btrfs-progs/cmds/filesystem-usage.c

1305 lines
33 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include "kerncompat.h"
#include <sys/ioctl.h>
#include <sys/statfs.h>
#include <linux/limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <getopt.h>
#include <fcntl.h>
#include <dirent.h>
#include <limits.h>
#include "kernel-lib/sizes.h"
#include "kernel-shared/ctree.h"
#include "kernel-shared/disk-io.h"
#include "kernel-shared/volumes.h"
#include "common/utils.h"
#include "common/string-table.h"
#include "common/open-utils.h"
#include "common/units.h"
#include "common/help.h"
#include "common/device-utils.h"
#include "common/messages.h"
#include "cmds/filesystem-usage.h"
#include "cmds/commands.h"
/*
* Add the chunk info to the chunk_info list
*/
static int add_info_to_list(struct chunk_info **chunkinfo_ret,
int *info_count,
struct btrfs_chunk *chunk)
{
u64 type = btrfs_stack_chunk_type(chunk);
u64 size = btrfs_stack_chunk_length(chunk);
int num_stripes = btrfs_stack_chunk_num_stripes(chunk);
int j;
for (j = 0 ; j < num_stripes ; j++) {
int i;
struct chunk_info *p = NULL;
struct btrfs_stripe *stripe;
u64 devid;
stripe = btrfs_stripe_nr(chunk, j);
devid = btrfs_stack_stripe_devid(stripe);
for (i = 0 ; i < *info_count ; i++)
if ((*chunkinfo_ret)[i].type == type &&
(*chunkinfo_ret)[i].devid == devid &&
(*chunkinfo_ret)[i].num_stripes == num_stripes ) {
p = (*chunkinfo_ret) + i;
break;
}
if (!p) {
int tmp = sizeof(struct btrfs_chunk) * (*info_count + 1);
struct chunk_info *res = realloc(*chunkinfo_ret, tmp);
if (!res) {
free(*chunkinfo_ret);
error_msg(ERROR_MSG_MEMORY, NULL);
return -ENOMEM;
}
*chunkinfo_ret = res;
p = res + *info_count;
(*info_count)++;
p->devid = devid;
p->type = type;
p->size = 0;
p->num_stripes = num_stripes;
}
p->size += size;
}
return 0;
}
/*
* Helper to sort the chunk type
*/
static int cmp_chunk_block_group(u64 f1, u64 f2)
{
u64 mask;
if ((f1 & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
(f2 & BTRFS_BLOCK_GROUP_TYPE_MASK))
mask = BTRFS_BLOCK_GROUP_PROFILE_MASK;
else if (f2 & BTRFS_BLOCK_GROUP_SYSTEM)
return -1;
else if (f1 & BTRFS_BLOCK_GROUP_SYSTEM)
return +1;
else
mask = BTRFS_BLOCK_GROUP_TYPE_MASK;
if ((f1 & mask) > (f2 & mask))
return +1;
else if ((f1 & mask) < (f2 & mask))
return -1;
else
return 0;
}
/*
* Helper to sort the chunk
*/
static int cmp_chunk_info(const void *a, const void *b)
{
return cmp_chunk_block_group(
((struct chunk_info *)a)->type,
((struct chunk_info *)b)->type);
}
static int load_chunk_info(int fd, struct chunk_info **chunkinfo_ret,
int *chunkcount_ret)
{
int ret;
struct btrfs_ioctl_search_args args;
struct btrfs_ioctl_search_key *sk = &args.key;
struct btrfs_ioctl_search_header *sh;
unsigned long off = 0;
int i, e;
memset(&args, 0, sizeof(args));
/*
* there may be more than one ROOT_ITEM key if there are
* snapshots pending deletion, we have to loop through
* them.
*/
sk->tree_id = BTRFS_CHUNK_TREE_OBJECTID;
sk->min_objectid = 0;
sk->max_objectid = (u64)-1;
sk->max_type = 0;
sk->min_type = (u8)-1;
sk->min_offset = 0;
sk->max_offset = (u64)-1;
sk->min_transid = 0;
sk->max_transid = (u64)-1;
sk->nr_items = 4096;
while (1) {
ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args);
e = errno;
if (e == EPERM)
return -e;
if (ret < 0) {
error("cannot look up chunk tree info: %m");
return 1;
}
/* the ioctl returns the number of item it found in nr_items */
if (sk->nr_items == 0)
break;
off = 0;
for (i = 0; i < sk->nr_items; i++) {
struct btrfs_chunk *item;
sh = (struct btrfs_ioctl_search_header *)(args.buf +
off);
off += sizeof(*sh);
item = (struct btrfs_chunk *)(args.buf + off);
ret = add_info_to_list(chunkinfo_ret, chunkcount_ret, item);
if (ret) {
*chunkinfo_ret = NULL;
return 1;
}
off += btrfs_search_header_len(sh);
sk->min_objectid = btrfs_search_header_objectid(sh);
sk->min_type = btrfs_search_header_type(sh);
sk->min_offset = btrfs_search_header_offset(sh)+1;
}
if (!sk->min_offset) /* overflow */
sk->min_type++;
else
continue;
if (!sk->min_type)
sk->min_objectid++;
else
continue;
if (!sk->min_objectid)
break;
}
qsort(*chunkinfo_ret, *chunkcount_ret, sizeof(struct chunk_info),
cmp_chunk_info);
return 0;
}
/*
* Helper to sort the struct btrfs_ioctl_space_info
*/
static int cmp_btrfs_ioctl_space_info(const void *a, const void *b)
{
return cmp_chunk_block_group(
((struct btrfs_ioctl_space_info *)a)->flags,
((struct btrfs_ioctl_space_info *)b)->flags);
}
/*
* This function load all the information about the space usage
*/
static struct btrfs_ioctl_space_args *load_space_info(int fd, const char *path)
{
struct btrfs_ioctl_space_args *sargs = NULL, *sargs_orig = NULL;
int ret, count;
sargs_orig = sargs = calloc(1, sizeof(struct btrfs_ioctl_space_args));
if (!sargs) {
error_msg(ERROR_MSG_MEMORY, NULL);
return NULL;
}
sargs->space_slots = 0;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info on '%s': %m", path);
free(sargs);
return NULL;
}
if (!sargs->total_spaces) {
free(sargs);
pr_verbose(LOG_DEFAULT, "No chunks found\n");
return NULL;
}
count = sargs->total_spaces;
sargs = realloc(sargs, sizeof(struct btrfs_ioctl_space_args) +
(count * sizeof(struct btrfs_ioctl_space_info)));
if (!sargs) {
free(sargs_orig);
error_msg(ERROR_MSG_MEMORY, NULL);
return NULL;
}
sargs->space_slots = count;
sargs->total_spaces = 0;
ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs);
if (ret < 0) {
error("cannot get space info with %u slots: %m",
count);
free(sargs);
return NULL;
}
qsort(&(sargs->spaces), count, sizeof(struct btrfs_ioctl_space_info),
cmp_btrfs_ioctl_space_info);
return sargs;
}
/*
* Compute the ratio between logical space used over logical space allocated
* by profile basis
*/
static void get_raid56_logical_ratio(struct btrfs_ioctl_space_args *sargs,
u64 type, double *data_ratio,
double *metadata_ratio,
double *system_ratio)
{
u64 l_data_chunk = 0, l_data_used = 0;
u64 l_metadata_chunk = 0, l_metadata_used = 0;
u64 l_system_chunk = 0, l_system_used = 0;
int i;
for (i = 0; i < sargs->total_spaces; i++) {
u64 flags = sargs->spaces[i].flags;
if (!(flags & type))
continue;
if (flags & BTRFS_BLOCK_GROUP_DATA) {
l_data_used += sargs->spaces[i].used_bytes;
l_data_chunk += sargs->spaces[i].total_bytes;
} else if (flags & BTRFS_BLOCK_GROUP_METADATA) {
l_metadata_used += sargs->spaces[i].used_bytes;
l_metadata_chunk += sargs->spaces[i].total_bytes;
} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) {
l_system_used += sargs->spaces[i].used_bytes;
l_system_chunk += sargs->spaces[i].total_bytes;
}
}
*data_ratio = -1.0;
*metadata_ratio = -1.0;
*system_ratio = -1.0;
if (l_data_chunk)
*data_ratio = (double)l_data_used / l_data_chunk;
if (l_metadata_chunk)
*metadata_ratio = (double)l_metadata_used / l_metadata_chunk;
if (l_system_chunk)
*system_ratio = (double)l_system_used / l_system_chunk;
}
/*
* Compute the "raw" space allocated for a chunk (r_*_chunks)
* and the "raw" space used by a chunk (r_*_used)
*/
static void get_raid56_space_info(struct btrfs_ioctl_space_args *sargs,
struct chunk_info *chunkinfo, int chunkcount,
double *max_data_ratio,
u64 *r_data_chunks, u64 *r_data_used,
u64 *r_metadata_chunks, u64 *r_metadata_used,
u64 *r_system_chunks, u64 *r_system_used)
{
struct chunk_info *info_ptr;
double l_data_ratio_r5, l_metadata_ratio_r5, l_system_ratio_r5;
double l_data_ratio_r6, l_metadata_ratio_r6, l_system_ratio_r6;
get_raid56_logical_ratio(sargs, BTRFS_BLOCK_GROUP_RAID5,
&l_data_ratio_r5, &l_metadata_ratio_r5, &l_system_ratio_r5);
get_raid56_logical_ratio(sargs, BTRFS_BLOCK_GROUP_RAID6,
&l_data_ratio_r6, &l_metadata_ratio_r6, &l_system_ratio_r6);
for(info_ptr = chunkinfo; chunkcount > 0; chunkcount--, info_ptr++) {
int parities_count;
u64 size;
double l_data_ratio, l_metadata_ratio, l_system_ratio, rt;
parities_count = btrfs_bg_type_to_nparity(info_ptr->type);
if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID5) {
l_data_ratio = l_data_ratio_r5;
l_metadata_ratio = l_metadata_ratio_r5;
l_system_ratio = l_system_ratio_r5;
} else if (info_ptr->type & BTRFS_BLOCK_GROUP_RAID6) {
l_data_ratio = l_data_ratio_r6;
l_metadata_ratio = l_metadata_ratio_r6;
l_system_ratio = l_system_ratio_r6;
} else {
continue;
}
rt = (double)info_ptr->num_stripes /
(info_ptr->num_stripes - parities_count);
if (rt > *max_data_ratio)
*max_data_ratio = rt;
/*
* size is the total disk(s) space occupied by a chunk
* the product of 'size' and '*_ratio' is "in average"
* the disk(s) space used by the data
*/
size = info_ptr->size / (info_ptr->num_stripes - parities_count);
if (info_ptr->type & BTRFS_BLOCK_GROUP_DATA) {
ASSERT(l_data_ratio >= 0);
*r_data_chunks += size;
*r_data_used += size * l_data_ratio;
} else if (info_ptr->type & BTRFS_BLOCK_GROUP_METADATA) {
ASSERT(l_metadata_ratio >= 0);
*r_metadata_chunks += size;
*r_metadata_used += size * l_metadata_ratio;
} else if (info_ptr->type & BTRFS_BLOCK_GROUP_SYSTEM) {
ASSERT(l_system_ratio >= 0);
*r_system_chunks += size;
*r_system_used += size * l_system_ratio;
}
}
}
static u64 get_first_device_zone_size(int fd)
{
int dirfd;
DIR *dir;
struct dirent *de;
char name[NAME_MAX] = {0};
u64 ret;
dirfd = sysfs_open_fsid_dir(fd, "devices");
if (dirfd < 0)
return 0;
dir = fdopendir(dirfd);
if (!dir) {
ret = 0;
goto out;
}
while (1) {
de = readdir(dir);
if (strcmp(".", de->d_name) == 0 || strcmp("..", de->d_name) == 0)
continue;
strcpy(name, de->d_name);
name[NAME_MAX - 1] = 0;
break;
}
ret = device_get_zone_size(fd, name);
ret *= 512;
out:
closedir(dir);
return ret;
}
static u64 calc_slack_size(const struct device_info *devinfo)
{
if (devinfo->device_size > 0)
return devinfo->device_size - devinfo->size;
return 0;
}
#define MIN_UNALOCATED_THRESH SZ_16M
static int print_filesystem_usage_overall(int fd, struct chunk_info *chunkinfo,
int chunkcount, struct device_info *devinfo, int devcount,
const char *path, unsigned unit_mode)
{
struct btrfs_ioctl_space_args *sargs = NULL;
char *tmp;
int i;
int ret = 0;
int width = 10; /* default 10 for human units */
/*
* r_* prefix is for raw data
* l_* prefix is for logical
* *_used suffix is for space used for data or metadata
* *_chunks suffix is for total space used by the chunk
*/
u64 r_total_size = 0; /* filesystem size, sum of device sizes */
u64 r_total_chunks = 0; /* sum of chunks sizes on disk(s) */
u64 r_total_used = 0;
u64 r_total_unused = 0;
u64 r_total_missing = 0; /* sum of missing devices size */
u64 r_total_slack = 0;
u64 r_data_used = 0;
u64 r_data_chunks = 0;
u64 l_data_chunks = 0;
u64 r_metadata_used = 0;
u64 r_metadata_chunks = 0;
u64 l_metadata_chunks = 0;
u64 r_system_used = 0;
u64 r_system_chunks = 0;
double data_ratio;
double metadata_ratio;
/* logical */
u64 l_global_reserve = 0;
u64 l_global_reserve_used = 0;
u64 free_estimated = 0;
u64 free_min = 0;
u64 zone_unusable = 0;
double max_data_ratio = 1.0;
bool mixed = false;
struct statfs statfs_buf;
struct btrfs_ioctl_feature_flags feature_flags;
sargs = load_space_info(fd, path);
if (!sargs) {
ret = 1;
goto exit;
}
r_total_size = 0;
for (i = 0; i < devcount; i++) {
r_total_size += devinfo[i].size;
r_total_slack += calc_slack_size(&devinfo[i]);
if (!devinfo[i].device_size)
r_total_missing += devinfo[i].size;
}
if (r_total_size == 0) {
error("cannot get space info on '%s': %m", path);
ret = 1;
goto exit;
}
get_raid56_space_info(sargs, chunkinfo, chunkcount, &max_data_ratio,
&r_data_chunks, &r_data_used,
&r_metadata_chunks, &r_metadata_used,
&r_system_chunks, &r_system_used);
for (i = 0; i < sargs->total_spaces; i++) {
int ratio;
u64 flags = sargs->spaces[i].flags;
ratio = btrfs_bg_type_to_ncopies(flags);
/*
* The RAID5/6 ratio depends on the number of stripes and is
* computed separately. Setting ratio to 0 will not account
* the chunks in this loop.
*/
if (flags & BTRFS_BLOCK_GROUP_RAID56_MASK)
ratio = 0;
if (ratio > max_data_ratio)
max_data_ratio = ratio;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV) {
l_global_reserve = sargs->spaces[i].total_bytes;
l_global_reserve_used = sargs->spaces[i].used_bytes;
}
if ((flags & (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA))
== (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA)) {
mixed = true;
} else {
/*
* As mixed mode is not supported in zoned mode, this
* will account for all profile types
*/
u64 tmp;
tmp = device_get_zone_unusable(fd, flags);
if (tmp != DEVICE_ZONE_UNUSABLE_UNKNOWN)
zone_unusable += tmp;
}
if (flags & BTRFS_BLOCK_GROUP_DATA) {
r_data_used += sargs->spaces[i].used_bytes * ratio;
r_data_chunks += sargs->spaces[i].total_bytes * ratio;
l_data_chunks += sargs->spaces[i].total_bytes;
}
if (flags & BTRFS_BLOCK_GROUP_METADATA) {
r_metadata_used += sargs->spaces[i].used_bytes * ratio;
r_metadata_chunks += sargs->spaces[i].total_bytes * ratio;
l_metadata_chunks += sargs->spaces[i].total_bytes;
}
if (flags & BTRFS_BLOCK_GROUP_SYSTEM) {
r_system_used += sargs->spaces[i].used_bytes * ratio;
r_system_chunks += sargs->spaces[i].total_bytes * ratio;
}
}
r_total_chunks = r_data_chunks + r_system_chunks;
r_total_used = r_data_used + r_system_used;
if (!mixed) {
r_total_chunks += r_metadata_chunks;
r_total_used += r_metadata_used;
}
r_total_unused = r_total_size - r_total_chunks;
/* Raw / Logical = raid factor, >= 1 */
data_ratio = (double)r_data_chunks / l_data_chunks;
if (mixed)
metadata_ratio = data_ratio;
else
metadata_ratio = (double)r_metadata_chunks / l_metadata_chunks;
/*
* We're able to fill at least DATA for the unused space
*
* With mixed raid levels, this gives a rough estimate but more
* accurate than just counting the logical free space
* (l_data_chunks - l_data_used)
*
* In non-mixed case there's no difference.
*/
free_estimated = (r_data_chunks - r_data_used) / data_ratio;
/*
* For mixed-bg the metadata are left out in calculations thus global
* reserve would be lost. Part of it could be permanently allocated,
* we have to subtract the used bytes so we don't go under zero free.
*/
if (mixed)
free_estimated -= l_global_reserve - l_global_reserve_used;
free_min = free_estimated;
/* Chop unallocatable space */
/* FIXME: must be applied per device */
if (r_total_unused >= MIN_UNALOCATED_THRESH) {
free_estimated += r_total_unused / data_ratio;
/* Match the calculation of 'df', use the highest raid ratio */
free_min += r_total_unused / max_data_ratio;
}
if (unit_mode != UNITS_HUMAN)
width = 18;
ret = statfs(path, &statfs_buf);
if (ret) {
warning("cannot get space info with statfs() on '%s': %m", path);
memset(&statfs_buf, 0, sizeof(statfs_buf));
ret = 0;
}
pr_verbose(LOG_DEFAULT, "Overall:\n");
pr_verbose(LOG_DEFAULT, " Device size:\t\t%*s\n", width,
pretty_size_mode(r_total_size, unit_mode));
pr_verbose(LOG_DEFAULT, " Device allocated:\t\t%*s\n", width,
pretty_size_mode(r_total_chunks, unit_mode));
pr_verbose(LOG_DEFAULT, " Device unallocated:\t\t%*s\n", width,
pretty_size_mode(r_total_unused, unit_mode | UNITS_NEGATIVE));
pr_verbose(LOG_DEFAULT, " Device missing:\t\t%*s\n", width,
pretty_size_mode(r_total_missing, unit_mode));
pr_verbose(LOG_DEFAULT, " Device slack:\t\t%*s\n", width,
pretty_size_mode(r_total_slack, unit_mode));
ret = ioctl(fd, BTRFS_IOC_GET_FEATURES, &feature_flags);
if (ret == 0 && (feature_flags.incompat_flags & BTRFS_FEATURE_INCOMPAT_ZONED)) {
u64 zone_size;
pr_verbose(LOG_DEFAULT, " Device zone unusable:\t%*s\n", width,
pretty_size_mode(zone_unusable, unit_mode));
zone_size = get_first_device_zone_size(fd);
pr_verbose(LOG_DEFAULT, " Device zone size:\t\t%*s\n", width,
pretty_size_mode(zone_size, unit_mode));
}
pr_verbose(LOG_DEFAULT, " Used:\t\t\t%*s\n", width,
pretty_size_mode(r_total_used, unit_mode));
pr_verbose(LOG_DEFAULT, " Free (estimated):\t\t%*s\t(",
width,
pretty_size_mode(free_estimated, unit_mode));
pr_verbose(LOG_DEFAULT, "min: %s)\n", pretty_size_mode(free_min, unit_mode));
pr_verbose(LOG_DEFAULT, " Free (statfs, df):\t\t%*s\n", width,
pretty_size_mode(statfs_buf.f_bavail * statfs_buf.f_bsize, unit_mode));
pr_verbose(LOG_DEFAULT, " Data ratio:\t\t\t%*.2f\n",
width, data_ratio);
pr_verbose(LOG_DEFAULT, " Metadata ratio:\t\t%*.2f\n",
width, metadata_ratio);
pr_verbose(LOG_DEFAULT, " Global reserve:\t\t%*s\t(used: %s)\n", width,
pretty_size_mode(l_global_reserve, unit_mode),
pretty_size_mode(l_global_reserve_used, unit_mode));
tmp = btrfs_test_for_multiple_profiles(fd);
if (tmp[0])
pr_verbose(LOG_DEFAULT, " Multiple profiles:\t\t%*s\t(%s)\n", width, "yes", tmp);
else
pr_verbose(LOG_DEFAULT, " Multiple profiles:\t\t%*s\n", width, "no");
free(tmp);
exit:
if (sargs)
free(sargs);
return ret;
}
/*
* Helper to sort the device_info structure
*/
static int cmp_device_info(const void *a, const void *b)
{
const struct device_info *deva = a;
const struct device_info *devb = b;
if (deva->devid < devb->devid)
return -1;
if (deva->devid > devb->devid)
return 1;
return 0;
}
int dev_to_fsid(const char *dev, u8 *fsid)
{
struct btrfs_super_block disk_super;
int ret;
int fd;
fd = open(dev, O_RDONLY);
if (fd < 0) {
ret = -errno;
return ret;
}
ret = btrfs_read_dev_super(fd, &disk_super,
BTRFS_SUPER_INFO_OFFSET, SBREAD_DEFAULT);
if (ret)
goto out;
memcpy(fsid, disk_super.fsid, BTRFS_FSID_SIZE);
ret = 0;
out:
close(fd);
return ret;
}
/*
* This function loads the device_info structure and put them in an array
*/
static int load_device_info(int fd, struct device_info **devinfo_ret,
int *devcount_ret)
{
int ret, i, ndevs;
struct btrfs_ioctl_fs_info_args fi_args;
struct btrfs_ioctl_dev_info_args dev_info;
struct device_info *info;
u8 fsid[BTRFS_UUID_SIZE];
*devcount_ret = 0;
*devinfo_ret = NULL;
ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args);
if (ret < 0) {
if (errno == EPERM)
return -errno;
error("cannot get filesystem info: %m");
return 1;
}
info = calloc(fi_args.num_devices, sizeof(struct device_info));
if (!info) {
error_msg(ERROR_MSG_MEMORY, NULL);
return 1;
}
for (i = 0, ndevs = 0 ; i <= fi_args.max_id ; i++) {
if (ndevs >= fi_args.num_devices) {
error("unexpected number of devices: %d >= %llu", ndevs,
fi_args.num_devices);
error(
"if seed device is used, try running this command as root");
goto out;
}
memset(&dev_info, 0, sizeof(dev_info));
ret = get_device_info(fd, i, &dev_info);
if (ret == -ENODEV)
continue;
if (ret) {
error("cannot get info about device devid=%d", i);
goto out;
}
/*
* Skip seed device by checking device's fsid (requires root).
* And we will skip only if dev_to_fsid is successful and dev
* is a seed device.
* Ignore any other error including -EACCES, which is seen when
* a non-root process calls dev_to_fsid(path)->open(path).
*/
ret = dev_to_fsid((const char *)dev_info.path, fsid);
if (!ret && memcmp(fi_args.fsid, fsid, BTRFS_FSID_SIZE) != 0)
continue;
info[ndevs].devid = dev_info.devid;
if (!dev_info.path[0]) {
strcpy(info[ndevs].path, "missing");
} else {
strcpy(info[ndevs].path, (char *)dev_info.path);
info[ndevs].device_size =
device_get_partition_size((const char *)dev_info.path);
}
info[ndevs].size = dev_info.total_bytes;
++ndevs;
}
if (ndevs != fi_args.num_devices) {
error("unexpected number of devices: %d != %llu", ndevs,
fi_args.num_devices);
goto out;
}
qsort(info, fi_args.num_devices,
sizeof(struct device_info), cmp_device_info);
*devcount_ret = fi_args.num_devices;
*devinfo_ret = info;
return 0;
out:
free(info);
return ret;
}
int load_chunk_and_device_info(int fd, struct chunk_info **chunkinfo_ret,
int *chunkcount_ret, struct device_info **devinfo_ret,
int *devcount_ret)
{
int ret;
ret = load_chunk_info(fd, chunkinfo_ret, chunkcount_ret);
if (ret == -EPERM) {
warning(
"cannot read detailed chunk info, per-device usage will not be shown, run as root");
} else if (ret) {
return ret;
}
ret = load_device_info(fd, devinfo_ret, devcount_ret);
if (ret == -EPERM) {
warning(
"cannot get filesystem info from ioctl(FS_INFO), run as root");
ret = 0;
}
return ret;
}
/*
* This function computes the size of a chunk in a disk
*/
static u64 calc_chunk_size(struct chunk_info *ci)
{
u32 div = 1;
/*
* The formula doesn't work for RAID1/DUP types, we should just return the
* chunk size
*/
if (!(ci->type & (BTRFS_BLOCK_GROUP_RAID1_MASK|BTRFS_BLOCK_GROUP_DUP))) {
/* No parity + sub_stripes, so order of "-" and "/" does not matter */
div = (ci->num_stripes - btrfs_bg_type_to_nparity(ci->type)) /
btrfs_bg_type_to_sub_stripes(ci->type);
}
return ci->size / div;
}
/*
* This function print the results of the command "btrfs fi usage"
* in tabular format
*/
static void _cmd_filesystem_usage_tabular(unsigned unit_mode,
struct btrfs_ioctl_space_args *sargs,
struct chunk_info *chunks_info_ptr,
int chunks_info_count,
struct device_info *devinfo,
int devcount)
{
int i;
u64 total_unused = 0;
u64 total_total = 0;
u64 total_slack = 0;
struct string_table *matrix = NULL;
int ncols, nrows;
int col;
int unallocated_col;
int spaceinfos_col;
int total_col;
int slack_col;
u64 slack;
const int vhdr_skip = 3; /* amount of vertical header space */
/* id, path, unallocated, total, slack */
ncols = 5;
spaceinfos_col = 2;
/* Properly count the real space infos */
for (i = 0; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
ncols++;
}
/* 2 for header, empty line, devices, ===, total, used */
nrows = vhdr_skip + devcount + 1 + 2;
matrix = table_create(ncols, nrows);
if (!matrix) {
error_msg(ERROR_MSG_MEMORY, NULL);
return;
}
/*
* We have to skip the global block reserve everywhere as it's an
* artificial blockgroup
*/
/* header */
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
u64 flags = sargs->spaces[i].flags;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col, 0, "<%s",
btrfs_group_type_str(flags));
table_printf(matrix, col, 1, "<%s",
btrfs_group_profile_str(flags));
col++;
}
unallocated_col = col++;
total_col = col++;
slack_col = col++;
table_printf(matrix, 0, 1, "<Id");
table_printf(matrix, 1, 1, "<Path");
table_printf(matrix, unallocated_col, 1, "<Unallocated");
table_printf(matrix, total_col, 1, "<Total");
table_printf(matrix, slack_col, 1, "<Slack");
/* body */
for (i = 0; i < devcount; i++) {
int k;
char *p;
u64 total_allocated = 0, unused;
p = strrchr(devinfo[i].path, '/');
if (!p)
p = devinfo[i].path;
else
p++;
table_printf(matrix, 0, vhdr_skip + i, ">%llu",
devinfo[i].devid);
table_printf(matrix, 1, vhdr_skip + i, "<%s",
devinfo[i].path);
for (col = spaceinfos_col, k = 0; k < sargs->total_spaces; k++) {
u64 flags = sargs->spaces[k].flags;
u64 devid = devinfo[i].devid;
int j;
u64 size = 0;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
for (j = 0 ; j < chunks_info_count ; j++) {
if (chunks_info_ptr[j].type != flags )
continue;
if (chunks_info_ptr[j].devid != devid)
continue;
size += calc_chunk_size(chunks_info_ptr+j);
}
if (size)
table_printf(matrix, col, vhdr_skip+ i,
">%s", pretty_size_mode(size, unit_mode));
else
table_printf(matrix, col, vhdr_skip + i, ">-");
total_allocated += size;
col++;
}
unused = device_get_partition_size(devinfo[i].path)
- total_allocated;
unused = devinfo[i].size - total_allocated;
table_printf(matrix, unallocated_col, vhdr_skip + i, ">%s",
pretty_size_mode(unused, unit_mode | UNITS_NEGATIVE));
table_printf(matrix, total_col, vhdr_skip + i, ">%s",
pretty_size_mode(devinfo[i].size,
unit_mode | UNITS_NEGATIVE));
slack = calc_slack_size(&devinfo[i]);
if (slack > 0) {
table_printf(matrix, slack_col, vhdr_skip + i, ">%s",
pretty_size_mode(slack,
unit_mode | UNITS_NEGATIVE));
} else {
table_printf(matrix, slack_col, vhdr_skip + i, ">-");
}
total_unused += unused;
total_slack += slack;
total_total += devinfo[i].size;
}
for (i = 0; i < spaceinfos_col; i++) {
table_printf(matrix, i, vhdr_skip - 1, "*-");
table_printf(matrix, i, vhdr_skip + devcount, "*-");
}
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col, vhdr_skip - 1, "*-");
table_printf(matrix, col, vhdr_skip + devcount, "*-");
col++;
}
/* Line under Unallocated, Total, Slack */
table_printf(matrix, col, vhdr_skip - 1, "*-");
table_printf(matrix, col, vhdr_skip + devcount, "*-");
table_printf(matrix, col + 1, vhdr_skip - 1, "*-");
table_printf(matrix, col + 1, vhdr_skip + devcount, "*-");
table_printf(matrix, col + 2, vhdr_skip - 1, "*-");
table_printf(matrix, col + 2, vhdr_skip + devcount, "*-");
/* footer */
table_printf(matrix, 1, vhdr_skip + devcount + 1, "<Total");
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col++, vhdr_skip + devcount + 1,
">%s",
pretty_size_mode(sargs->spaces[i].total_bytes, unit_mode));
}
table_printf(matrix, unallocated_col, vhdr_skip + devcount + 1,
">%s",
pretty_size_mode(total_unused, unit_mode | UNITS_NEGATIVE));
table_printf(matrix, total_col, vhdr_skip + devcount + 1,
">%s",
pretty_size_mode(total_total, unit_mode | UNITS_NEGATIVE));
table_printf(matrix, slack_col, vhdr_skip + devcount + 1,
">%s",
pretty_size_mode(total_slack, unit_mode | UNITS_NEGATIVE));
table_printf(matrix, 1, vhdr_skip + devcount + 2, "<Used");
for (i = 0, col = spaceinfos_col; i < sargs->total_spaces; i++) {
if (sargs->spaces[i].flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
table_printf(matrix, col++, vhdr_skip + devcount + 2,
">%s",
pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode));
}
table_dump(matrix);
table_free(matrix);
}
/*
* This function prints the unused space per every disk
*/
static void print_unused(struct chunk_info *info_ptr,
int info_count,
struct device_info *devinfo,
int devcount,
unsigned unit_mode)
{
int i;
for (i = 0; i < devcount; i++) {
int j;
u64 total = 0;
for (j = 0; j < info_count; j++)
if (info_ptr[j].devid == devinfo[i].devid)
total += calc_chunk_size(info_ptr+j);
pr_verbose(LOG_DEFAULT, " %s\t%10s\n",
devinfo[i].path,
pretty_size_mode(devinfo[i].size - total, unit_mode));
}
}
/*
* This function prints the allocated chunk per every disk
*/
static void print_chunk_device(u64 chunk_type,
struct chunk_info *chunks_info_ptr,
int chunks_info_count,
struct device_info *devinfo,
int devcount,
unsigned unit_mode)
{
int i;
for (i = 0; i < devcount; i++) {
int j;
u64 total = 0;
for (j = 0; j < chunks_info_count; j++) {
if (chunks_info_ptr[j].type != chunk_type)
continue;
if (chunks_info_ptr[j].devid != devinfo[i].devid)
continue;
total += calc_chunk_size(&(chunks_info_ptr[j]));
//total += chunks_info_ptr[j].size;
}
if (total > 0)
pr_verbose(LOG_DEFAULT, " %s\t%10s\n",
devinfo[i].path,
pretty_size_mode(total, unit_mode));
}
}
/*
* This function print the results of the command "btrfs fi usage"
* in linear format
*/
static void _cmd_filesystem_usage_linear(unsigned unit_mode,
struct btrfs_ioctl_space_args *sargs,
struct chunk_info *info_ptr,
int info_count,
struct device_info *devinfo,
int devcount)
{
int i;
for (i = 0; i < sargs->total_spaces; i++) {
const char *description;
const char *r_mode;
u64 flags = sargs->spaces[i].flags;
if (flags & BTRFS_SPACE_INFO_GLOBAL_RSV)
continue;
description = btrfs_group_type_str(flags);
r_mode = btrfs_group_profile_str(flags);
pr_verbose(LOG_DEFAULT, "%s,%s: Size:%s, ",
description,
r_mode,
pretty_size_mode(sargs->spaces[i].total_bytes,
unit_mode));
pr_verbose(LOG_DEFAULT, "Used:%s (%.2f%%)\n",
pretty_size_mode(sargs->spaces[i].used_bytes, unit_mode),
100.0f * sargs->spaces[i].used_bytes /
(sargs->spaces[i].total_bytes + 1));
print_chunk_device(flags, info_ptr, info_count,
devinfo, devcount, unit_mode);
pr_verbose(LOG_DEFAULT, "\n");
}
if (info_count) {
pr_verbose(LOG_DEFAULT, "Unallocated:\n");
print_unused(info_ptr, info_count, devinfo,
devcount, unit_mode | UNITS_NEGATIVE);
}
}
static int print_filesystem_usage_by_chunk(int fd,
struct chunk_info *chunkinfo, int chunkcount,
struct device_info *devinfo, int devcount,
const char *path, unsigned unit_mode, int tabular)
{
struct btrfs_ioctl_space_args *sargs;
int ret = 0;
sargs = load_space_info(fd, path);
if (!sargs) {
ret = 1;
goto out;
}
if (tabular)
_cmd_filesystem_usage_tabular(unit_mode, sargs, chunkinfo,
chunkcount, devinfo, devcount);
else
_cmd_filesystem_usage_linear(unit_mode, sargs, chunkinfo,
chunkcount, devinfo, devcount);
free(sargs);
out:
return ret;
}
static const char * const cmd_filesystem_usage_usage[] = {
"btrfs filesystem usage [options] <path> [<path>..]",
"Show detailed information about internal filesystem usage .",
"",
HELPINFO_UNITS_SHORT_LONG,
"-T show data in tabular format",
NULL
};
static int cmd_filesystem_usage(const struct cmd_struct *cmd,
int argc, char **argv)
{
int ret = 0;
unsigned unit_mode;
int i;
int more_than_one = 0;
int tabular = 0;
unit_mode = get_unit_mode_from_arg(&argc, argv, 1);
optind = 0;
while (1) {
int c;
c = getopt(argc, argv, "T");
if (c < 0)
break;
switch (c) {
case 'T':
tabular = 1;
break;
default:
usage_unknown_option(cmd, argv);
}
}
if (check_argc_min(argc - optind, 1))
return 1;
for (i = optind; i < argc; i++) {
int fd;
DIR *dirstream = NULL;
struct chunk_info *chunkinfo = NULL;
struct device_info *devinfo = NULL;
int chunkcount = 0;
int devcount = 0;
fd = btrfs_open_dir(argv[i], &dirstream, 1);
if (fd < 0) {
ret = 1;
goto out;
}
if (more_than_one)
pr_verbose(LOG_DEFAULT, "\n");
ret = load_chunk_and_device_info(fd, &chunkinfo, &chunkcount,
&devinfo, &devcount);
if (ret)
goto cleanup;
ret = print_filesystem_usage_overall(fd, chunkinfo, chunkcount,
devinfo, devcount, argv[i], unit_mode);
if (ret)
goto cleanup;
pr_verbose(LOG_DEFAULT, "\n");
ret = print_filesystem_usage_by_chunk(fd, chunkinfo, chunkcount,
devinfo, devcount, argv[i], unit_mode, tabular);
cleanup:
close_file_or_dir(fd, dirstream);
free(chunkinfo);
free(devinfo);
if (ret)
goto out;
more_than_one = 1;
}
out:
return !!ret;
}
DEFINE_SIMPLE_COMMAND(filesystem_usage, "usage");
void print_device_chunks(struct device_info *devinfo,
struct chunk_info *chunks_info_ptr,
int chunks_info_count, unsigned unit_mode)
{
int i;
u64 allocated = 0;
for (i = 0 ; i < chunks_info_count ; i++) {
const char *description;
const char *r_mode;
u64 flags;
u64 size;
u64 num_stripes;
u64 profile;
if (chunks_info_ptr[i].devid != devinfo->devid)
continue;
flags = chunks_info_ptr[i].type;
profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
description = btrfs_group_type_str(flags);
r_mode = btrfs_group_profile_str(flags);
size = calc_chunk_size(chunks_info_ptr+i);
num_stripes = chunks_info_ptr[i].num_stripes;
if (btrfs_bg_type_is_stripey(profile)) {
pr_verbose(LOG_DEFAULT, " %s,%s/%llu:%*s%10s\n",
description,
r_mode,
num_stripes,
(int)(20 - strlen(description) - strlen(r_mode)
- count_digits(num_stripes) - 1), "",
pretty_size_mode(size, unit_mode));
} else {
pr_verbose(LOG_DEFAULT, " %s,%s:%*s%10s\n",
description,
r_mode,
(int)(20 - strlen(description) - strlen(r_mode)), "",
pretty_size_mode(size, unit_mode));
}
allocated += size;
}
pr_verbose(LOG_DEFAULT, " Unallocated: %*s%10s\n",
(int)(20 - strlen("Unallocated")), "",
pretty_size_mode(devinfo->size - allocated,
unit_mode | UNITS_NEGATIVE));
}
void print_device_sizes(struct device_info *devinfo, unsigned unit_mode)
{
pr_verbose(LOG_DEFAULT, " Device size: %*s%10s\n",
(int)(20 - strlen("Device size")), "",
pretty_size_mode(devinfo->device_size, unit_mode));
pr_verbose(LOG_DEFAULT, " Device slack: %*s%10s\n",
(int)(20 - strlen("Device slack")), "",
pretty_size_mode(calc_slack_size(devinfo), unit_mode));
}