btrfs-progs/cmds-fi-disk_usage.c
Rakesh Pandit 0c1f1b2ae8 Btrfs-progs: fi usage: free memory if realloc fails
Lets not assign *info_ptr to 0 before calling free on it and lose
track of already allocated memory if realloc fails in
add_info_to_list. Lets call free first.

Signed-off-by: Rakesh Pandit <rakesh@tuxera.com>
Signed-off-by: David Sterba <dsterba@suse.cz>
2014-12-04 16:48:10 +01:00

1076 lines
23 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <stdarg.h>
#include "utils.h"
#include "kerncompat.h"
#include "ctree.h"
#include "string-table.h"
#include "commands.h"
#include "version.h"
#define DF_HUMAN_UNIT (1<<0)
/*
* To store the size information about the chunks:
* the chunks info are grouped by the tuple (type, devid, num_stripes),
* i.e. if two chunks are of the same type (RAID1, DUP...), are on the
* same disk, have the same stripes then their sizes are grouped
*/
struct chunk_info {
u64 type;
u64 size;
u64 devid;
u64 num_stripes;
};
/* to store information about the disks */
struct disk_info {
u64 devid;
char path[BTRFS_DEVICE_PATH_NAME_MAX];
u64 size;
};
/*
* Pretty print the size
* PAY ATTENTION: it return a statically buffer
*/
static char *df_pretty_sizes(u64 size, int mode)
{
static char buf[30];
if (mode & DF_HUMAN_UNIT)
(void)pretty_size_snprintf(size, buf, sizeof(buf), UNITS_DEFAULT);
else
sprintf(buf, "%llu", size);
return buf;
}
/*
* Add the chunk info to the chunk_info list
*/
static int add_info_to_list(struct chunk_info **info_ptr,
int *info_count,
struct btrfs_chunk *chunk)
{
u64 type = btrfs_stack_chunk_type(chunk);
u64 size = btrfs_stack_chunk_length(chunk);
int num_stripes = btrfs_stack_chunk_num_stripes(chunk);
int j;
for (j = 0 ; j < num_stripes ; j++) {
int i;
struct chunk_info *p = 0;
struct btrfs_stripe *stripe;
u64 devid;
stripe = btrfs_stripe_nr(chunk, j);
devid = btrfs_stack_stripe_devid(stripe);
for (i = 0 ; i < *info_count ; i++)
if ((*info_ptr)[i].type == type &&
(*info_ptr)[i].devid == devid &&
(*info_ptr)[i].num_stripes == num_stripes ) {
p = (*info_ptr) + i;
break;
}
if (!p) {
int size = sizeof(struct btrfs_chunk) * (*info_count+1);
struct chunk_info *res = realloc(*info_ptr, size);
if (!res) {
free(*info_ptr);
fprintf(stderr, "ERROR: not enough memory\n");
return -1;
}
*info_ptr = res;
p = res + *info_count;
(*info_count)++;
p->devid = devid;
p->type = type;
p->size = 0;
p->num_stripes = num_stripes;
}
p->size += size;
}
return 0;
}
/*
* Helper to sort the chunk type
*/
static int cmp_chunk_block_group(u64 f1, u64 f2)
{
u64 mask;
if ((f1 & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
(f2 & BTRFS_BLOCK_GROUP_TYPE_MASK))
mask = BTRFS_BLOCK_GROUP_PROFILE_MASK;
else if (f2 & BTRFS_BLOCK_GROUP_SYSTEM)
return -1;
else if (f1 & BTRFS_BLOCK_GROUP_SYSTEM)
return +1;
else
mask = BTRFS_BLOCK_GROUP_TYPE_MASK;
if ((f1 & mask) > (f2 & mask))
return +1;
else if ((f1 & mask) < (f2 & mask))
return -1;
else
return 0;
}
/*
* Helper to sort the chunk
*/
static int cmp_chunk_info(const void *a, const void *b)
{
return cmp_chunk_block_group(
((struct chunk_info *)a)->type,
((struct chunk_info *)b)->type);
}
/*
* This function load all the chunk info from the 'fd' filesystem
*/
static int load_chunk_info(int fd,
struct chunk_info **info_ptr,
int *info_count)
{
int ret;
struct btrfs_ioctl_search_args args;
struct btrfs_ioctl_search_key *sk = &args.key;
struct btrfs_ioctl_search_header *sh;
unsigned long off = 0;
int i, e;
memset(&args, 0, sizeof(args));
/*
* there may be more than one ROOT_ITEM key if there are
* snapshots pending deletion, we have to loop through
* them.
*/
sk->tree_id = BTRFS_CHUNK_TREE_OBJECTID;
sk->min_objectid = 0;
sk->max_objectid = (u64)-1;
sk->max_type = 0;
sk->min_type = (u8)-1;
sk->min_offset = 0;
sk->max_offset = (u64)-1;
sk->min_transid = 0;
sk->max_transid = (u64)-1;
sk->nr_items = 4096;
while (1) {
ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args);
e = errno;
if (ret < 0) {
fprintf(stderr,
"ERROR: can't perform the search - %s\n",
strerror(e));
return -99;
}
/* the ioctl returns the number of item it found in nr_items */
if (sk->nr_items == 0)
break;
off = 0;
for (i = 0; i < sk->nr_items; i++) {
struct btrfs_chunk *item;
sh = (struct btrfs_ioctl_search_header *)(args.buf +
off);
off += sizeof(*sh);
item = (struct btrfs_chunk *)(args.buf + off);
if (add_info_to_list(info_ptr, info_count, item)) {
*info_ptr = 0;
return -100;
}
off += sh->len;
sk->min_objectid = sh->objectid;
sk->min_type = sh->type;
sk->min_offset = sh->offset+1;
}
if (!sk->min_offset) /* overflow */
sk->min_type++;
else
continue;
if (!sk->min_type)
sk->min_objectid++;
else
continue;
if (!sk->min_objectid)
break;
}
qsort(*info_ptr, *info_count, sizeof(struct chunk_info),
cmp_chunk_info);
return 0;
}
/*
* Helper to sort the struct btrfs_ioctl_space_info
*/
static int cmp_btrfs_ioctl_space_info(const void *a, const void *b)
{
return cmp_chunk_block_group(
((struct btrfs_ioctl_space_info *)a)->flags,
((struct btrfs_ioctl_space_info *)b)->flags);
}
/*
* This function load all the information about the space usage
*/
static struct btrfs_ioctl_space_args *load_space_info(int fd, char *path)
{
struct btrfs_ioctl_space_args *sargs = 0, *sargs_orig = 0;
int e, ret, count;
sargs_orig = sargs = malloc(sizeof(struct btrfs_ioctl_space_args));
if (!sargs) {
fprintf(stderr, "ERROR: not enough memory\n");
return NULL;
}
sargs->space_slots = 0;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
e = errno;
if (ret) {
fprintf(stderr,
"ERROR: couldn't get space info on '%s' - %s\n",
path, strerror(e));
free(sargs);
return NULL;
}
if (!sargs->total_spaces) {
free(sargs);
printf("No chunks found\n");
return NULL;
}
count = sargs->total_spaces;
sargs = realloc(sargs, sizeof(struct btrfs_ioctl_space_args) +
(count * sizeof(struct btrfs_ioctl_space_info)));
if (!sargs) {
free(sargs_orig);
fprintf(stderr, "ERROR: not enough memory\n");
return NULL;
}
sargs->space_slots = count;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
e = errno;
if (ret) {
fprintf(stderr,
"ERROR: couldn't get space info on '%s' - %s\n",
path, strerror(e));
free(sargs);
return NULL;
}
qsort(&(sargs->spaces), count, sizeof(struct btrfs_ioctl_space_info),
cmp_btrfs_ioctl_space_info);
return sargs;
}
/*
* This function computes the space occuped by a *single* RAID5/RAID6 chunk.
* The computation is performed on the basis of the number of stripes
* which compose the chunk, which could be different from the number of disks
* if a disk is added later.
*/
static int get_raid56_used(int fd, u64 *raid5_used, u64 *raid6_used)
{
struct chunk_info *info_ptr=0, *p;
int info_count=0;
int ret;
*raid5_used = *raid6_used =0;
ret = load_chunk_info(fd, &info_ptr, &info_count);
if( ret < 0)
return ret;
for ( p = info_ptr; info_count ; info_count--, p++ ) {
if (p->type & BTRFS_BLOCK_GROUP_RAID5)
(*raid5_used) += p->size / (p->num_stripes -1);
if (p->type & BTRFS_BLOCK_GROUP_RAID6)
(*raid6_used) += p->size / (p->num_stripes -2);
}
free(info_ptr);
return 0;
}
static int _cmd_disk_free(int fd, char *path, int mode)
{
struct btrfs_ioctl_space_args *sargs = 0;
int i;
int ret = 0;
int e, width;
u64 total_disk; /* filesystem size == sum of
disks sizes */
u64 total_chunks; /* sum of chunks sizes on disk(s) */
u64 total_used; /* logical space used */
u64 total_free; /* logical space un-used */
double K;
u64 raid5_used, raid6_used;
if ((sargs = load_space_info(fd, path)) == NULL) {
ret = -1;
goto exit;
}
total_disk = disk_size(path);
e = errno;
if (total_disk == 0) {
fprintf(stderr,
"ERROR: couldn't get space info on '%s' - %s\n",
path, strerror(e));
ret = 19;
goto exit;
}
if (get_raid56_used(fd, &raid5_used, &raid6_used) < 0) {
fprintf(stderr,
"ERROR: couldn't get space info on '%s'\n",
path );
ret = 20;
goto exit;
}
total_chunks = total_used = total_free = 0;
for (i = 0; i < sargs->total_spaces; i++) {
float ratio = 1;
u64 allocated;
u64 flags = sargs->spaces[i].flags;
/*
* The raid5/raid6 ratio depends by the stripes number
* used by every chunk. It is computed separately
*/
if (flags & BTRFS_BLOCK_GROUP_RAID0)
ratio = 1;
else if (flags & BTRFS_BLOCK_GROUP_RAID1)
ratio = 2;
else if (flags & BTRFS_BLOCK_GROUP_RAID5)
ratio = 0;
else if (flags & BTRFS_BLOCK_GROUP_RAID6)
ratio = 0;
else if (flags & BTRFS_BLOCK_GROUP_DUP)
ratio = 2;
else if (flags & BTRFS_BLOCK_GROUP_RAID10)
ratio = 2;
else
ratio = 1;
allocated = sargs->spaces[i].total_bytes * ratio;
total_chunks += allocated;
total_used += sargs->spaces[i].used_bytes;
total_free += (sargs->spaces[i].total_bytes -
sargs->spaces[i].used_bytes);
}
/* add the raid5/6 allocated space */
total_chunks += raid5_used + raid6_used;
K = ((double)total_used + (double)total_free) / (double)total_chunks;
if (mode & DF_HUMAN_UNIT)
width = 10;
else
width = 18;
printf("Disk size:\t\t%*s\n", width,
df_pretty_sizes(total_disk, mode));
printf("Disk allocated:\t\t%*s\n", width,
df_pretty_sizes(total_chunks, mode));
printf("Disk unallocated:\t%*s\n", width,
df_pretty_sizes(total_disk-total_chunks, mode));
printf("Used:\t\t\t%*s\n", width,
df_pretty_sizes(total_used, mode));
printf("Free (Estimated):\t%*s\t(",
width,
df_pretty_sizes((u64)(K*total_disk-total_used), mode));
printf("Max: %s, ",
df_pretty_sizes(total_disk-total_chunks+total_free, mode));
printf("min: %s)\n",
df_pretty_sizes((total_disk-total_chunks)/2+total_free, mode));
printf("Data to disk ratio:\t%*.0f %%\n",
width-2, K*100);
exit:
if (sargs)
free(sargs);
return ret;
}
const char * const cmd_filesystem_df_usage[] = {
"btrfs filesystem df [-b] <path> [<path>..]",
"Show space usage information for a mount point(s).",
"",
"-b\tSet byte as unit",
NULL
};
int cmd_filesystem_df(int argc, char **argv)
{
int flags = DF_HUMAN_UNIT;
int i, more_than_one = 0;
optind = 1;
while (1) {
char c = getopt(argc, argv, "b");
if (c < 0)
break;
switch (c) {
case 'b':
flags &= ~DF_HUMAN_UNIT;
break;
default:
usage(cmd_filesystem_df_usage);
}
}
if (check_argc_min(argc - optind, 1))
usage(cmd_filesystem_df_usage);
for (i = optind; i < argc ; i++) {
int r, fd;
DIR *dirstream = NULL;
if (more_than_one)
printf("\n");
fd = open_file_or_dir(argv[i], &dirstream);
if (fd < 0) {
fprintf(stderr, "ERROR: can't access to '%s'\n",
argv[1]);
return 12;
}
r = _cmd_disk_free(fd, argv[i], flags);
close_file_or_dir(fd, dirstream);
if (r)
return r;
more_than_one = 1;
}
return 0;
}
/*
* Helper to sort the disk_info structure
*/
static int cmp_disk_info(const void *a, const void *b)
{
return strcmp(((struct disk_info *)a)->path,
((struct disk_info *)b)->path);
}
/*
* This function load the disk_info structure and put them in an array
*/
static int load_disks_info(int fd,
struct disk_info **disks_info_ptr,
int *disks_info_count)
{
int ret, i, ndevs;
struct btrfs_ioctl_fs_info_args fi_args;
struct btrfs_ioctl_dev_info_args dev_info;
struct disk_info *info;
*disks_info_count = 0;
*disks_info_ptr = 0;
ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args);
if (ret < 0) {
fprintf(stderr, "ERROR: cannot get filesystem info\n");
return -1;
}
info = malloc(sizeof(struct disk_info) * fi_args.num_devices);
if (!info) {
fprintf(stderr, "ERROR: not enough memory\n");
return -1;
}
for (i = 0, ndevs = 0 ; i <= fi_args.max_id ; i++) {
BUG_ON(ndevs >= fi_args.num_devices);
ret = get_device_info(fd, i, &dev_info);
if (ret == -ENODEV)
continue;
if (ret) {
fprintf(stderr,
"ERROR: cannot get info about device devid=%d\n",
i);
free(info);
return -1;
}
info[ndevs].devid = dev_info.devid;
strcpy(info[ndevs].path, (char *)dev_info.path);
info[ndevs].size = get_partition_size((char *)dev_info.path);
++ndevs;
}
BUG_ON(ndevs != fi_args.num_devices);
qsort(info, fi_args.num_devices,
sizeof(struct disk_info), cmp_disk_info);
*disks_info_count = fi_args.num_devices;
*disks_info_ptr = info;
return 0;
}
/*
* This function computes the size of a chunk in a disk
*/
static u64 calc_chunk_size(struct chunk_info *ci)
{
if (ci->type & BTRFS_BLOCK_GROUP_RAID0)
return ci->size / ci->num_stripes;
else if (ci->type & BTRFS_BLOCK_GROUP_RAID1)
return ci->size ;
else if (ci->type & BTRFS_BLOCK_GROUP_DUP)
return ci->size ;
else if (ci->type & BTRFS_BLOCK_GROUP_RAID5)
return ci->size / (ci->num_stripes -1);
else if (ci->type & BTRFS_BLOCK_GROUP_RAID6)
return ci->size / (ci->num_stripes -2);
else if (ci->type & BTRFS_BLOCK_GROUP_RAID10)
return ci->size / ci->num_stripes;
return ci->size;
}
/*
* This function print the results of the command btrfs fi disk-usage
* in tabular format
*/
static void _cmd_filesystem_disk_usage_tabular(int mode,
struct btrfs_ioctl_space_args *sargs,
struct chunk_info *chunks_info_ptr,
int chunks_info_count,
struct disk_info *disks_info_ptr,
int disks_info_count)
{
int i;
u64 total_unused = 0;
struct string_table *matrix = 0;
int ncols, nrows;
ncols = sargs->total_spaces + 2;
nrows = 2 + 1 + disks_info_count + 1 + 2;
matrix = table_create(ncols, nrows);
if (!matrix) {
fprintf(stderr, "ERROR: not enough memory\n");
return;
}
/* header */
for (i = 0; i < sargs->total_spaces; i++) {
const char *description;
u64 flags = sargs->spaces[i].flags;
description = btrfs_group_type_str(flags);
table_printf(matrix, 1+i, 0, "<%s", description);
}
for (i = 0; i < sargs->total_spaces; i++) {
const char *r_mode;
u64 flags = sargs->spaces[i].flags;
r_mode = btrfs_group_profile_str(flags);
table_printf(matrix, 1+i, 1, "<%s", r_mode);
}
table_printf(matrix, 1+sargs->total_spaces, 1, "<Unallocated");
/* body */
for (i = 0 ; i < disks_info_count ; i++) {
int k, col;
char *p;
u64 total_allocated = 0, unused;
p = strrchr(disks_info_ptr[i].path, '/');
if (!p)
p = disks_info_ptr[i].path;
else
p++;
table_printf(matrix, 0, i+3, "<%s",
disks_info_ptr[i].path);
for (col = 1, k = 0 ; k < sargs->total_spaces ; k++) {
u64 flags = sargs->spaces[k].flags;
u64 devid = disks_info_ptr[i].devid;
int j;
u64 size = 0;
for (j = 0 ; j < chunks_info_count ; j++) {
if (chunks_info_ptr[j].type != flags )
continue;
if (chunks_info_ptr[j].devid != devid)
continue;
size += calc_chunk_size(chunks_info_ptr+j);
}
if (size)
table_printf(matrix, col, i+3,
">%s", df_pretty_sizes(size, mode));
else
table_printf(matrix, col, i+3, ">-");
total_allocated += size;
col++;
}
unused = get_partition_size(disks_info_ptr[i].path) -
total_allocated;
table_printf(matrix, sargs->total_spaces + 1, i + 3,
">%s", df_pretty_sizes(unused, mode));
total_unused += unused;
}
for (i = 0; i <= sargs->total_spaces; i++)
table_printf(matrix, i + 1, disks_info_count + 3, "=");
/* footer */
table_printf(matrix, 0, disks_info_count + 4, "<Total");
for (i = 0; i < sargs->total_spaces; i++)
table_printf(matrix, 1 + i, disks_info_count + 4,
">%s",
df_pretty_sizes(sargs->spaces[i].total_bytes, mode));
table_printf(matrix, sargs->total_spaces+1, disks_info_count+4,
">%s", df_pretty_sizes(total_unused, mode));
table_printf(matrix, 0, disks_info_count+5, "<Used");
for (i = 0; i < sargs->total_spaces; i++)
table_printf(matrix, 1+i, disks_info_count+5, ">%s",
df_pretty_sizes(sargs->spaces[i].used_bytes, mode));
table_dump(matrix);
table_free(matrix);
}
/*
* This function prints the unused space per every disk
*/
static void print_unused(struct chunk_info *info_ptr,
int info_count,
struct disk_info *disks_info_ptr,
int disks_info_count,
int mode)
{
int i;
for (i = 0 ; i < disks_info_count ; i++) {
int j;
u64 total = 0;
for (j = 0 ; j < info_count ; j++)
if (info_ptr[j].devid == disks_info_ptr[i].devid)
total += calc_chunk_size(info_ptr+j);
printf(" %s\t%10s\n",
disks_info_ptr[i].path,
df_pretty_sizes(disks_info_ptr[i].size - total, mode));
}
}
/*
* This function prints the allocated chunk per every disk
*/
static void print_chunk_disks(u64 chunk_type,
struct chunk_info *chunks_info_ptr,
int chunks_info_count,
struct disk_info *disks_info_ptr,
int disks_info_count,
int mode)
{
int i;
for (i = 0 ; i < disks_info_count ; i++) {
int j;
u64 total = 0;
for (j = 0 ; j < chunks_info_count ; j++) {
if (chunks_info_ptr[j].type != chunk_type)
continue;
if (chunks_info_ptr[j].devid != disks_info_ptr[i].devid)
continue;
total += calc_chunk_size(&(chunks_info_ptr[j]));
//total += chunks_info_ptr[j].size;
}
if (total > 0)
printf(" %s\t%10s\n",
disks_info_ptr[i].path,
df_pretty_sizes(total, mode));
}
}
/*
* This function print the results of the command btrfs fi disk-usage
* in linear format
*/
static void _cmd_filesystem_disk_usage_linear(int mode,
struct btrfs_ioctl_space_args *sargs,
struct chunk_info *info_ptr,
int info_count,
struct disk_info *disks_info_ptr,
int disks_info_count)
{
int i;
for (i = 0; i < sargs->total_spaces; i++) {
const char *description;
const char *r_mode;
u64 flags = sargs->spaces[i].flags;
description = btrfs_group_type_str(flags);
r_mode = btrfs_group_profile_str(flags);
printf("%s,%s: Size:%s, ",
description,
r_mode,
df_pretty_sizes(sargs->spaces[i].total_bytes ,
mode));
printf("Used:%s\n",
df_pretty_sizes(sargs->spaces[i].used_bytes,
mode));
print_chunk_disks(flags, info_ptr, info_count,
disks_info_ptr, disks_info_count,
mode);
printf("\n");
}
printf("Unallocated:\n");
print_unused(info_ptr, info_count,
disks_info_ptr, disks_info_count,
mode);
}
static int _cmd_filesystem_disk_usage(int fd, char *path, int mode, int tabular)
{
struct btrfs_ioctl_space_args *sargs = 0;
int info_count = 0;
struct chunk_info *info_ptr = 0;
struct disk_info *disks_info_ptr = 0;
int disks_info_count = 0;
int ret = 0;
if (load_chunk_info(fd, &info_ptr, &info_count) ||
load_disks_info(fd, &disks_info_ptr, &disks_info_count)) {
ret = -1;
goto exit;
}
if ((sargs = load_space_info(fd, path)) == NULL) {
ret = -1;
goto exit;
}
if (tabular)
_cmd_filesystem_disk_usage_tabular(mode, sargs,
info_ptr, info_count,
disks_info_ptr, disks_info_count);
else
_cmd_filesystem_disk_usage_linear(mode, sargs,
info_ptr, info_count,
disks_info_ptr, disks_info_count);
exit:
if (sargs)
free(sargs);
if (disks_info_ptr)
free(disks_info_ptr);
if (info_ptr)
free(info_ptr);
return ret;
}
const char * const cmd_filesystem_disk_usage_usage[] = {
"btrfs filesystem disk-usage [-b][-t] <path> [<path>..]",
"Show in which disk the chunks are allocated.",
"",
"-b\tSet byte as unit",
"-t\tShow data in tabular format",
NULL
};
int cmd_filesystem_disk_usage(int argc, char **argv)
{
int flags = DF_HUMAN_UNIT;
int i, more_than_one = 0;
int tabular = 0;
optind = 1;
while (1) {
char c = getopt(argc, argv, "bt");
if (c < 0)
break;
switch (c) {
case 'b':
flags &= ~DF_HUMAN_UNIT;
break;
case 't':
tabular = 1;
break;
default:
usage(cmd_filesystem_disk_usage_usage);
}
}
if (check_argc_min(argc - optind, 1))
usage(cmd_filesystem_disk_usage_usage);
for (i = optind; i < argc ; i++) {
int r, fd;
DIR *dirstream = NULL;
if (more_than_one)
printf("\n");
fd = open_file_or_dir(argv[i], &dirstream);
if (fd < 0) {
fprintf(stderr, "ERROR: can't access to '%s'\n",
argv[1]);
return 12;
}
r = _cmd_filesystem_disk_usage(fd, argv[i], flags, tabular);
close_file_or_dir(fd, dirstream);
if (r)
return r;
more_than_one = 1;
}
return 0;
}
static void print_disk_chunks(int fd,
u64 devid,
u64 total_size,
struct chunk_info *chunks_info_ptr,
int chunks_info_count,
int mode)
{
int i;
u64 allocated = 0;
for (i = 0 ; i < chunks_info_count ; i++) {
const char *description;
const char *r_mode;
u64 flags;
u64 size;
if (chunks_info_ptr[i].devid != devid)
continue;
flags = chunks_info_ptr[i].type;
description = btrfs_group_type_str(flags);
r_mode = btrfs_group_profile_str(flags);
size = calc_chunk_size(chunks_info_ptr+i);
printf(" %s,%s:%*s%10s\n",
description,
r_mode,
(int)(20 - strlen(description) - strlen(r_mode)), "",
df_pretty_sizes(size, mode));
allocated += size;
}
printf(" Unallocated: %*s%10s\n",
(int)(20 - strlen("Unallocated")), "",
df_pretty_sizes(total_size - allocated, mode));
}
static int _cmd_device_disk_usage(int fd, char *path, int mode)
{
int i;
int ret = 0;
int info_count = 0;
struct chunk_info *info_ptr = 0;
struct disk_info *disks_info_ptr = 0;
int disks_info_count = 0;
if (load_chunk_info(fd, &info_ptr, &info_count) ||
load_disks_info(fd, &disks_info_ptr, &disks_info_count)) {
ret = -1;
goto exit;
}
for (i = 0 ; i < disks_info_count ; i++) {
printf("%s\t%10s\n", disks_info_ptr[i].path,
df_pretty_sizes(disks_info_ptr[i].size, mode));
print_disk_chunks(fd, disks_info_ptr[i].devid,
disks_info_ptr[i].size,
info_ptr, info_count,
mode);
printf("\n");
}
exit:
if (disks_info_ptr)
free(disks_info_ptr);
if (info_ptr)
free(info_ptr);
return ret;
}
const char * const cmd_device_disk_usage_usage[] = {
"btrfs device disk-usage [-b] <path> [<path>..]",
"Show which chunks are in a device.",
"",
"-b\tSet byte as unit",
NULL
};
int cmd_device_disk_usage(int argc, char **argv)
{
int flags = DF_HUMAN_UNIT;
int i, more_than_one = 0;
optind = 1;
while (1) {
char c = getopt(argc, argv, "b");
if (c < 0)
break;
switch (c) {
case 'b':
flags &= ~DF_HUMAN_UNIT;
break;
default:
usage(cmd_device_disk_usage_usage);
}
}
if (check_argc_min(argc - optind, 1))
usage(cmd_device_disk_usage_usage);
for (i = optind; i < argc ; i++) {
int r, fd;
DIR *dirstream = NULL;
if (more_than_one)
printf("\n");
fd = open_file_or_dir(argv[i], &dirstream);
if (fd < 0) {
fprintf(stderr, "ERROR: can't access to '%s'\n",
argv[1]);
return 12;
}
r = _cmd_device_disk_usage(fd, argv[i], flags);
close_file_or_dir(fd, dirstream);
if (r)
return r;
more_than_one = 1;
}
return 0;
}