btrfs-progs/cmds/filesystem-usage.c

1089 lines
26 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <stdarg.h>
#include <getopt.h>
#include <fcntl.h>
#include "common/utils.h"
#include "kerncompat.h"
#include "ctree.h"
#include "common/string-table.h"
#include "cmds/filesystem-usage.h"
#include "cmds/commands.h"
#include "disk-io.h"
#include "version.h"
#include "common/help.h"
/*
* Add the chunk info to the chunk_info list
*/
static int add_info_to_list(struct chunk_info **info_ptr,
int *info_count,
struct btrfs_chunk *chunk)
{
u64 type = btrfs_stack_chunk_type(chunk);
u64 size = btrfs_stack_chunk_length(chunk);
int num_stripes = btrfs_stack_chunk_num_stripes(chunk);
int j;
for (j = 0 ; j < num_stripes ; j++) {
int i;
struct chunk_info *p = NULL;
struct btrfs_stripe *stripe;
u64 devid;
stripe = btrfs_stripe_nr(chunk, j);
devid = btrfs_stack_stripe_devid(stripe);
for (i = 0 ; i < *info_count ; i++)
if ((*info_ptr)[i].type == type &&
(*info_ptr)[i].devid == devid &&
(*info_ptr)[i].num_stripes == num_stripes ) {
p = (*info_ptr) + i;
break;
}
if (!p) {
int tmp = sizeof(struct btrfs_chunk) * (*info_count + 1);
struct chunk_info *res = realloc(*info_ptr, tmp);
if (!res) {
free(*info_ptr);
error("not enough memory");
return -ENOMEM;
}
*info_ptr = res;
p = res + *info_count;
(*info_count)++;
p->devid = devid;
p->type = type;
p->size = 0;
p->num_stripes = num_stripes;
}
p->size += size;
}
return 0;
}
/*
* Helper to sort the chunk type
*/
static int cmp_chunk_block_group(u64 f1, u64 f2)
{
u64 mask;
if ((f1 & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
(f2 & BTRFS_BLOCK_GROUP_TYPE_MASK))
mask = BTRFS_BLOCK_GROUP_PROFILE_MASK;
else if (f2 & BTRFS_BLOCK_GROUP_SYSTEM)
return -1;
else if (f1 & BTRFS_BLOCK_GROUP_SYSTEM)
return +1;
else
mask = BTRFS_BLOCK_GROUP_TYPE_MASK;
if ((f1 & mask) > (f2 & mask))
return +1;
else if ((f1 & mask) < (f2 & mask))
return -1;
else
return 0;
}
/*
* Helper to sort the chunk
*/
static int cmp_chunk_info(const void *a, const void *b)
{
return cmp_chunk_block_group(
((struct chunk_info *)a)->type,
((struct chunk_info *)b)->type);
}
static int load_chunk_info(int fd, struct chunk_info **info_ptr, int *info_count)
{
int ret;
struct btrfs_ioctl_search_args args;
struct btrfs_ioctl_search_key *sk = &args.key;
struct btrfs_ioctl_search_header *sh;
unsigned long off = 0;
int i, e;
memset(&args, 0, sizeof(args));
/*
* there may be more than one ROOT_ITEM key if there are
* snapshots pending deletion, we have to loop through
* them.
*/
sk->tree_id = BTRFS_CHUNK_TREE_OBJECTID;
sk->min_objectid = 0;
sk->max_objectid = (u64)-1;
sk->max_type = 0;
sk->min_type = (u8)-1;
sk->min_offset = 0;
sk->max_offset = (u64)-1;
sk->min_transid = 0;
sk->max_transid = (u64)-1;
sk->nr_items = 4096;
while (1) {
ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args);
e = errno;
if (e == EPERM)
return -e;
if (ret < 0) {
error("cannot look up chunk tree info: %m");
return 1;
}
/* the ioctl returns the number of item it found in nr_items */
if (sk->nr_items == 0)
break;
off = 0;
for (i = 0; i < sk->nr_items; i++) {
struct btrfs_chunk *item;
sh = (struct btrfs_ioctl_search_header *)(args.buf +
off);
off += sizeof(*sh);
item = (struct btrfs_chunk *)(args.buf + off);
ret = add_info_to_list(info_ptr, info_count, item);
if (ret) {
*info_ptr = NULL;
return 1;
}
off += btrfs_search_header_len(sh);
sk->min_objectid = btrfs_search_header_objectid(sh);
sk->min_type = btrfs_search_header_type(sh);
sk->min_offset = btrfs_search_header_offset(sh)+1;
}
if (!sk->min_offset) /* overflow */
sk->min_type++;
else
continue;
if (!sk->min_type)
sk->min_objectid++;
else
continue;
if (!sk->min_objectid)
break;
}
qsort(*info_ptr, *info_count, sizeof(struct chunk_info),
cmp_chunk_info);
return 0;
}
/*
* Helper to sort the struct btrfs_ioctl_space_info
*/
static int cmp_btrfs_ioctl_space_info(const void *a, const void *b)
{
return cmp_chunk_block_group(
((struct btrfs_ioctl_space_info *)a)->flags,
((struct btrfs_ioctl_space_info *)b)->flags);
}
/*
* This function load all the information about the space usage
*/
static struct btrfs_ioctl_space_args *load_space_info(int fd, const char *path)
{
struct btrfs_ioctl_space_args *sargs = NULL, *sargs_orig = NULL;
int ret, count;
sargs_orig = sargs = calloc(1, sizeof(struct btrfs_ioctl_space_args));
if (!sargs) {
error("not enough memory");
return NULL;
}
sargs->space_slots = 0;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info on '%s': %m", path);
free(sargs);
return NULL;
}
if (!sargs->total_spaces) {
free(sargs);
printf("No chunks found\n");
return NULL;
}
count = sargs->total_spaces;
sargs = realloc(sargs, sizeof(struct btrfs_ioctl_space_args) +
(count * sizeof(struct btrfs_ioctl_space_info)));
if (!sargs) {
free(sargs_orig);
error("not enough memory");
return NULL;
}
sargs->space_slots = count;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info with %u slots: %m",
count);
free(sargs);
return NULL;
}
qsort(&(sargs->spaces), count, sizeof(struct btrfs_ioctl_space_info),
cmp_btrfs_ioctl_space_info);
return sargs;
}
/*
* This function computes the space occupied by a *single* RAID5/RAID6 chunk.
* The computation is performed on the basis of the number of stripes
* which compose the chunk, which could be different from the number of devices
* if a disk is added later.
*/
static void get_raid56_used(struct chunk_info *chunks, int chunkcount,
u64 *raid5_used, u64 *raid6_used)
{
struct chunk_info *info_ptr = chunks;
*raid5_used = 0;
*raid6_used = 0;
while (chunkcount-- > 0) {
if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID5)
(*raid5_used) += info_ptr->size / (info_ptr->num_stripes - 1);
if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID6)
(*raid6_used) += info_ptr->size / (info_ptr->num_stripes - 2);
info_ptr++;
}
}
#define MIN_UNALOCATED_THRESH SZ_16M
static int print_filesystem_usage_overall(int fd, struct chunk_info *chunkinfo,
int chunkcount, struct device_info *devinfo, int devcount,
const char *path, unsigned unit_mode)
{
struct btrfs_ioctl_space_args *sargs = NULL;
int i;
int ret = 0;
int width = 10; /* default 10 for human units */
/*
* r_* prefix is for raw data
* l_* is for logical
*/
u64 r_total_size = 0; /* filesystem size, sum of device sizes */
u64 r_total_chunks = 0; /* sum of chunks sizes on disk(s) */
u64 r_total_used = 0;
u64 r_total_unused = 0;
u64 r_total_missing = 0; /* sum of missing devices size */
u64 r_data_used = 0;
u64 r_data_chunks = 0;
u64 l_data_chunks = 0;
u64 r_metadata_used = 0;
u64 r_metadata_chunks = 0;
u64 l_metadata_chunks = 0;
u64 r_system_used = 0;
u64 r_system_chunks = 0;
double data_ratio;
double metadata_ratio;
/* logical */
u64 raid5_used = 0;
u64 raid6_used = 0;
u64 l_global_reserve = 0;
u64 l_global_reserve_used = 0;
u64 free_estimated = 0;
u64 free_min = 0;
int max_data_ratio = 1;
int mixed = 0;
sargs = load_space_info(fd, path);
if (!sargs) {
ret = 1;
goto exit;
}
r_total_size = 0;
for (i = 0; i < devcount; i++) {
r_total_size += devinfo[i].size;
if (!devinfo[i].device_size)
r_total_missing += devinfo[i].size;
}
if (r_total_size == 0) {
error("cannot get space info on '%s': %m", path);
ret = 1;
goto exit;
}
get_raid56_used(chunkinfo, chunkcount, &raid5_used, &raid6_used);
for (i = 0; i < sargs->total_spaces; i++) {
int ratio;
u64 flags = sargs->spaces[i].flags;
/*
* The raid5/raid6 ratio depends by the stripes number
* used by every chunk. It is computed separately
*/
if (flags & BTRFS_BLOCK_GROUP_RAID0)
ratio = 1;
else if (flags & BTRFS_BLOCK_GROUP_RAID1)
ratio = 2;
else if (flags & BTRFS_BLOCK_GROUP_RAID5)
ratio = 0;
else if (flags & BTRFS_BLOCK_GROUP_RAID6)
ratio = 0;
else if (flags & BTRFS_BLOCK_GROUP_DUP)
ratio = 2;
else if (flags & BTRFS_BLOCK_GROUP_RAID10)
ratio = 2;
else
ratio = 1;
if (!ratio)
warning("RAID56 detected, not implemented");
if (ratio > max_data_ratio)
max_data_ratio = ratio;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV) {
l_global_reserve = sargs->spaces[i].total_bytes;
l_global_reserve_used = sargs->spaces[i].used_bytes;
}
if ((flags & (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA))
== (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA)) {
mixed = 1;
}
if (flags & BTRFS_BLOCK_GROUP_DATA) {
r_data_used += sargs->spaces[i].used_bytes * ratio;
r_data_chunks += sargs->spaces[i].total_bytes * ratio;
l_data_chunks += sargs->spaces[i].total_bytes;
}
if (flags & BTRFS_BLOCK_GROUP_METADATA) {
r_metadata_used += sargs->spaces[i].used_bytes * ratio;
r_metadata_chunks += sargs->spaces[i].total_bytes * ratio;
l_metadata_chunks += sargs->spaces[i].total_bytes;
}
if (flags & BTRFS_BLOCK_GROUP_SYSTEM) {
r_system_used += sargs->spaces[i].used_bytes * ratio;
r_system_chunks += sargs->spaces[i].total_bytes * ratio;
}
}
r_total_chunks = r_data_chunks + r_system_chunks;
r_total_used = r_data_used + r_system_used;
if (!mixed) {
r_total_chunks += r_metadata_chunks;
r_total_used += r_metadata_used;
}
r_total_unused = r_total_size - r_total_chunks;
/* Raw / Logical = raid factor, >= 1 */
data_ratio = (double)r_data_chunks / l_data_chunks;
if (mixed)
metadata_ratio = data_ratio;
else
metadata_ratio = (double)r_metadata_chunks / l_metadata_chunks;
#if 0
/* add the raid5/6 allocated space */
total_chunks += raid5_used + raid6_used;
#endif
/*
* We're able to fill at least DATA for the unused space
*
* With mixed raid levels, this gives a rough estimate but more
* accurate than just counting the logical free space
* (l_data_chunks - l_data_used)
*
* In non-mixed case there's no difference.
*/
free_estimated = (r_data_chunks - r_data_used) / data_ratio;
/*
* For mixed-bg the metadata are left out in calculations thus global
* reserve would be lost. Part of it could be permanently allocated,
* we have to subtract the used bytes so we don't go under zero free.
*/
if (mixed)
free_estimated -= l_global_reserve - l_global_reserve_used;
free_min = free_estimated;
/* Chop unallocatable space */
/* FIXME: must be applied per device */
if (r_total_unused >= MIN_UNALOCATED_THRESH) {
free_estimated += r_total_unused / data_ratio;
/* Match the calculation of 'df', use the highest raid ratio */
free_min += r_total_unused / max_data_ratio;
}
if (unit_mode != UNITS_HUMAN)
width = 18;
printf("Overall:\n");
printf(" Device size:\t\t%*s\n", width,
pretty_size_mode(r_total_size, unit_mode));
printf(" Device allocated:\t\t%*s\n", width,
pretty_size_mode(r_total_chunks, unit_mode));
printf(" Device unallocated:\t\t%*s\n", width,
pretty_size_mode(r_total_unused, unit_mode | UNITS_NEGATIVE));
printf(" Device missing:\t\t%*s\n", width,
pretty_size_mode(r_total_missing, unit_mode));
printf(" Used:\t\t\t%*s\n", width,
pretty_size_mode(r_total_used, unit_mode));
printf(" Free (estimated):\t\t%*s\t(",
width,
pretty_size_mode(free_estimated, unit_mode));
printf("min: %s)\n", pretty_size_mode(free_min, unit_mode));
printf(" Data ratio:\t\t\t%*.2f\n",
width, data_ratio);
printf(" Metadata ratio:\t\t%*.2f\n",
width, metadata_ratio);
printf(" Global reserve:\t\t%*s\t(used: %s)\n", width,
pretty_size_mode(l_global_reserve, unit_mode),
pretty_size_mode(l_global_reserve_used, unit_mode));
exit:
if (sargs)
free(sargs);
return ret;
}
/*
* Helper to sort the device_info structure
*/
static int cmp_device_info(const void *a, const void *b)
{
return strcmp(((struct device_info *)a)->path,
((struct device_info *)b)->path);
}
int dev_to_fsid(const char *dev, u8 *fsid)
{
struct btrfs_super_block *disk_super;
char buf[BTRFS_SUPER_INFO_SIZE];
int ret;
int fd;
fd = open(dev, O_RDONLY);
if (fd < 0) {
ret = -errno;
return ret;
}
disk_super = (struct btrfs_super_block *)buf;
ret = btrfs_read_dev_super(fd, disk_super,
BTRFS_SUPER_INFO_OFFSET, SBREAD_DEFAULT);
if (ret)
goto out;
memcpy(fsid, disk_super->fsid, BTRFS_FSID_SIZE);
ret = 0;
out:
close(fd);
return ret;
}
/*
* This function loads the device_info structure and put them in an array
*/
static int load_device_info(int fd, struct device_info **device_info_ptr,
int *device_info_count)
{
int ret, i, ndevs;
struct btrfs_ioctl_fs_info_args fi_args;
struct btrfs_ioctl_dev_info_args dev_info;
struct device_info *info;
u8 fsid[BTRFS_UUID_SIZE];
*device_info_count = 0;
*device_info_ptr = NULL;
ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args);
if (ret < 0) {
if (errno == EPERM)
return -errno;
error("cannot get filesystem info: %m");
return 1;
}
info = calloc(fi_args.num_devices, sizeof(struct device_info));
if (!info) {
error("not enough memory");
return 1;
}
for (i = 0, ndevs = 0 ; i <= fi_args.max_id ; i++) {
if (ndevs >= fi_args.num_devices) {
error("unexpected number of devices: %d >= %llu", ndevs,
(unsigned long long)fi_args.num_devices);
error(
"if seed device is used, try running this command as root");
goto out;
}
memset(&dev_info, 0, sizeof(dev_info));
ret = get_device_info(fd, i, &dev_info);
if (ret == -ENODEV)
continue;
if (ret) {
error("cannot get info about device devid=%d", i);
goto out;
}
/*
* Skip seed device by checking device's fsid (requires root).
* And we will skip only if dev_to_fsid is successful and dev
* is a seed device.
* Ignore any other error including -EACCES, which is seen when
* a non-root process calls dev_to_fsid(path)->open(path).
*/
ret = dev_to_fsid((const char *)dev_info.path, fsid);
if (!ret && memcmp(fi_args.fsid, fsid, BTRFS_FSID_SIZE) != 0)
continue;
info[ndevs].devid = dev_info.devid;
if (!dev_info.path[0]) {
strcpy(info[ndevs].path, "missing");
} else {
strcpy(info[ndevs].path, (char *)dev_info.path);
info[ndevs].device_size =
get_partition_size((char *)dev_info.path);
}
info[ndevs].size = dev_info.total_bytes;
++ndevs;
}
if (ndevs != fi_args.num_devices) {
error("unexpected number of devices: %d != %llu", ndevs,
(unsigned long long)fi_args.num_devices);
goto out;
}
qsort(info, fi_args.num_devices,
sizeof(struct device_info), cmp_device_info);
*device_info_count = fi_args.num_devices;
*device_info_ptr = info;
return 0;
out:
free(info);
return ret;
}
int load_chunk_and_device_info(int fd, struct chunk_info **chunkinfo,
int *chunkcount, struct device_info **devinfo, int *devcount)
{
int ret;
ret = load_chunk_info(fd, chunkinfo, chunkcount);
if (ret == -EPERM) {
warning(
"cannot read detailed chunk info, per-device usage will not be shown, run as root");
} else if (ret) {
return ret;
}
ret = load_device_info(fd, devinfo, devcount);
if (ret == -EPERM) {
warning(
"cannot get filesystem info from ioctl(FS_INFO), run as root");
ret = 0;
}
return ret;
}
/*
* This function computes the size of a chunk in a disk
*/
static u64 calc_chunk_size(struct chunk_info *ci)
{
if (ci->type & BTRFS_BLOCK_GROUP_RAID0)
return ci->size / ci->num_stripes;
else if (ci->type & BTRFS_BLOCK_GROUP_RAID1)
return ci->size ;
else if (ci->type & BTRFS_BLOCK_GROUP_DUP)
return ci->size ;
else if (ci->type & BTRFS_BLOCK_GROUP_RAID5)
return ci->size / (ci->num_stripes -1);
else if (ci->type & BTRFS_BLOCK_GROUP_RAID6)
return ci->size / (ci->num_stripes -2);
else if (ci->type & BTRFS_BLOCK_GROUP_RAID10)
return ci->size / (ci->num_stripes / 2);
return ci->size;
}
/*
* This function print the results of the command "btrfs fi usage"
* in tabular format
*/
static void _cmd_filesystem_usage_tabular(unsigned unit_mode,
struct btrfs_ioctl_space_args *sargs,
struct chunk_info *chunks_info_ptr,
int chunks_info_count,
struct device_info *device_info_ptr,
int device_info_count)
{
int i;
u64 total_unused = 0;
struct string_table *matrix = NULL;
int ncols, nrows;
int col;
int unallocated_col;
int spaceinfos_col;
const int vhdr_skip = 3; /* amount of vertical header space */
/* id, path, unallocated */
ncols = 3;
spaceinfos_col = 2;
/* Properly count the real space infos */
for (i = 0; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
ncols++;
}
/* 2 for header, empty line, devices, ===, total, used */
nrows = vhdr_skip + device_info_count + 1 + 2;
matrix = table_create(ncols, nrows);
if (!matrix) {
error("not enough memory");
return;
}
/*
* We have to skip the global block reserve everywhere as it's an
* artificial blockgroup
*/
/* header */
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
u64 flags = sargs->spaces[i].flags;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col, 0, "<%s",
btrfs_group_type_str(flags));
table_printf(matrix, col, 1, "<%s",
btrfs_group_profile_str(flags));
col++;
}
unallocated_col = col;
table_printf(matrix, 0, 1, "<Id");
table_printf(matrix, 1, 1, "<Path");
table_printf(matrix, unallocated_col, 1, "<Unallocated");
/* body */
for (i = 0; i < device_info_count; i++) {
int k;
char *p;
u64 total_allocated = 0, unused;
p = strrchr(device_info_ptr[i].path, '/');
if (!p)
p = device_info_ptr[i].path;
else
p++;
table_printf(matrix, 0, vhdr_skip + i, ">%llu",
device_info_ptr[i].devid);
table_printf(matrix, 1, vhdr_skip + i, "<%s",
device_info_ptr[i].path);
for (col = spaceinfos_col, k = 0; k < sargs->total_spaces; k++) {
u64 flags = sargs->spaces[k].flags;
u64 devid = device_info_ptr[i].devid;
int j;
u64 size = 0;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
for (j = 0 ; j < chunks_info_count ; j++) {
if (chunks_info_ptr[j].type != flags )
continue;
if (chunks_info_ptr[j].devid != devid)
continue;
size += calc_chunk_size(chunks_info_ptr+j);
}
if (size)
table_printf(matrix, col, vhdr_skip+ i,
">%s", pretty_size_mode(size, unit_mode));
else
table_printf(matrix, col, vhdr_skip + i, ">-");
total_allocated += size;
col++;
}
unused = get_partition_size(device_info_ptr[i].path)
- total_allocated;
table_printf(matrix, unallocated_col, vhdr_skip + i, ">%s",
pretty_size_mode(unused, unit_mode | UNITS_NEGATIVE));
total_unused += unused;
}
for (i = 0; i < spaceinfos_col; i++) {
table_printf(matrix, i, vhdr_skip - 1, "*-");
table_printf(matrix, i, vhdr_skip + device_info_count, "*-");
}
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col, vhdr_skip - 1, "*-");
table_printf(matrix, col, vhdr_skip + device_info_count, "*-");
col++;
}
/* One for Unallocated */
table_printf(matrix, col, vhdr_skip - 1, "*-");
table_printf(matrix, col, vhdr_skip + device_info_count, "*-");
/* footer */
table_printf(matrix, 1, vhdr_skip + device_info_count + 1, "<Total");
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col++, vhdr_skip + device_info_count + 1,
">%s",
pretty_size_mode(sargs->spaces[i].total_bytes, unit_mode));
}
table_printf(matrix, unallocated_col, vhdr_skip + device_info_count + 1,
">%s",
pretty_size_mode(total_unused, unit_mode | UNITS_NEGATIVE));
table_printf(matrix, 1, vhdr_skip + device_info_count + 2, "<Used");
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col++, vhdr_skip + device_info_count + 2,
">%s",
pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode));
}
table_dump(matrix);
table_free(matrix);
}
/*
* This function prints the unused space per every disk
*/
static void print_unused(struct chunk_info *info_ptr,
int info_count,
struct device_info *device_info_ptr,
int device_info_count,
unsigned unit_mode)
{
int i;
for (i = 0; i < device_info_count; i++) {
int j;
u64 total = 0;
for (j = 0; j < info_count; j++)
if (info_ptr[j].devid == device_info_ptr[i].devid)
total += calc_chunk_size(info_ptr+j);
printf(" %s\t%10s\n",
device_info_ptr[i].path,
pretty_size_mode(device_info_ptr[i].size - total,
unit_mode));
}
}
/*
* This function prints the allocated chunk per every disk
*/
static void print_chunk_device(u64 chunk_type,
struct chunk_info *chunks_info_ptr,
int chunks_info_count,
struct device_info *device_info_ptr,
int device_info_count,
unsigned unit_mode)
{
int i;
for (i = 0; i < device_info_count; i++) {
int j;
u64 total = 0;
for (j = 0; j < chunks_info_count; j++) {
if (chunks_info_ptr[j].type != chunk_type)
continue;
if (chunks_info_ptr[j].devid != device_info_ptr[i].devid)
continue;
total += calc_chunk_size(&(chunks_info_ptr[j]));
//total += chunks_info_ptr[j].size;
}
if (total > 0)
printf(" %s\t%10s\n",
device_info_ptr[i].path,
pretty_size_mode(total, unit_mode));
}
}
/*
* This function print the results of the command "btrfs fi usage"
* in linear format
*/
static void _cmd_filesystem_usage_linear(unsigned unit_mode,
struct btrfs_ioctl_space_args *sargs,
struct chunk_info *info_ptr,
int info_count,
struct device_info *device_info_ptr,
int device_info_count)
{
int i;
for (i = 0; i < sargs->total_spaces; i++) {
const char *description;
const char *r_mode;
u64 flags = sargs->spaces[i].flags;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
description = btrfs_group_type_str(flags);
r_mode = btrfs_group_profile_str(flags);
printf("%s,%s: Size:%s, ",
description,
r_mode,
pretty_size_mode(sargs->spaces[i].total_bytes,
unit_mode));
printf("Used:%s\n",
pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode));
print_chunk_device(flags, info_ptr, info_count,
device_info_ptr, device_info_count, unit_mode);
printf("\n");
}
if (info_count) {
printf("Unallocated:\n");
print_unused(info_ptr, info_count, device_info_ptr,
device_info_count, unit_mode | UNITS_NEGATIVE);
}
}
static int print_filesystem_usage_by_chunk(int fd,
struct chunk_info *chunkinfo, int chunkcount,
struct device_info *devinfo, int devcount,
const char *path, unsigned unit_mode, int tabular)
{
struct btrfs_ioctl_space_args *sargs;
int ret = 0;
sargs = load_space_info(fd, path);
if (!sargs) {
ret = 1;
goto out;
}
if (tabular)
_cmd_filesystem_usage_tabular(unit_mode, sargs, chunkinfo,
chunkcount, devinfo, devcount);
else
_cmd_filesystem_usage_linear(unit_mode, sargs, chunkinfo,
chunkcount, devinfo, devcount);
free(sargs);
out:
return ret;
}
static const char * const cmd_filesystem_usage_usage[] = {
"btrfs filesystem usage [options] <path> [<path>..]",
"Show detailed information about internal filesystem usage .",
"",
HELPINFO_UNITS_SHORT_LONG,
"-T show data in tabular format",
NULL
};
static int cmd_filesystem_usage(const struct cmd_struct *cmd,
int argc, char **argv)
{
int ret = 0;
unsigned unit_mode;
int i;
int more_than_one = 0;
int tabular = 0;
unit_mode = get_unit_mode_from_arg(&argc, argv, 1);
optind = 0;
while (1) {
int c;
c = getopt(argc, argv, "T");
if (c < 0)
break;
switch (c) {
case 'T':
tabular = 1;
break;
default:
usage_unknown_option(cmd, argv);
}
}
if (check_argc_min(argc - optind, 1))
return 1;
for (i = optind; i < argc; i++) {
int fd;
DIR *dirstream = NULL;
struct chunk_info *chunkinfo = NULL;
struct device_info *devinfo = NULL;
int chunkcount = 0;
int devcount = 0;
fd = btrfs_open_dir(argv[i], &dirstream, 1);
if (fd < 0) {
ret = 1;
goto out;
}
if (more_than_one)
printf("\n");
ret = load_chunk_and_device_info(fd, &chunkinfo, &chunkcount,
&devinfo, &devcount);
if (ret)
goto cleanup;
ret = print_filesystem_usage_overall(fd, chunkinfo, chunkcount,
devinfo, devcount, argv[i], unit_mode);
if (ret)
goto cleanup;
printf("\n");
ret = print_filesystem_usage_by_chunk(fd, chunkinfo, chunkcount,
devinfo, devcount, argv[i], unit_mode, tabular);
cleanup:
close_file_or_dir(fd, dirstream);
free(chunkinfo);
free(devinfo);
if (ret)
goto out;
more_than_one = 1;
}
out:
return !!ret;
}
DEFINE_SIMPLE_COMMAND(filesystem_usage, "usage");
void print_device_chunks(struct device_info *devinfo,
struct chunk_info *chunks_info_ptr,
int chunks_info_count, unsigned unit_mode)
{
int i;
u64 allocated = 0;
for (i = 0 ; i < chunks_info_count ; i++) {
const char *description;
const char *r_mode;
u64 flags;
u64 size;
if (chunks_info_ptr[i].devid != devinfo->devid)
continue;
flags = chunks_info_ptr[i].type;
description = btrfs_group_type_str(flags);
r_mode = btrfs_group_profile_str(flags);
size = calc_chunk_size(chunks_info_ptr+i);
printf(" %s,%s:%*s%10s\n",
description,
r_mode,
(int)(20 - strlen(description) - strlen(r_mode)), "",
pretty_size_mode(size, unit_mode));
allocated += size;
}
printf(" Unallocated: %*s%10s\n",
(int)(20 - strlen("Unallocated")), "",
pretty_size_mode(devinfo->size - allocated,
unit_mode | UNITS_NEGATIVE));
}
void print_device_sizes(struct device_info *devinfo, unsigned unit_mode)
{
printf(" Device size: %*s%10s\n",
(int)(20 - strlen("Device size")), "",
pretty_size_mode(devinfo->device_size, unit_mode));
printf(" Device slack: %*s%10s\n",
(int)(20 - strlen("Device slack")), "",
pretty_size_mode(devinfo->device_size > 0 ?
devinfo->device_size - devinfo->size : 0,
unit_mode));
}