btrfs-progs/qgroup-verify.c

1173 lines
27 KiB
C

/*
* Copyright (C) 2014 SUSE. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*
* Authors: Mark Fasheh <mfasheh@suse.de>
*/
#include <stdio.h>
#include <stdlib.h>
#include <uuid/uuid.h>
#include "kerncompat.h"
#include "radix-tree.h"
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "utils.h"
#include "ulist.h"
#include "qgroup-verify.h"
/*#define QGROUP_VERIFY_DEBUG*/
static unsigned long tot_extents_scanned = 0;
static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive);
struct qgroup_count {
u64 qgroupid;
int subvol_exists;
struct btrfs_disk_key key;
struct btrfs_qgroup_info_item diskinfo;
struct btrfs_qgroup_info_item info;
struct rb_node rb_node;
};
struct counts_tree {
struct rb_root root;
unsigned int num_groups;
} counts = { .root = RB_ROOT };
struct rb_root by_bytenr = RB_ROOT;
/*
* List of interior tree blocks. We walk this list after loading the
* extent tree to resolve implied refs. For each interior node we'll
* place a shared ref in the ref tree against each child object. This
* allows the shared ref resolving code to do the actual work later of
* finding roots to account against.
*
* An implied ref is when a tree block has refs on it that may not
* exist in any of it's child nodes. Even though the refs might not
* exist further down the tree, the fact that our interior node has a
* ref means we need to account anything below it to all it's roots.
*/
struct ulist *tree_blocks = NULL; /* unode->val = bytenr, ->aux
* = tree_block pointer */
struct tree_block {
int level;
u64 num_bytes;
};
struct ref {
u64 bytenr;
u64 num_bytes;
u64 parent;
u64 root;
struct rb_node bytenr_node;
};
#ifdef QGROUP_VERIFY_DEBUG
static void print_ref(struct ref *ref)
{
printf("bytenr: %llu\t\tnum_bytes: %llu\t\t parent: %llu\t\t"
"root: %llu\n", ref->bytenr, ref->num_bytes,
ref->parent, ref->root);
}
static void print_all_refs(void)
{
unsigned long count = 0;
struct ref *ref;
struct rb_node *node;
node = rb_first(&by_bytenr);
while (node) {
ref = rb_entry(node, struct ref, bytenr_node);
print_ref(ref);
count++;
node = rb_next(node);
}
printf("%lu extents scanned with %lu refs in total.\n",
tot_extents_scanned, count);
}
#endif
/*
* Store by bytenr in rbtree
*
* The tree is sorted in ascending order by bytenr, then parent, then
* root. Since full refs have a parent == 0, those will come before
* shared refs.
*/
static int compare_ref(struct ref *orig, u64 bytenr, u64 root, u64 parent)
{
if (bytenr < orig->bytenr)
return -1;
if (bytenr > orig->bytenr)
return 1;
if (parent < orig->parent)
return -1;
if (parent > orig->parent)
return 1;
if (root < orig->root)
return -1;
if (root > orig->root)
return 1;
return 0;
}
/*
* insert a new ref into the tree. returns the existing ref entry
* if one is already there.
*/
static struct ref *insert_ref(struct ref *ref)
{
int ret;
struct rb_node **p = &by_bytenr.rb_node;
struct rb_node *parent = NULL;
struct ref *curr;
while (*p) {
parent = *p;
curr = rb_entry(parent, struct ref, bytenr_node);
ret = compare_ref(curr, ref->bytenr, ref->root, ref->parent);
if (ret < 0)
p = &(*p)->rb_left;
else if (ret > 0)
p = &(*p)->rb_right;
else
return curr;
}
rb_link_node(&ref->bytenr_node, parent, p);
rb_insert_color(&ref->bytenr_node, &by_bytenr);
return ref;
}
/*
* Partial search, returns the first ref with matching bytenr. Caller
* can walk forward from there.
*
* Leftmost refs will be full refs - this is used to our advantage
* when resolving roots.
*/
static struct ref *find_ref_bytenr(u64 bytenr)
{
struct rb_node *n = by_bytenr.rb_node;
struct ref *ref;
while (n) {
ref = rb_entry(n, struct ref, bytenr_node);
if (bytenr < ref->bytenr)
n = n->rb_left;
else if (bytenr > ref->bytenr)
n = n->rb_right;
else {
/* Walk to the left to find the first item */
struct rb_node *node_left = rb_prev(&ref->bytenr_node);
struct ref *ref_left;
while (node_left) {
ref_left = rb_entry(node_left, struct ref,
bytenr_node);
if (ref_left->bytenr != ref->bytenr)
break;
ref = ref_left;
node_left = rb_prev(node_left);
}
return ref;
}
}
return NULL;
}
static struct ref *find_ref(u64 bytenr, u64 root, u64 parent)
{
struct rb_node *n = by_bytenr.rb_node;
struct ref *ref;
int ret;
while (n) {
ref = rb_entry(n, struct ref, bytenr_node);
ret = compare_ref(ref, bytenr, root, parent);
if (ret < 0)
n = n->rb_left;
else if (ret > 0)
n = n->rb_right;
else
return ref;
}
return NULL;
}
static struct ref *alloc_ref(u64 bytenr, u64 root, u64 parent, u64 num_bytes)
{
struct ref *ref = find_ref(bytenr, root, parent);
BUG_ON(parent && root);
if (ref == NULL) {
ref = calloc(1, sizeof(*ref));
if (ref) {
ref->bytenr = bytenr;
ref->root = root;
ref->parent = parent;
ref->num_bytes = num_bytes;
insert_ref(ref);
}
}
return ref;
}
static void free_ref_node(struct rb_node *node)
{
struct ref *ref = rb_entry(node, struct ref, bytenr_node);
free(ref);
}
FREE_RB_BASED_TREE(ref, free_ref_node);
/*
* Resolves all the possible roots for the ref at parent.
*/
static void find_parent_roots(struct ulist *roots, u64 parent)
{
struct ref *ref;
struct rb_node *node;
/*
* Search the rbtree for the first ref with bytenr == parent.
* Walk forward so long as bytenr == parent, adding resolved root ids.
* For each unresolved root, we recurse
*/
ref = find_ref_bytenr(parent);
node = &ref->bytenr_node;
BUG_ON(ref == NULL);
BUG_ON(ref->bytenr != parent);
{
/*
* Random sanity check, are we actually getting the
* leftmost node?
*/
struct rb_node *prev_node = rb_prev(&ref->bytenr_node);
struct ref *prev;
if (prev_node) {
prev = rb_entry(prev_node, struct ref, bytenr_node);
BUG_ON(prev->bytenr == parent);
}
}
do {
if (ref->root)
ulist_add(roots, ref->root, 0, 0);
else
find_parent_roots(roots, ref->parent);
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == parent);
}
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
struct ulist *roots);
/*
* Account each ref. Walk the refs, for each set of refs in a
* given bytenr:
*
* - add the roots for direct refs to the ref roots ulist
*
* - resolve all possible roots for shared refs, insert each
* of those into ref_roots ulist (this is a recursive process)
*
* - Walk ref_roots ulist, adding extent bytes to each qgroup count that
* cooresponds to a found root.
*/
static void account_all_refs(int do_qgroups, u64 search_subvol)
{
int exclusive;
struct ref *ref;
struct rb_node *node;
u64 bytenr, num_bytes;
struct ulist *roots = ulist_alloc(0);
struct ulist_iterator uiter;
struct ulist_node *unode;
node = rb_first(&by_bytenr);
while (node) {
ulist_reinit(roots);
ref = rb_entry(node, struct ref, bytenr_node);
/*
* Walk forward through the list of refs for this
* bytenr, adding roots to our ulist. If it's a full
* ref, then we have the easy case. Otherwise we need
* to search for roots.
*/
bytenr = ref->bytenr;
num_bytes = ref->num_bytes;
do {
BUG_ON(ref->bytenr != bytenr);
BUG_ON(ref->num_bytes != num_bytes);
if (ref->root)
ulist_add(roots, ref->root, 0, 0);
else
find_parent_roots(roots, ref->parent);
/*
* When we leave this inner loop, node is set
* to next in our tree and will be turned into
* a ref object up top
*/
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == bytenr);
/*
* Now that we have all roots, we can properly account
* this extent against the corresponding qgroups.
*/
if (roots->nnodes == 1)
exclusive = 1;
else
exclusive = 0;
if (search_subvol)
print_subvol_info(search_subvol, bytenr, num_bytes,
roots);
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
BUG_ON(unode->val == 0ULL);
/* We only want to account fs trees */
if (is_fstree(unode->val) && do_qgroups)
add_bytes(unode->val, num_bytes, exclusive);
}
}
ulist_free(roots);
}
static u64 resolve_one_root(u64 bytenr)
{
struct ref *ref = find_ref_bytenr(bytenr);
BUG_ON(ref == NULL);
if (ref->root)
return ref->root;
return resolve_one_root(ref->parent);
}
static inline struct tree_block *unode_tree_block(struct ulist_node *unode)
{
return u64_to_ptr(unode->aux);
}
static inline u64 unode_bytenr(struct ulist_node *unode)
{
return unode->val;
}
static int alloc_tree_block(u64 bytenr, u64 num_bytes, int level)
{
struct tree_block *block = calloc(1, sizeof(*block));
if (block) {
block->num_bytes = num_bytes;
block->level = level;
if (ulist_add(tree_blocks, bytenr, ptr_to_u64(block), 0) >= 0)
return 0;
free(block);
}
return -ENOMEM;
}
static void free_tree_blocks(void)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
if (!tree_blocks)
return;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter)))
free(unode_tree_block(unode));
ulist_free(tree_blocks);
tree_blocks = NULL;
}
#ifdef QGROUP_VERIFY_DEBUG
static void print_tree_block(u64 bytenr, struct tree_block *block)
{
struct ref *ref;
struct rb_node *node;
printf("tree block: %llu\t\tlevel: %d\n", (unsigned long long)bytenr,
block->level);
ref = find_ref_bytenr(bytenr);
node = &ref->bytenr_node;
do {
print_ref(ref);
node = rb_next(node);
if (node)
ref = rb_entry(node, struct ref, bytenr_node);
} while (node && ref->bytenr == bytenr);
printf("\n");
}
static void print_all_tree_blocks(void)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
if (!tree_blocks)
return;
printf("Listing all found interior tree nodes:\n");
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter)))
print_tree_block(unode_bytenr(unode), unode_tree_block(unode));
}
#endif
static int add_refs_for_leaf_items(struct extent_buffer *eb, u64 ref_parent)
{
int nr, i;
int extent_type;
u64 bytenr, num_bytes;
struct btrfs_key key;
struct btrfs_disk_key disk_key;
struct btrfs_file_extent_item *fi;
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
btrfs_item_key(eb, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
/* filter out: inline, disk_bytenr == 0, compressed?
* not if we can avoid it */
extent_type = btrfs_file_extent_type(eb, fi);
if (extent_type == BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
if (!bytenr)
continue;
num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
return ENOMEM;
}
return 0;
}
static int travel_tree(struct btrfs_fs_info *info, struct btrfs_root *root,
u64 bytenr, u64 num_bytes, u64 ref_parent)
{
int ret, nr, i;
struct extent_buffer *eb;
u64 new_bytenr;
u64 new_num_bytes;
// printf("travel_tree: bytenr: %llu\tnum_bytes: %llu\tref_parent: %llu\n",
// bytenr, num_bytes, ref_parent);
eb = read_tree_block(root, bytenr, num_bytes, 0);
if (!eb)
return -EIO;
ret = 0;
/* Don't add a ref for our starting tree block to itself */
if (bytenr != ref_parent) {
if (alloc_ref(bytenr, 0, ref_parent, num_bytes) == NULL)
return ENOMEM;
}
if (btrfs_is_leaf(eb)) {
ret = add_refs_for_leaf_items(eb, ref_parent);
goto out;
}
/*
* Interior nodes are tuples of (key, bytenr) where key is the
* leftmost key in the tree block pointed to by bytenr. We
* don't have to care about key here, just follow the bytenr
* pointer.
*/
nr = btrfs_header_nritems(eb);
for (i = 0; i < nr; i++) {
new_bytenr = btrfs_node_blockptr(eb, i);
new_num_bytes = btrfs_level_size(root,
btrfs_header_level(eb) - 1);
ret = travel_tree(info, root, new_bytenr, new_num_bytes,
ref_parent);
}
out:
free_extent_buffer(eb);
return ret;
}
static int add_refs_for_implied(struct btrfs_fs_info *info, u64 bytenr,
struct tree_block *block)
{
int ret;
u64 root_bytenr = resolve_one_root(bytenr);
struct btrfs_root *root;
struct btrfs_key key;
key.objectid = root_bytenr;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
/*
* XXX: Don't free the root object as we don't know whether it
* came off our fs_info struct or not.
*/
root = btrfs_read_fs_root(info, &key);
if (!root || IS_ERR(root))
return ENOENT;
ret = travel_tree(info, root, bytenr, block->num_bytes, bytenr);
if (ret)
return ret;
return 0;
}
/*
* Place shared refs in the ref tree for each child of an interior tree node.
*/
static int map_implied_refs(struct btrfs_fs_info *info)
{
int ret = 0;
struct ulist_iterator uiter;
struct ulist_node *unode;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(tree_blocks, &uiter))) {
ret = add_refs_for_implied(info, unode_bytenr(unode),
unode_tree_block(unode));
if (ret)
goto out;
}
out:
return ret;
}
/*
* insert a new root into the tree. returns the existing root entry
* if one is already there. qgroupid is used
* as the key
*/
static int insert_count(struct qgroup_count *qc)
{
struct rb_node **p = &counts.root.rb_node;
struct rb_node *parent = NULL;
struct qgroup_count *curr;
while (*p) {
parent = *p;
curr = rb_entry(parent, struct qgroup_count, rb_node);
if (qc->qgroupid < curr->qgroupid)
p = &(*p)->rb_left;
else if (qc->qgroupid > curr->qgroupid)
p = &(*p)->rb_right;
else
return EEXIST;
}
counts.num_groups++;
rb_link_node(&qc->rb_node, parent, p);
rb_insert_color(&qc->rb_node, &counts.root);
return 0;
}
static struct qgroup_count *find_count(u64 qgroupid)
{
struct rb_node *n = counts.root.rb_node;
struct qgroup_count *count;
while (n) {
count = rb_entry(n, struct qgroup_count, rb_node);
if (qgroupid < count->qgroupid)
n = n->rb_left;
else if (qgroupid > count->qgroupid)
n = n->rb_right;
else
return count;
}
return NULL;
}
static struct qgroup_count *alloc_count(struct btrfs_disk_key *key,
struct extent_buffer *leaf,
struct btrfs_qgroup_info_item *disk)
{
struct qgroup_count *c = calloc(1, sizeof(*c));
struct btrfs_qgroup_info_item *item;
if (c) {
c->qgroupid = btrfs_disk_key_offset(key);
c->key = *key;
item = &c->diskinfo;
item->generation = btrfs_qgroup_info_generation(leaf, disk);
item->referenced = btrfs_qgroup_info_referenced(leaf, disk);
item->referenced_compressed =
btrfs_qgroup_info_referenced_compressed(leaf, disk);
item->exclusive = btrfs_qgroup_info_exclusive(leaf, disk);
item->exclusive_compressed =
btrfs_qgroup_info_exclusive_compressed(leaf, disk);
if (insert_count(c)) {
free(c);
c = NULL;
}
}
return c;
}
static void add_bytes(u64 root_objectid, u64 num_bytes, int exclusive)
{
struct qgroup_count *count = find_count(root_objectid);
struct btrfs_qgroup_info_item *qg;
BUG_ON(num_bytes < 4096); /* Random sanity check. */
if (!count)
return;
qg = &count->info;
qg->referenced += num_bytes;
/*
* count of compressed bytes is unimplemented, so we do the
* same as kernel.
*/
qg->referenced_compressed += num_bytes;
if (exclusive) {
qg->exclusive += num_bytes;
qg->exclusive_compressed += num_bytes;
}
}
static int load_quota_info(struct btrfs_fs_info *info)
{
int ret;
struct btrfs_root *root = info->quota_root;
struct btrfs_root *tmproot;
struct btrfs_path path;
struct btrfs_key key;
struct btrfs_key root_key;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
struct btrfs_qgroup_info_item *item;
struct qgroup_count *count;
int i, nr;
btrfs_init_path(&path);
key.offset = 0;
key.objectid = 0;
key.type = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
goto out;
}
while (1) {
leaf = path.nodes[0];
nr = btrfs_header_nritems(leaf);
for(i = 0; i < nr; i++) {
btrfs_item_key(leaf, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.type == BTRFS_QGROUP_RELATION_KEY)
printf("Ignoring qgroup relation key %llu\n",
key.objectid);
/*
* Ignore: BTRFS_QGROUP_STATUS_KEY,
* BTRFS_QGROUP_LIMIT_KEY, BTRFS_QGROUP_RELATION_KEY
*/
if (key.type != BTRFS_QGROUP_INFO_KEY)
continue;
item = btrfs_item_ptr(leaf, i,
struct btrfs_qgroup_info_item);
count = alloc_count(&disk_key, leaf, item);
if (!count) {
ret = ENOMEM;
fprintf(stderr, "ERROR: out of memory\n");
goto out;
}
root_key.objectid = key.offset;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = (u64)-1;
tmproot = btrfs_read_fs_root_no_cache(info, &root_key);
if (tmproot && !IS_ERR(tmproot)) {
count->subvol_exists = 1;
free(tmproot);
}
}
ret = btrfs_next_leaf(root, &path);
if (ret != 0)
break;
}
ret = 0;
btrfs_release_path(&path);
out:
return ret;
}
static int add_inline_refs(struct btrfs_fs_info *info,
struct extent_buffer *ei_leaf, int slot,
u64 bytenr, u64 num_bytes, int meta_item)
{
struct btrfs_extent_item *ei;
struct btrfs_extent_inline_ref *iref;
struct btrfs_extent_data_ref *dref;
u64 flags, root_obj, offset, parent;
u32 item_size = btrfs_item_size_nr(ei_leaf, slot);
int type;
unsigned long end;
unsigned long ptr;
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(ei_leaf, ei);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_item) {
struct btrfs_tree_block_info *tbinfo;
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
iref = (struct btrfs_extent_inline_ref *)(tbinfo + 1);
} else {
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
}
ptr = (unsigned long)iref;
end = (unsigned long)ei + item_size;
while (ptr < end) {
iref = (struct btrfs_extent_inline_ref *)ptr;
parent = root_obj = 0;
offset = btrfs_extent_inline_ref_offset(ei_leaf, iref);
type = btrfs_extent_inline_ref_type(ei_leaf, iref);
switch (type) {
case BTRFS_TREE_BLOCK_REF_KEY:
root_obj = offset;
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
root_obj = btrfs_extent_data_ref_root(ei_leaf, dref);
break;
case BTRFS_SHARED_DATA_REF_KEY:
case BTRFS_SHARED_BLOCK_REF_KEY:
parent = offset;
break;
default:
return 1;
}
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
return ENOMEM;
ptr += btrfs_extent_inline_ref_size(type);
}
return 0;
}
static int add_keyed_ref(struct btrfs_fs_info *info,
struct btrfs_key *key,
struct extent_buffer *leaf, int slot,
u64 bytenr, u64 num_bytes)
{
u64 root_obj = 0, parent = 0;
struct btrfs_extent_data_ref *dref;
switch(key->type) {
case BTRFS_TREE_BLOCK_REF_KEY:
root_obj = key->offset;
break;
case BTRFS_EXTENT_DATA_REF_KEY:
dref = btrfs_item_ptr(leaf, slot, struct btrfs_extent_data_ref);
root_obj = btrfs_extent_data_ref_root(leaf, dref);
break;
case BTRFS_SHARED_DATA_REF_KEY:
case BTRFS_SHARED_BLOCK_REF_KEY:
parent = key->offset;
break;
default:
return 1;
}
if (alloc_ref(bytenr, root_obj, parent, num_bytes) == NULL)
return ENOMEM;
return 0;
}
/*
* return value of 0 indicates leaf or not meta data. The code that
* calls this does not need to make a distinction between the two as
* it is only concerned with intermediate blocks which will always
* have level > 0.
*/
static int get_tree_block_level(struct btrfs_key *key,
struct extent_buffer *ei_leaf,
int slot)
{
int level = 0;
int meta_key = key->type == BTRFS_METADATA_ITEM_KEY;
u64 flags;
struct btrfs_extent_item *ei;
ei = btrfs_item_ptr(ei_leaf, slot, struct btrfs_extent_item);
flags = btrfs_extent_flags(ei_leaf, ei);
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !meta_key) {
struct btrfs_tree_block_info *tbinfo;
tbinfo = (struct btrfs_tree_block_info *)(ei + 1);
level = btrfs_tree_block_level(ei_leaf, tbinfo);
} else if (meta_key) {
/* skinny metadata */
level = (int)key->offset;
}
return level;
}
/*
* Walk the extent tree, allocating a ref item for every ref and
* storing it in the bytenr tree.
*/
static int scan_extents(struct btrfs_fs_info *info,
u64 start, u64 end)
{
int ret, i, nr, level;
struct btrfs_root *root = info->extent_root;
struct btrfs_key key;
struct btrfs_path path;
struct btrfs_disk_key disk_key;
struct extent_buffer *leaf;
u64 bytenr = 0, num_bytes = 0;
btrfs_init_path(&path);
key.objectid = start;
key.type = 0;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0) {
fprintf(stderr, "ERROR: Couldn't search slot: %d\n", ret);
goto out;
}
path.reada = 1;
while (1) {
leaf = path.nodes[0];
nr = btrfs_header_nritems(leaf);
for(i = 0; i < nr; i++) {
btrfs_item_key(leaf, &disk_key, i);
btrfs_disk_key_to_cpu(&key, &disk_key);
if (key.objectid < start)
continue;
if (key.objectid > end)
goto done;
if (key.type == BTRFS_EXTENT_ITEM_KEY ||
key.type == BTRFS_METADATA_ITEM_KEY) {
int meta = 0;
tot_extents_scanned++;
bytenr = key.objectid;
num_bytes = key.offset;
if (key.type == BTRFS_METADATA_ITEM_KEY) {
num_bytes = info->extent_root->leafsize;
meta = 1;
}
ret = add_inline_refs(info, leaf, i, bytenr,
num_bytes, meta);
if (ret)
goto out;
level = get_tree_block_level(&key, leaf, i);
if (level) {
if (alloc_tree_block(bytenr, num_bytes,
level))
return ENOMEM;
}
continue;
}
if (key.type > BTRFS_SHARED_DATA_REF_KEY)
continue;
if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
continue;
/*
* Keyed refs should come after their extent
* item in the tree. As a result, the value of
* bytenr and num_bytes should be unchanged
* from the above block that catches the
* original extent item.
*/
BUG_ON(key.objectid != bytenr);
ret = add_keyed_ref(info, &key, leaf, i, bytenr,
num_bytes);
if (ret)
goto out;
}
ret = btrfs_next_leaf(root, &path);
if (ret != 0) {
if (ret < 0) {
fprintf(stderr,
"ERROR: Next leaf failed: %d\n", ret);
goto out;
}
break;
}
}
done:
ret = 0;
out:
btrfs_release_path(&path);
return ret;
}
static void print_fields(u64 bytes, u64 bytes_compressed, char *prefix,
char *type)
{
printf("%s\t\t%s %llu %s compressed %llu\n",
prefix, type, (unsigned long long)bytes, type,
(unsigned long long)bytes_compressed);
}
static void print_fields_signed(long long bytes,
long long bytes_compressed,
char *prefix, char *type)
{
printf("%s\t\t%s %lld %s compressed %lld\n",
prefix, type, bytes, type, bytes_compressed);
}
static void print_qgroup_difference(struct qgroup_count *count, int verbose)
{
int is_different;
struct btrfs_qgroup_info_item *info = &count->info;
struct btrfs_qgroup_info_item *disk = &count->diskinfo;
long long excl_diff = info->exclusive - disk->exclusive;
long long ref_diff = info->referenced - disk->referenced;
is_different = excl_diff || ref_diff;
if (verbose || (is_different && count->subvol_exists)) {
printf("Counts for qgroup id: %llu %s\n",
(unsigned long long)count->qgroupid,
is_different ? "are different" : "");
print_fields(info->referenced, info->referenced_compressed,
"our:", "referenced");
print_fields(disk->referenced, disk->referenced_compressed,
"disk:", "referenced");
if (ref_diff)
print_fields_signed(ref_diff, ref_diff,
"diff:", "referenced");
print_fields(info->exclusive, info->exclusive_compressed,
"our:", "exclusive");
print_fields(disk->exclusive, disk->exclusive_compressed,
"disk:", "exclusive");
if (excl_diff)
print_fields_signed(excl_diff, excl_diff,
"diff:", "exclusive");
}
}
void print_qgroup_report(int all)
{
struct rb_node *node;
struct qgroup_count *c;
node = rb_first(&counts.root);
while (node) {
c = rb_entry(node, struct qgroup_count, rb_node);
print_qgroup_difference(c, all);
node = rb_next(node);
}
}
int qgroup_verify_all(struct btrfs_fs_info *info)
{
int ret;
if (!info->quota_enabled)
return 0;
tree_blocks = ulist_alloc(0);
if (!tree_blocks) {
fprintf(stderr,
"ERROR: Out of memory while allocating ulist.\n");
return ENOMEM;
}
ret = load_quota_info(info);
if (ret) {
fprintf(stderr, "ERROR: Loading qgroups from disk: %d\n", ret);
goto out;
}
/*
* Put all extent refs into our rbtree
*/
ret = scan_extents(info, 0, ~0ULL);
if (ret) {
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
goto out;
}
ret = map_implied_refs(info);
if (ret) {
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
goto out;
}
account_all_refs(1, 0);
out:
/*
* Don't free the qgroup count records as they will be walked
* later via the print function.
*/
free_tree_blocks();
free_ref_tree(&by_bytenr);
return ret;
}
static void __print_subvol_info(u64 bytenr, u64 num_bytes, struct ulist *roots)
{
int n = roots->nnodes;
struct ulist_iterator uiter;
struct ulist_node *unode;
printf("%llu\t%llu\t%d\t", bytenr, num_bytes, n);
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
printf("%llu ", unode->val);
}
printf("\n");
}
static void print_subvol_info(u64 subvolid, u64 bytenr, u64 num_bytes,
struct ulist *roots)
{
struct ulist_iterator uiter;
struct ulist_node *unode;
ULIST_ITER_INIT(&uiter);
while ((unode = ulist_next(roots, &uiter))) {
BUG_ON(unode->val == 0ULL);
if (unode->val == subvolid) {
__print_subvol_info(bytenr, num_bytes, roots);
return;
}
}
}
int print_extent_state(struct btrfs_fs_info *info, u64 subvol)
{
int ret;
tree_blocks = ulist_alloc(0);
if (!tree_blocks) {
fprintf(stderr,
"ERROR: Out of memory while allocating ulist.\n");
return ENOMEM;
}
/*
* Put all extent refs into our rbtree
*/
ret = scan_extents(info, 0, ~0ULL);
if (ret) {
fprintf(stderr, "ERROR: while scanning extent tree: %d\n", ret);
goto out;
}
ret = map_implied_refs(info);
if (ret) {
fprintf(stderr, "ERROR: while mapping refs: %d\n", ret);
goto out;
}
printf("Offset\t\tLen\tRoot Refs\tRoots\n");
account_all_refs(0, subvol);
out:
free_tree_blocks();
free_ref_tree(&by_bytenr);
return ret;
}