num_threads)
return 0;
mdres->num_threads = num_threads;
for (i = 0; i < num_threads; i++) {
ret = pthread_create(&mdres->threads[i], NULL, restore_worker,
mdres);
if (ret) {
/* pthread_create returns errno directly */
ret = -ret;
break;
}
}
if (ret)
mdrestore_destroy(mdres, i + 1);
return ret;
}
static int fill_mdres_info(struct mdrestore_struct *mdres,
struct async_work *async)
{
struct btrfs_super_block *super;
u8 *buffer = NULL;
u8 *outbuf;
int ret;
/* We've already been initialized */
if (mdres->nodesize)
return 0;
if (mdres->compress_method == COMPRESS_ZLIB) {
/*
* We know this item is superblock, its should only be 4K.
* Don't need to waste memory following max_pending_size as it
* can be as large as 256M.
*/
size_t size = BTRFS_SUPER_INFO_SIZE;
buffer = malloc(size);
if (!buffer)
return -ENOMEM;
ret = uncompress(buffer, (unsigned long *)&size,
async->buffer, async->bufsize);
if (ret != Z_OK) {
error("decompression failed with %d", ret);
free(buffer);
return -EIO;
}
outbuf = buffer;
} else {
outbuf = async->buffer;
}
super = (struct btrfs_super_block *)outbuf;
mdres->nodesize = btrfs_super_nodesize(super);
if (btrfs_super_incompat_flags(super) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
else
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
mdres->devid = le64_to_cpu(super->dev_item.devid);
free(buffer);
return 0;
}
static int add_cluster(struct meta_cluster *cluster,
struct mdrestore_struct *mdres, u64 *next)
{
struct meta_cluster_item *item;
struct meta_cluster_header *header = &cluster->header;
struct async_work *async;
u64 bytenr;
u32 i, nritems;
int ret;
pthread_mutex_lock(&mdres->mutex);
mdres->compress_method = header->compress;
pthread_mutex_unlock(&mdres->mutex);
bytenr = le64_to_cpu(header->bytenr) + BLOCK_SIZE;
nritems = le32_to_cpu(header->nritems);
for (i = 0; i < nritems; i++) {
item = &cluster->items[i];
async = calloc(1, sizeof(*async));
if (!async) {
error("not enough memory for async data");
return -ENOMEM;
}
async->start = le64_to_cpu(item->bytenr);
async->bufsize = le32_to_cpu(item->size);
async->buffer = malloc(async->bufsize);
if (!async->buffer) {
error("not enough memory for async buffer");
free(async);
return -ENOMEM;
}
ret = fread(async->buffer, async->bufsize, 1, mdres->in);
if (ret != 1) {
error("unable to read buffer: %m");
free(async->buffer);
free(async);
return -EIO;
}
bytenr += async->bufsize;
pthread_mutex_lock(&mdres->mutex);
if (async->start == BTRFS_SUPER_INFO_OFFSET) {
ret = fill_mdres_info(mdres, async);
if (ret) {
error("unable to set up restore state");
pthread_mutex_unlock(&mdres->mutex);
free(async->buffer);
free(async);
return ret;
}
}
list_add_tail(&async->list, &mdres->list);
mdres->num_items++;
pthread_cond_signal(&mdres->cond);
pthread_mutex_unlock(&mdres->mutex);
}
if (bytenr & BLOCK_MASK) {
char buffer[BLOCK_MASK];
size_t size = BLOCK_SIZE - (bytenr & BLOCK_MASK);
bytenr += size;
ret = fread(buffer, size, 1, mdres->in);
if (ret != 1) {
error("failed to read buffer: %m");
return -EIO;
}
}
*next = bytenr;
return 0;
}
static int wait_for_worker(struct mdrestore_struct *mdres)
{
int ret = 0;
pthread_mutex_lock(&mdres->mutex);
ret = mdres->error;
while (!ret && mdres->num_items > 0) {
struct timespec ts = {
.tv_sec = 0,
.tv_nsec = 10000000,
};
pthread_mutex_unlock(&mdres->mutex);
nanosleep(&ts, NULL);
pthread_mutex_lock(&mdres->mutex);
ret = mdres->error;
}
pthread_mutex_unlock(&mdres->mutex);
return ret;
}
/*
* Check if a range [start, start + len] has ANY bytes covered by system chunk
* ranges.
*/
static bool is_in_sys_chunks(struct mdrestore_struct *mdres, u64 start, u64 len)
{
struct rb_node *node = mdres->sys_chunks.root.rb_node;
struct cache_extent *entry;
struct cache_extent *next;
struct cache_extent *prev;
if (start > mdres->sys_chunk_end)
return false;
while (node) {
entry = rb_entry(node, struct cache_extent, rb_node);
if (start > entry->start) {
if (!node->rb_right)
break;
node = node->rb_right;
} else if (start < entry->start) {
if (!node->rb_left)
break;
node = node->rb_left;
} else {
/* Already in a system chunk */
return true;
}
}
if (!node)
return false;
entry = rb_entry(node, struct cache_extent, rb_node);
/* Now we have entry which is the nearst chunk around @start */
if (start > entry->start) {
prev = entry;
next = next_cache_extent(entry);
} else {
prev = prev_cache_extent(entry);
next = entry;
}
if (prev && prev->start + prev->size > start)
return true;
if (next && start + len > next->start)
return true;
return false;
}
static int read_chunk_tree_block(struct mdrestore_struct *mdres,
struct extent_buffer *eb)
{
int i;
for (i = 0; i < btrfs_header_nritems(eb); i++) {
struct btrfs_chunk *chunk;
struct fs_chunk *fs_chunk;
struct btrfs_key key;
u64 type;
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_CHUNK_ITEM_KEY)
continue;
fs_chunk = malloc(sizeof(struct fs_chunk));
if (!fs_chunk) {
error("not enough memory to allocate chunk");
return -ENOMEM;
}
memset(fs_chunk, 0, sizeof(*fs_chunk));
chunk = btrfs_item_ptr(eb, i, struct btrfs_chunk);
fs_chunk->logical = key.offset;
fs_chunk->physical = btrfs_stripe_offset_nr(eb, chunk, 0);
fs_chunk->bytes = btrfs_chunk_length(eb, chunk);
INIT_LIST_HEAD(&fs_chunk->list);
if (tree_search(&mdres->physical_tree, &fs_chunk->p,
physical_cmp, 1) != NULL)
list_add(&fs_chunk->list, &mdres->overlapping_chunks);
else
tree_insert(&mdres->physical_tree, &fs_chunk->p,
physical_cmp);
type = btrfs_chunk_type(eb, chunk);
if (type & BTRFS_BLOCK_GROUP_DUP) {
fs_chunk->physical_dup =
btrfs_stripe_offset_nr(eb, chunk, 1);
}
if (fs_chunk->physical_dup + fs_chunk->bytes >
mdres->last_physical_offset)
mdres->last_physical_offset = fs_chunk->physical_dup +
fs_chunk->bytes;
else if (fs_chunk->physical + fs_chunk->bytes >
mdres->last_physical_offset)
mdres->last_physical_offset = fs_chunk->physical +
fs_chunk->bytes;
mdres->alloced_chunks += fs_chunk->bytes;
/* in dup case, fs_chunk->bytes should add twice */
if (fs_chunk->physical_dup)
mdres->alloced_chunks += fs_chunk->bytes;
tree_insert(&mdres->chunk_tree, &fs_chunk->l, chunk_cmp);
}
return 0;
}
static int read_chunk_block(struct mdrestore_struct *mdres, u8 *buffer,
u64 item_bytenr, u32 bufsize,
u64 cluster_bytenr)
{
struct extent_buffer *eb;
u32 nodesize = mdres->nodesize;
u64 bytenr;
size_t cur_offset;
int ret = 0;
eb = alloc_dummy_eb(0, mdres->nodesize);
if (!eb)
return -ENOMEM;
for (cur_offset = 0; cur_offset < bufsize; cur_offset += nodesize) {
bytenr = item_bytenr + cur_offset;
if (!is_in_sys_chunks(mdres, bytenr, nodesize))
continue;
memcpy(eb->data, buffer + cur_offset, nodesize);
if (btrfs_header_bytenr(eb) != bytenr) {
error(
"eb bytenr does not match found bytenr: %llu != %llu",
(unsigned long long)btrfs_header_bytenr(eb),
(unsigned long long)bytenr);
ret = -EUCLEAN;
break;
}
if (memcmp(mdres->fsid, eb->data +
offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE)) {
error(
"filesystem metadata UUID of eb %llu does not match",
bytenr);
ret = -EUCLEAN;
break;
}
if (btrfs_header_owner(eb) != BTRFS_CHUNK_TREE_OBJECTID) {
error("wrong eb %llu owner %llu",
(unsigned long long)bytenr,
(unsigned long long)btrfs_header_owner(eb));
ret = -EUCLEAN;
break;
}
/*
* No need to search node, as we will iterate all tree blocks
* in chunk tree, only need to bother leaves.
*/
if (btrfs_header_level(eb))
continue;
ret = read_chunk_tree_block(mdres, eb);
if (ret < 0)
break;
}
free(eb);
return ret;
}
/*
* This function will try to find all chunk items in the dump image.
*
* This function will iterate all clusters, and find any item inside system
* chunk ranges. For such item, it will try to read them as tree blocks, and
* find CHUNK_ITEMs, add them to @mdres.
*/
static int search_for_chunk_blocks(struct mdrestore_struct *mdres)
{
struct meta_cluster *cluster;
struct meta_cluster_header *header;
struct meta_cluster_item *item;
u64 current_cluster = 0, bytenr;
u64 item_bytenr;
u32 bufsize, nritems, i;
u32 max_size = current_version->max_pending_size * 2;
u8 *buffer, *tmp = NULL;
int ret = 0;
cluster = malloc(BLOCK_SIZE);
if (!cluster) {
error("not enough memory for cluster");
return -ENOMEM;
}
buffer = malloc(max_size);
if (!buffer) {
error("not enough memory for buffer");
free(cluster);
return -ENOMEM;
}
if (mdres->compress_method == COMPRESS_ZLIB) {
tmp = malloc(max_size);
if (!tmp) {
error("not enough memory for buffer");
free(cluster);
free(buffer);
return -ENOMEM;
}
}
bytenr = current_cluster;
/* Main loop, iterating all clusters */
while (1) {
if (fseek(mdres->in, current_cluster, SEEK_SET)) {
error("seek failed: %m");
ret = -EIO;
goto out;
}
ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
if (ret == 0) {
if (feof(mdres->in))
goto out;
error(
"unknown state after reading cluster at %llu, probably corrupted data",
current_cluster);
ret = -EIO;
goto out;
} else if (ret < 0) {
error("unable to read image at %llu: %m",
current_cluster);
goto out;
}
ret = 0;
header = &cluster->header;
if (le64_to_cpu(header->magic) != current_version->magic_cpu ||
le64_to_cpu(header->bytenr) != current_cluster) {
error("bad header in metadump image");
ret = -EIO;
goto out;
}
/* We're already over the system chunk end, no need to search*/
if (current_cluster > mdres->sys_chunk_end)
goto out;
bytenr += BLOCK_SIZE;
nritems = le32_to_cpu(header->nritems);
/* Search items for tree blocks in sys chunks */
for (i = 0; i < nritems; i++) {
size_t size;
item = &cluster->items[i];
bufsize = le32_to_cpu(item->size);
item_bytenr = le64_to_cpu(item->bytenr);
/*
* Only data extent/free space cache can be that big,
* adjacent tree blocks won't be able to be merged
* beyond max_size. Also, we can skip super block.
*/
if (bufsize > max_size ||
!is_in_sys_chunks(mdres, item_bytenr, bufsize) ||
item_bytenr == BTRFS_SUPER_INFO_OFFSET) {
ret = fseek(mdres->in, bufsize, SEEK_CUR);
if (ret < 0) {
error("failed to seek: %m");
ret = -errno;
goto out;
}
bytenr += bufsize;
continue;
}
if (mdres->compress_method == COMPRESS_ZLIB) {
ret = fread(tmp, bufsize, 1, mdres->in);
if (ret != 1) {
error("read error: %m");
ret = -EIO;
goto out;
}
size = max_size;
ret = uncompress(buffer,
(unsigned long *)&size, tmp,
bufsize);
if (ret != Z_OK) {
error("decompression failed with %d",
ret);
ret = -EIO;
goto out;
}
} else {
ret = fread(buffer, bufsize, 1, mdres->in);
if (ret != 1) {
error("read error: %m");
ret = -EIO;
goto out;
}
size = bufsize;
}
ret = 0;
ret = read_chunk_block(mdres, buffer, item_bytenr, size,
current_cluster);
if (ret < 0) {
error(
"failed to search tree blocks in item bytenr %llu size %zu",
item_bytenr, size);
goto out;
}
bytenr += bufsize;
}
if (bytenr & BLOCK_MASK)
bytenr += BLOCK_SIZE - (bytenr & BLOCK_MASK);
current_cluster = bytenr;
}
out:
free(tmp);
free(buffer);
free(cluster);
return ret;
}
/*
* Add system chunks in super blocks into mdres->sys_chunks, so later we can
* determine if an item is a chunk tree block.
*/
static int add_sys_array(struct mdrestore_struct *mdres,
struct btrfs_super_block *sb)
{
struct btrfs_disk_key *disk_key;
struct btrfs_key key;
struct btrfs_chunk *chunk;
struct cache_extent *cache;
u32 cur_offset;
u32 len = 0;
u32 array_size;
u8 *array_ptr;
int ret = 0;
array_size = btrfs_super_sys_array_size(sb);
array_ptr = sb->sys_chunk_array;
cur_offset = 0;
while (cur_offset < array_size) {
u32 num_stripes;
disk_key = (struct btrfs_disk_key *)array_ptr;
len = sizeof(*disk_key);
if (cur_offset + len > array_size)
goto out_short_read;
btrfs_disk_key_to_cpu(&key, disk_key);
array_ptr += len;
cur_offset += len;
if (key.type != BTRFS_CHUNK_ITEM_KEY) {
error("unexpected item type %u in sys_array offset %u",
key.type, cur_offset);
ret = -EUCLEAN;
break;
}
chunk = (struct btrfs_chunk *)array_ptr;
/*
* At least one btrfs_chunk with one stripe must be present,
* exact stripe count check comes afterwards
*/
len = btrfs_chunk_item_size(1);
if (cur_offset + len > array_size)
goto out_short_read;
num_stripes = btrfs_stack_chunk_num_stripes(chunk);
if (!num_stripes) {
error(
"invalid number of stripes %u in sys_array at offset %u",
num_stripes, cur_offset);
ret = -EIO;
break;
}
len = btrfs_chunk_item_size(num_stripes);
if (cur_offset + len > array_size)
goto out_short_read;
if (btrfs_stack_chunk_type(chunk) &
BTRFS_BLOCK_GROUP_SYSTEM) {
ret = add_merge_cache_extent(&mdres->sys_chunks,
key.offset,
btrfs_stack_chunk_length(chunk));
if (ret < 0)
break;
}
array_ptr += len;
cur_offset += len;
}
/* Get the last system chunk end as a quicker check */
cache = last_cache_extent(&mdres->sys_chunks);
if (!cache) {
error("no system chunk found in super block");
return -EUCLEAN;
}
mdres->sys_chunk_end = cache->start + cache->size - 1;
return ret;
out_short_read:
error("sys_array too short to read %u bytes at offset %u",
len, cur_offset);
return -EUCLEAN;
}
static int build_chunk_tree(struct mdrestore_struct *mdres,
struct meta_cluster *cluster)
{
struct btrfs_super_block *super;
struct meta_cluster_header *header;
struct meta_cluster_item *item = NULL;
u32 i, nritems;
u64 bytenr = 0;
u8 *buffer;
int ret;
/* We can't seek with stdin so don't bother doing this */
if (mdres->in == stdin)
return 0;
ret = fread(cluster, BLOCK_SIZE, 1, mdres->in);
if (ret <= 0) {
error("unable to read cluster: %m");
return -EIO;
}
ret = 0;
header = &cluster->header;
if (le64_to_cpu(header->magic) != current_version->magic_cpu ||
le64_to_cpu(header->bytenr) != 0) {
error("bad header in metadump image");
return -EIO;
}
bytenr += BLOCK_SIZE;
mdres->compress_method = header->compress;
nritems = le32_to_cpu(header->nritems);
for (i = 0; i < nritems; i++) {
item = &cluster->items[i];
if (le64_to_cpu(item->bytenr) == BTRFS_SUPER_INFO_OFFSET)
break;
bytenr += le32_to_cpu(item->size);
if (fseek(mdres->in, le32_to_cpu(item->size), SEEK_CUR)) {
error("seek failed: %m");
return -EIO;
}
}
if (!item || le64_to_cpu(item->bytenr) != BTRFS_SUPER_INFO_OFFSET) {
error("did not find superblock at %llu",
le64_to_cpu(item->bytenr));
return -EINVAL;
}
buffer = malloc(le32_to_cpu(item->size));
if (!buffer) {
error("not enough memory to allocate buffer");
return -ENOMEM;
}
ret = fread(buffer, le32_to_cpu(item->size), 1, mdres->in);
if (ret != 1) {
error("unable to read buffer: %m");
free(buffer);
return -EIO;
}
if (mdres->compress_method == COMPRESS_ZLIB) {
size_t size = BTRFS_SUPER_INFO_SIZE;
u8 *tmp;
tmp = malloc(size);
if (!tmp) {
free(buffer);
return -ENOMEM;
}
ret = uncompress(tmp, (unsigned long *)&size,
buffer, le32_to_cpu(item->size));
if (ret != Z_OK) {
error("decompression failed with %d", ret);
free(buffer);
free(tmp);
return -EIO;
}
free(buffer);
buffer = tmp;
}
pthread_mutex_lock(&mdres->mutex);
super = (struct btrfs_super_block *)buffer;
ret = btrfs_check_super(super, 0);
if (ret < 0) {
error("invalid superblock");
return ret;
}
ret = add_sys_array(mdres, super);
if (ret < 0) {
error("failed to read system chunk array");
free(buffer);
pthread_mutex_unlock(&mdres->mutex);
return ret;
}
mdres->nodesize = btrfs_super_nodesize(super);
if (btrfs_super_incompat_flags(super) &
BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
memcpy(mdres->fsid, super->metadata_uuid, BTRFS_FSID_SIZE);
else
memcpy(mdres->fsid, super->fsid, BTRFS_FSID_SIZE);
memcpy(mdres->uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
mdres->devid = le64_to_cpu(super->dev_item.devid);
free(buffer);
pthread_mutex_unlock(&mdres->mutex);
return search_for_chunk_blocks(mdres);
}
static int range_contains_super(u64 physical, u64 bytes)
{
u64 super_bytenr;
int i;
for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
super_bytenr = btrfs_sb_offset(i);
if (super_bytenr >= physical &&
super_bytenr < physical + bytes)
return 1;
}
return 0;
}
static void remap_overlapping_chunks(struct mdrestore_struct *mdres)
{
struct fs_chunk *fs_chunk;
while (!list_empty(&mdres->overlapping_chunks)) {
fs_chunk = list_first_entry(&mdres->overlapping_chunks,
struct fs_chunk, list);
list_del_init(&fs_chunk->list);
if (range_contains_super(fs_chunk->physical,
fs_chunk->bytes)) {
warning(
"remapping a chunk that had a super mirror inside of it, clearing space cache so we don't end up with corruption");
mdres->clear_space_cache = 1;
}
fs_chunk->physical = mdres->last_physical_offset;
tree_insert(&mdres->physical_tree, &fs_chunk->p, physical_cmp);
mdres->last_physical_offset += fs_chunk->bytes;
}
}
static int fixup_device_size(struct btrfs_trans_handle *trans,
struct mdrestore_struct *mdres, int out_fd)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_dev_item *dev_item;
struct btrfs_dev_extent *dev_ext;
struct btrfs_device *dev;
struct btrfs_path path;
struct extent_buffer *leaf;
struct btrfs_root *root = fs_info->chunk_root;
struct btrfs_key key;
struct stat buf;
u64 devid, cur_devid;
u64 dev_size; /* Get from last dev extents */
int ret;
dev_item = &fs_info->super_copy->dev_item;
btrfs_init_path(&path);
devid = btrfs_stack_device_id(dev_item);
key.objectid = devid;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = (u64)-1;
dev = list_first_entry(&fs_info->fs_devices->devices,
struct btrfs_device, dev_list);
ret = btrfs_search_slot(NULL, fs_info->dev_root, &key, &path, 0, 0);
if (ret < 0) {
errno = -ret;
error("failed to locate last dev extent of devid %llu: %m",
devid);
btrfs_release_path(&path);
return ret;
}
if (ret == 0) {
error("found invalid dev extent devid %llu offset -1", devid);
btrfs_release_path(&path);
return -EUCLEAN;
}
ret = btrfs_previous_item(fs_info->dev_root, &path, devid,
BTRFS_DEV_EXTENT_KEY);
if (ret > 0)
ret = -ENOENT;
if (ret < 0) {
errno = -ret;
error("failed to locate last dev extent of devid %llu: %m",
devid);
btrfs_release_path(&path);
return ret;
}
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
dev_ext = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_dev_extent);
dev_size = key.offset + btrfs_dev_extent_length(path.nodes[0], dev_ext);
btrfs_release_path(&path);
btrfs_set_stack_device_total_bytes(dev_item, dev_size);
btrfs_set_stack_device_bytes_used(dev_item, mdres->alloced_chunks);
dev->total_bytes = dev_size;
dev->bytes_used = mdres->alloced_chunks;
btrfs_set_super_total_bytes(fs_info->super_copy, dev_size);
ret = fstat(out_fd, &buf);
if (ret < 0) {
error("failed to stat result image: %m");
return -errno;
}
if (S_ISREG(buf.st_mode)) {
/* Don't forget to enlarge the real file */
ret = ftruncate64(out_fd, dev_size);
if (ret < 0) {
error("failed to enlarge result image: %m");
return -errno;
}
}
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = 0;
again:
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
if (ret < 0) {
error("search failed: %d", ret);
return ret;
}
while (1) {
leaf = path.nodes[0];
if (path.slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, &path);
if (ret < 0) {
error("cannot go to next leaf %d", ret);
exit(1);
}
if (ret > 0) {
ret = 0;
break;
}
leaf = path.nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
if (key.type > BTRFS_DEV_ITEM_KEY)
break;
if (key.type != BTRFS_DEV_ITEM_KEY) {
path.slots[0]++;
continue;
}
dev_item = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_dev_item);
cur_devid = btrfs_device_id(leaf, dev_item);
if (devid != cur_devid) {
ret = btrfs_del_item(trans, root, &path);
if (ret) {
error("cannot delete item: %d", ret);
exit(1);
}
btrfs_release_path(&path);
goto again;
}
btrfs_set_device_total_bytes(leaf, dev_item, dev_size);
btrfs_set_device_bytes_used(leaf, dev_item,
mdres->alloced_chunks);
btrfs_mark_buffer_dirty(leaf);
path.slots[0]++;
}
btrfs_release_path(&path);
return 0;
}
static void fixup_block_groups(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_block_group *bg;
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct cache_extent *ce;
struct map_lookup *map;
u64 extra_flags;
for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
ce = next_cache_extent(ce)) {
map = container_of(ce, struct map_lookup, ce);
bg = btrfs_lookup_block_group(fs_info, ce->start);
if (!bg) {
warning(
"cannot find block group %llu, filesystem may not be mountable",
ce->start);
continue;
}
extra_flags = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
if (bg->flags == map->type)
continue;
/* Update the block group item and mark the bg dirty */
bg->flags = map->type;
if (list_empty(&bg->dirty_list))
list_add_tail(&bg->dirty_list, &trans->dirty_bgs);
/*
* Chunk and bg flags can be different, changing bg flags
* without update avail_data/meta_alloc_bits will lead to
* ENOSPC.
* So here we set avail_*_alloc_bits to match chunk types.
*/
if (map->type & BTRFS_BLOCK_GROUP_DATA)
fs_info->avail_data_alloc_bits = extra_flags;
if (map->type & BTRFS_BLOCK_GROUP_METADATA)
fs_info->avail_metadata_alloc_bits = extra_flags;
if (map->type & BTRFS_BLOCK_GROUP_SYSTEM)
fs_info->avail_system_alloc_bits = extra_flags;
}
}
static int remove_all_dev_extents(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *root = fs_info->dev_root;
struct btrfs_path path;
struct btrfs_key key;
struct extent_buffer *leaf;
int slot;
int ret;
key.objectid = 1;
key.type = BTRFS_DEV_EXTENT_KEY;
key.offset = 0;
btrfs_init_path(&path);
ret = btrfs_search_slot(trans, root, &key, &path, -1, 1);
if (ret < 0) {
errno = -ret;
error("failed to search dev tree: %m");
return ret;
}
while (1) {
slot = path.slots[0];
leaf = path.nodes[0];
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, &path);
if (ret < 0) {
errno = -ret;
error("failed to search dev tree: %m");
goto out;
}
if (ret > 0) {
ret = 0;
goto out;
}
}
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.type != BTRFS_DEV_EXTENT_KEY)
break;
ret = btrfs_del_item(trans, root, &path);
if (ret < 0) {
errno = -ret;
error("failed to delete dev extent %llu, %llu: %m",
key.objectid, key.offset);
goto out;
}
}
out:
btrfs_release_path(&path);
return ret;
}
static int fixup_dev_extents(struct btrfs_trans_handle *trans)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
struct btrfs_device *dev;
struct cache_extent *ce;
struct map_lookup *map;
u64 devid = btrfs_stack_device_id(&fs_info->super_copy->dev_item);
int i;
int ret;
ret = remove_all_dev_extents(trans);
if (ret < 0) {
errno = -ret;
error("failed to remove all existing dev extents: %m");
}
dev = btrfs_find_device(fs_info, devid, NULL, NULL);
if (!dev) {
error("failed to find devid %llu", devid);
return -ENODEV;
}
/* Rebuild all dev extents using chunk maps */
for (ce = search_cache_extent(&map_tree->cache_tree, 0); ce;
ce = next_cache_extent(ce)) {
u64 stripe_len;
map = container_of(ce, struct map_lookup, ce);
stripe_len = calc_stripe_length(map->type, ce->size,
map->num_stripes);
for (i = 0; i < map->num_stripes; i++) {
ret = btrfs_insert_dev_extent(trans, dev, ce->start,
stripe_len, map->stripes[i].physical);
if (ret < 0) {
errno = -ret;
error(
"failed to insert dev extent %llu %llu: %m",
devid, map->stripes[i].physical);
goto out;
}
}
}
out:
return ret;
}
static int iter_tree_blocks(struct btrfs_fs_info *fs_info,
struct extent_buffer *eb, bool pin)
{
void (*func)(struct btrfs_fs_info *fs_info, u64 bytenr, u64 num_bytes);
int nritems;
int level;
int i;
int ret;
if (pin)
func = btrfs_pin_extent;
else
func = btrfs_unpin_extent;
func(fs_info, eb->start, eb->len);
level = btrfs_header_level(eb);
nritems = btrfs_header_nritems(eb);
if (level == 0)
return 0;
for (i = 0; i < nritems; i++) {
u64 bytenr;
struct extent_buffer *tmp;
if (level == 0) {
struct btrfs_root_item *ri;
struct btrfs_key key;
btrfs_item_key_to_cpu(eb, &key, i);
if (key.type != BTRFS_ROOT_ITEM_KEY)
continue;
ri = btrfs_item_ptr(eb, i, struct btrfs_root_item);
bytenr = btrfs_disk_root_bytenr(eb, ri);
tmp = read_tree_block(fs_info, bytenr, 0);
if (!extent_buffer_uptodate(tmp)) {
error("unable to read log root block");
return -EIO;
}
ret = iter_tree_blocks(fs_info, tmp, pin);
free_extent_buffer(tmp);
if (ret)
return ret;
} else {
bytenr = btrfs_node_blockptr(eb, i);
tmp = read_tree_block(fs_info, bytenr, 0);
if (!extent_buffer_uptodate(tmp)) {
error("unable to read log root block");
return -EIO;
}
ret = iter_tree_blocks(fs_info, tmp, pin);
free_extent_buffer(tmp);
if (ret)
return ret;
}
}
return 0;
}
static int fixup_chunks_and_devices(struct btrfs_fs_info *fs_info,
struct mdrestore_struct *mdres, int out_fd)
{
struct btrfs_trans_handle *trans;
int ret;
if (btrfs_super_log_root(fs_info->super_copy)) {
warning(
"log tree detected, its generation will not match superblock");
}
trans = btrfs_start_transaction(fs_info->tree_root, 1);
if (IS_ERR(trans)) {
error("cannot start transaction %ld", PTR_ERR(trans));
return PTR_ERR(trans);
}
if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree)
iter_tree_blocks(fs_info, fs_info->log_root_tree->node, true);
fixup_block_groups(trans);
ret = fixup_dev_extents(trans);
if (ret < 0)
goto error;
ret = fixup_device_size(trans, mdres, out_fd);
if (ret < 0)
goto error;
ret = btrfs_commit_transaction(trans, fs_info->tree_root);
if (ret) {
error("unable to commit transaction: %d", ret);
return ret;
}
if (btrfs_super_log_root(fs_info->super_copy) && fs_info->log_root_tree)
iter_tree_blocks(fs_info, fs_info->log_root_tree->node, false);
return 0;
error:
errno = -ret;
error(
"failed to fix chunks and devices mapping, the fs may not be mountable: %m");
btrfs_abort_transaction(trans, ret);
return ret;
}
static int restore_metadump(const char *input, FILE *out, int old_restore,
int num_threads, int fixup_offset,
const char *target, int multi_devices)
{
struct meta_cluster *cluster = NULL;
struct meta_cluster_header *header;
struct mdrestore_struct mdrestore;
struct btrfs_fs_info *info = NULL;
u64 bytenr = 0;
FILE *in = NULL;
int ret = 0;
if (!strcmp(input, "-")) {
in = stdin;
} else {
in = fopen(input, "r");
if (!in) {
error("unable to open metadump image: %m");
return 1;
}
}
/* NOTE: open with write mode */
if (fixup_offset) {
struct open_ctree_flags ocf = { 0 };
ocf.filename = target;
ocf.flags = OPEN_CTREE_WRITES | OPEN_CTREE_RESTORE |
OPEN_CTREE_PARTIAL;
info = open_ctree_fs_info(&ocf);
if (!info) {
error("open ctree failed");
ret = -EIO;
goto failed_open;
}
}
cluster = malloc(BLOCK_SIZE);
if (!cluster) {
error("not enough memory for cluster");
ret = -ENOMEM;
goto failed_info;
}
ret = mdrestore_init(&mdrestore, in, out, old_restore, num_threads,
fixup_offset, info, multi_devices);
if (ret) {
error("failed to initialize metadata restore state: %d", ret);
goto failed_cluster;
}
if (!multi_devices && !old_restore) {
ret = build_chunk_tree(&mdrestore, cluster);
if (ret) {
error("failed to build chunk tree");
goto out;
}
if (!list_empty(&mdrestore.overlapping_chunks))
remap_overlapping_chunks(&mdrestore);
}
if (in != stdin && fseek(in, 0, SEEK_SET)) {
error("seek failed: %m");
goto out;
}
while (!mdrestore.error) {
ret = fread(cluster, BLOCK_SIZE, 1, in);
if (!ret)
break;
header = &cluster->header;
if (le64_to_cpu(header->magic) != current_version->magic_cpu ||
le64_to_cpu(header->bytenr) != bytenr) {
error("bad header in metadump image");
ret = -EIO;
break;
}
ret = add_cluster(cluster, &mdrestore, &bytenr);
if (ret) {
error("failed to add cluster: %d", ret);
break;
}
}
ret = wait_for_worker(&mdrestore);
if (!ret && !multi_devices && !old_restore &&
btrfs_super_num_devices(mdrestore.original_super) != 1) {
struct btrfs_root *root;
root = open_ctree_fd(fileno(out), target, 0,
OPEN_CTREE_PARTIAL |
OPEN_CTREE_WRITES |
OPEN_CTREE_NO_DEVICES |
OPEN_CTREE_ALLOW_TRANSID_MISMATCH);
if (!root) {
error("open ctree failed in %s", target);
ret = -EIO;
goto out;
}
info = root->fs_info;
ret = fixup_chunks_and_devices(info, &mdrestore, fileno(out));
close_ctree(info->chunk_root);
if (ret)
goto out;
} else {
struct btrfs_root *root;
struct stat st;
u64 dev_size;
if (!info) {
root = open_ctree_fd(fileno(out), target, 0,
OPEN_CTREE_ALLOW_TRANSID_MISMATCH);
if (!root) {
error("open ctree failed in %s", target);
ret = -EIO;
goto out;
}
info = root->fs_info;
dev_size = btrfs_stack_device_total_bytes(
&info->super_copy->dev_item);
close_ctree(root);
info = NULL;
} else {
dev_size = btrfs_stack_device_total_bytes(
&info->super_copy->dev_item);
}
/*
* We don't need extra tree modification, but if the output is
* a file, we need to enlarge the output file so that 5.11+
* kernel won't report an error.
*/
ret = fstat(fileno(out), &st);
if (ret < 0) {
error("failed to stat result image: %m");
ret = -errno;
goto out;
}
if (S_ISREG(st.st_mode) && st.st_size < dev_size) {
ret = ftruncate64(fileno(out), dev_size);
if (ret < 0) {
error(
"failed to enlarge result image file from %llu to %llu: %m",
(unsigned long long)st.st_size, dev_size);
ret = -errno;
goto out;
}
}
}
out:
mdrestore_destroy(&mdrestore, num_threads);
failed_cluster:
free(cluster);
failed_info:
if (fixup_offset && info)
close_ctree(info->chunk_root);
failed_open:
if (in != stdin)
fclose(in);
return ret;
}
static int update_disk_super_on_device(struct btrfs_fs_info *info,
const char *other_dev, u64 cur_devid)
{
struct btrfs_key key;
struct extent_buffer *leaf;
struct btrfs_path path;
struct btrfs_dev_item *dev_item;
struct btrfs_super_block disk_super;
char dev_uuid[BTRFS_UUID_SIZE];
char fs_uuid[BTRFS_UUID_SIZE];
u64 devid, type, io_align, io_width;
u64 sector_size, total_bytes, bytes_used;
int fp = -1;
int ret;
key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
key.type = BTRFS_DEV_ITEM_KEY;
key.offset = cur_devid;
btrfs_init_path(&path);
ret = btrfs_search_slot(NULL, info->chunk_root, &key, &path, 0, 0);
if (ret) {
error("search key failed: %d", ret);
ret = -EIO;
goto out;
}
leaf = path.nodes[0];
dev_item = btrfs_item_ptr(leaf, path.slots[0],
struct btrfs_dev_item);
devid = btrfs_device_id(leaf, dev_item);
if (devid != cur_devid) {
error("devid mismatch: %llu != %llu",
(unsigned long long)devid,
(unsigned long long)cur_devid);
ret = -EIO;
goto out;
}
type = btrfs_device_type(leaf, dev_item);
io_align = btrfs_device_io_align(leaf, dev_item);
io_width = btrfs_device_io_width(leaf, dev_item);
sector_size = btrfs_device_sector_size(leaf, dev_item);
total_bytes = btrfs_device_total_bytes(leaf, dev_item);
bytes_used = btrfs_device_bytes_used(leaf, dev_item);
read_extent_buffer(leaf, dev_uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE);
read_extent_buffer(leaf, fs_uuid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE);
btrfs_release_path(&path);
printf("update disk super on %s devid=%llu\n", other_dev, devid);
/* update other devices' super block */
fp = open(other_dev, O_CREAT | O_RDWR, 0600);
if (fp < 0) {
error("could not open %s: %m", other_dev);
ret = -EIO;
goto out;
}
memcpy(&disk_super, info->super_copy, BTRFS_SUPER_INFO_SIZE);
dev_item = &disk_super.dev_item;
btrfs_set_stack_device_type(dev_item, type);
btrfs_set_stack_device_id(dev_item, devid);
btrfs_set_stack_device_total_bytes(dev_item, total_bytes);
btrfs_set_stack_device_bytes_used(dev_item, bytes_used);
btrfs_set_stack_device_io_align(dev_item, io_align);
btrfs_set_stack_device_io_width(dev_item, io_width);
btrfs_set_stack_device_sector_size(dev_item, sector_size);
memcpy(dev_item->uuid, dev_uuid, BTRFS_UUID_SIZE);
memcpy(dev_item->fsid, fs_uuid, BTRFS_UUID_SIZE);
csum_block((u8 *)&disk_super, BTRFS_SUPER_INFO_SIZE);
ret = pwrite64(fp, &disk_super, BTRFS_SUPER_INFO_SIZE, BTRFS_SUPER_INFO_OFFSET);
if (ret != BTRFS_SUPER_INFO_SIZE) {
if (ret < 0) {
errno = ret;
error("cannot write superblock: %m");
} else {
error("cannot write superblock");
}
ret = -EIO;
goto out;
}
write_backup_supers(fp, (u8 *)&disk_super);
out:
if (fp != -1)
close(fp);
return ret;
}
static void print_usage(int ret)
{
printf("usage: btrfs-image [options] source target\n");
printf("\t-r \trestore metadump image\n");
printf("\t-c value\tcompression level (0 ~ 9)\n");
printf("\t-t value\tnumber of threads (1 ~ 32)\n");
printf("\t-o \tdon't mess with the chunk tree when restoring\n");
printf("\t-s \tsanitize file names, use once to just use garbage, use twice if you want crc collisions\n");
printf("\t-w \twalk all trees instead of using extent tree, do this if your extent tree is broken\n");
printf("\t-m \trestore for multiple devices\n");
printf("\t-d \talso dump data, conflicts with -w\n");
printf("\n");
printf("\tIn the dump mode, source is the btrfs device and target is the output file (use '-' for stdout).\n");
printf("\tIn the restore mode, source is the dumped image and target is the btrfs device/file.\n");
exit(ret);
}
int BOX_MAIN(image)(int argc, char *argv[])
{
char *source;
char *target;
u64 num_threads = 0;
u64 compress_level = 0;
int create = 1;
int old_restore = 0;
int walk_trees = 0;
int multi_devices = 0;
int ret;
enum sanitize_mode sanitize = SANITIZE_NONE;
int dev_cnt = 0;
bool dump_data = false;
int usage_error = 0;
FILE *out;
while (1) {
static const struct option long_options[] = {
{ "help", no_argument, NULL, GETOPT_VAL_HELP},
{ NULL, 0, NULL, 0 }
};
int c = getopt_long(argc, argv, "rc:t:oswmd", long_options, NULL);
if (c < 0)
break;
switch (c) {
case 'r':
create = 0;
break;
case 't':
num_threads = arg_strtou64(optarg);
if (num_threads > MAX_WORKER_THREADS) {
error("number of threads out of range: %llu > %d",
(unsigned long long)num_threads,
MAX_WORKER_THREADS);
return 1;
}
break;
case 'c':
compress_level = arg_strtou64(optarg);
if (compress_level > 9) {
error("compression level out of range: %llu",
(unsigned long long)compress_level);
return 1;
}
break;
case 'o':
old_restore = 1;
break;
case 's':
if (sanitize == SANITIZE_NONE)
sanitize = SANITIZE_NAMES;
else if (sanitize == SANITIZE_NAMES)
sanitize = SANITIZE_COLLISIONS;
break;
case 'w':
walk_trees = 1;
break;
case 'm':
create = 0;
multi_devices = 1;
break;
case 'd':
dump_data = true;
break;
case GETOPT_VAL_HELP:
default:
print_usage(c != GETOPT_VAL_HELP);
}
}
set_argv0(argv);
if (check_argc_min(argc - optind, 2))
print_usage(1);
dev_cnt = argc - optind - 1;
#if !EXPERIMENTAL
if (dump_data) {
error(
"data dump feature is experimental and is not configured in this build");
print_usage(1);
}
#endif
if (create) {
if (old_restore) {
error(
"create and restore cannot be used at the same time");
usage_error++;
}
if (dump_data && walk_trees) {
error("-d conflicts with -w option");
usage_error++;
}
} else {
if (walk_trees || sanitize != SANITIZE_NONE || compress_level ||
dump_data) {
error(
"using -w, -s, -c, -d options for restore makes no sense");
usage_error++;
}
if (multi_devices && dev_cnt < 2) {
error("not enough devices specified for -m option");
usage_error++;
}
if (!multi_devices && dev_cnt != 1) {
error("accepts only 1 device without -m option");
usage_error++;
}
}
if (usage_error)
print_usage(1);
source = argv[optind];
target = argv[optind + 1];
if (create && !strcmp(target, "-")) {
out = stdout;
} else {
out = fopen(target, "w+");
if (!out) {
error("unable to create target file %s", target);
exit(1);
}
}
if (compress_level > 0 || create == 0) {
if (num_threads == 0) {
long tmp = sysconf(_SC_NPROCESSORS_ONLN);
if (tmp <= 0)
tmp = 1;
tmp = min_t(long, tmp, MAX_WORKER_THREADS);
num_threads = tmp;
}
} else {
num_threads = 0;
}
if (create) {
ret = check_mounted(source);
if (ret < 0) {
errno = -ret;
warning("unable to check mount status of: %m");
} else if (ret) {
warning("%s already mounted, results may be inaccurate",
source);
}
ret = create_metadump(source, out, num_threads,
compress_level, sanitize, walk_trees,
dump_data);
} else {
ret = restore_metadump(source, out, old_restore, num_threads,
0, target, multi_devices);
}
if (ret) {
error("%s failed: %d", (create) ? "create" : "restore", ret);
goto out;
}
/* extended support for multiple devices */
if (!create && multi_devices) {
struct open_ctree_flags ocf = { 0 };
struct btrfs_fs_info *info;
u64 total_devs;
int i;
ocf.filename = target;
ocf.flags = OPEN_CTREE_PARTIAL | OPEN_CTREE_RESTORE;
info = open_ctree_fs_info(&ocf);
if (!info) {
error("open ctree failed at %s", target);
return 1;
}
total_devs = btrfs_super_num_devices(info->super_copy);
if (total_devs != dev_cnt) {
error("it needs %llu devices but has only %d",
total_devs, dev_cnt);
close_ctree(info->chunk_root);
goto out;
}
/* update super block on other disks */
for (i = 2; i <= dev_cnt; i++) {
ret = update_disk_super_on_device(info,
argv[optind + i], (u64)i);
if (ret) {
error("update disk superblock failed devid %d: %d",
i, ret);
close_ctree(info->chunk_root);
exit(1);
}
}
close_ctree(info->chunk_root);
/* fix metadata block to map correct chunk */
ret = restore_metadump(source, out, 0, num_threads, 1,
target, 1);
if (ret) {
error("unable to fixup metadump: %d", ret);
exit(1);
}
}
out:
if (out == stdout) {
fflush(out);
} else {
fclose(out);
if (ret && create) {
int unlink_ret;
unlink_ret = unlink(target);
if (unlink_ret)
error("unlink output file %s failed: %m",
target);
}
}
btrfs_close_all_devices();
return !!ret;
}