/* * Copyright (C) 2007 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include #include #include #include #include #include #include #include #include "kernel-shared/ctree.h" #include "kernel-shared/disk-io.h" #include "kernel-shared/print-tree.h" #include "kernel-shared/volumes.h" #include "kernel-shared/compression.h" #include "kernel-shared/accessors.h" #include "kernel-shared/file-item.h" #include "kernel-shared/tree-checker.h" #include "common/defs.h" #include "common/internal.h" #include "common/messages.h" #include "common/string-utils.h" #include "uapi/btrfs.h" static void print_dir_item_type(struct extent_buffer *eb, struct btrfs_dir_item *di) { u8 type = btrfs_dir_ftype(eb, di); static const char* dir_item_str[] = { [BTRFS_FT_REG_FILE] = "FILE", [BTRFS_FT_DIR] = "DIR", [BTRFS_FT_CHRDEV] = "CHRDEV", [BTRFS_FT_BLKDEV] = "BLKDEV", [BTRFS_FT_FIFO] = "FIFO", [BTRFS_FT_SOCK] = "SOCK", [BTRFS_FT_SYMLINK] = "SYMLINK", [BTRFS_FT_XATTR] = "XATTR" }; if (type < ARRAY_SIZE(dir_item_str) && dir_item_str[type]) printf("%s", dir_item_str[type]); else printf("DIR_ITEM.%u", type); } static void print_dir_item(struct extent_buffer *eb, u32 size, struct btrfs_dir_item *di) { u32 cur = 0; u32 len; u32 name_len; u32 data_len; char namebuf[BTRFS_NAME_LEN]; struct btrfs_disk_key location; while (cur < size) { btrfs_dir_item_key(eb, di, &location); printf("\t\tlocation "); btrfs_print_key(&location); printf(" type "); print_dir_item_type(eb, di); printf("\n"); name_len = btrfs_dir_name_len(eb, di); data_len = btrfs_dir_data_len(eb, di); if (data_len + name_len + cur > size) { error("invalid length, cur=%u name_len=%u data_len=%u size=%u", cur, name_len, data_len, size); break; } len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf); printf("\t\ttransid %llu data_len %u name_len %u\n", btrfs_dir_transid(eb, di), data_len, name_len); if (eb->fs_info && eb->fs_info->hide_names) { printf("\t\tname: HIDDEN\n"); } else { read_extent_buffer(eb, namebuf, (unsigned long)(di + 1), len); printf("\t\tname: "); string_print_escape_special_len(namebuf, len); printf("\n"); } if (data_len) { len = (data_len <= sizeof(namebuf)) ? data_len : sizeof(namebuf); if (eb->fs_info && eb->fs_info->hide_names) { printf("\t\tdata HIDDEN\n"); } else { read_extent_buffer(eb, namebuf, (unsigned long)(di + 1) + name_len, len); printf("\t\tdata "); string_print_escape_special_len(namebuf, len); printf("\n"); } } len = sizeof(*di) + name_len + data_len; di = (struct btrfs_dir_item *)((char *)di + len); cur += len; } } static void print_inode_extref_item(struct extent_buffer *eb, u32 size, struct btrfs_inode_extref *extref) { u32 cur = 0; u32 len; u32 name_len = 0; u64 index = 0; u64 parent_objid; char namebuf[BTRFS_NAME_LEN]; while (cur < size) { index = btrfs_inode_extref_index(eb, extref); name_len = btrfs_inode_extref_name_len(eb, extref); parent_objid = btrfs_inode_extref_parent(eb, extref); len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf); printf("\t\tindex %llu parent %llu namelen %u ", index, parent_objid, name_len); if (eb->fs_info && eb->fs_info->hide_names) { printf("name: HIDDEN\n"); } else { read_extent_buffer(eb, namebuf, (unsigned long)extref->name, len); printf("name: "); string_print_escape_special_len(namebuf, len); printf("\n"); } len = sizeof(*extref) + name_len; extref = (struct btrfs_inode_extref *)((char *)extref + len); cur += len; } } static void print_inode_ref_item(struct extent_buffer *eb, u32 size, struct btrfs_inode_ref *ref) { u32 cur = 0; u32 len; u32 name_len; u64 index; char namebuf[BTRFS_NAME_LEN]; while (cur < size) { name_len = btrfs_inode_ref_name_len(eb, ref); index = btrfs_inode_ref_index(eb, ref); len = (name_len <= sizeof(namebuf))? name_len: sizeof(namebuf); printf("\t\tindex %llu namelen %u ", (unsigned long long)index, name_len); if (eb->fs_info && eb->fs_info->hide_names) { printf("name: HIDDEN\n"); } else { read_extent_buffer(eb, namebuf, (unsigned long)(ref + 1), len); printf("name: "); string_print_escape_special_len(namebuf, len); printf("\n"); } len = sizeof(*ref) + name_len; ref = (struct btrfs_inode_ref *)((char *)ref + len); cur += len; } } /* The minimal length for the string buffer of block group/chunk flags */ #define BG_FLAG_STRING_LEN 64 static void bg_flags_to_str(u64 flags, char *ret) { int empty = 1; char profile[BG_FLAG_STRING_LEN] = {}; const char *name; ret[0] = '\0'; if (flags & BTRFS_BLOCK_GROUP_DATA) { empty = 0; strncpy_null(ret, "DATA", BG_FLAG_STRING_LEN); } if (flags & BTRFS_BLOCK_GROUP_METADATA) { if (!empty) strncat(ret, "|", BG_FLAG_STRING_LEN); strncat(ret, "METADATA", BG_FLAG_STRING_LEN); } if (flags & BTRFS_BLOCK_GROUP_SYSTEM) { if (!empty) strncat(ret, "|", BG_FLAG_STRING_LEN); strncat(ret, "SYSTEM", BG_FLAG_STRING_LEN); } name = btrfs_bg_type_to_raid_name(flags); if (!name) { snprintf(profile, BG_FLAG_STRING_LEN, "UNKNOWN.0x%llx", flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); } else { /* * Special handing for SINGLE profile, we don't output "SINGLE" * for SINGLE profile, since there is no such bit for it. * Thus here we only fill @profile if it's not single. */ if (strncmp(name, "SINGLE", strlen("SINGLE")) != 0) strncpy_null(profile, name, BG_FLAG_STRING_LEN); } if (profile[0]) { strncat(ret, "|", BG_FLAG_STRING_LEN); strncat(ret, profile, BG_FLAG_STRING_LEN); } } /* * Caller should ensure sizeof(*ret) >= 64 * "OFF|SCANNING|INCONSISTENT|UNKNOWN(0xffffffffffffffff)" */ static void qgroup_flags_to_str(u64 flags, char *ret) { ret[0] = 0; if (flags & BTRFS_QGROUP_STATUS_FLAG_ON) strcpy(ret, "ON"); else strcpy(ret, "OFF"); if (flags & BTRFS_QGROUP_STATUS_FLAG_SIMPLE_MODE) strcat(ret, "|SIMPLE_MODE"); if (flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) strcat(ret, "|SCANNING"); if (flags & BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT) strcat(ret, "|INCONSISTENT"); if (flags & ~BTRFS_QGROUP_STATUS_FLAGS_MASK) sprintf(ret + strlen(ret), "|UNKNOWN(0x%llx)", flags & ~BTRFS_QGROUP_STATUS_FLAGS_MASK); } void print_chunk_item(struct extent_buffer *eb, struct btrfs_chunk *chunk) { u16 num_stripes = btrfs_chunk_num_stripes(eb, chunk); int i; u32 chunk_item_size; char chunk_flags_str[BG_FLAG_STRING_LEN] = {}; /* The chunk must contain at least one stripe */ if (num_stripes < 1) { printf("invalid num_stripes: %u\n", num_stripes); return; } chunk_item_size = btrfs_chunk_item_size(num_stripes); if ((unsigned long)chunk + chunk_item_size > eb->len) { printf("\t\tchunk item invalid\n"); return; } bg_flags_to_str(btrfs_chunk_type(eb, chunk), chunk_flags_str); printf("\t\tlength %llu owner %llu stripe_len %llu type %s\n", (unsigned long long)btrfs_chunk_length(eb, chunk), (unsigned long long)btrfs_chunk_owner(eb, chunk), (unsigned long long)btrfs_chunk_stripe_len(eb, chunk), chunk_flags_str); printf("\t\tio_align %u io_width %u sector_size %u\n", btrfs_chunk_io_align(eb, chunk), btrfs_chunk_io_width(eb, chunk), btrfs_chunk_sector_size(eb, chunk)); printf("\t\tnum_stripes %hu sub_stripes %hu\n", num_stripes, btrfs_chunk_sub_stripes(eb, chunk)); for (i = 0 ; i < num_stripes ; i++) { unsigned char dev_uuid[BTRFS_UUID_SIZE]; char str_dev_uuid[BTRFS_UUID_UNPARSED_SIZE]; u64 uuid_offset; u64 stripe_offset; uuid_offset = (unsigned long)btrfs_stripe_dev_uuid_nr(chunk, i); stripe_offset = (unsigned long)btrfs_stripe_nr(chunk, i); if (uuid_offset < stripe_offset || (uuid_offset + BTRFS_UUID_SIZE) > (stripe_offset + sizeof(struct btrfs_stripe))) { printf("\t\t\tstripe %d invalid\n", i); break; } read_extent_buffer(eb, dev_uuid, uuid_offset, BTRFS_UUID_SIZE); uuid_unparse(dev_uuid, str_dev_uuid); printf("\t\t\tstripe %d devid %llu offset %llu\n", i, (unsigned long long)btrfs_stripe_devid_nr(eb, chunk, i), (unsigned long long)btrfs_stripe_offset_nr(eb, chunk, i)); printf("\t\t\tdev_uuid %s\n", str_dev_uuid); } } static void print_dev_item(struct extent_buffer *eb, struct btrfs_dev_item *dev_item) { char uuid_str[BTRFS_UUID_UNPARSED_SIZE]; char fsid_str[BTRFS_UUID_UNPARSED_SIZE]; u8 uuid[BTRFS_UUID_SIZE]; u8 fsid[BTRFS_UUID_SIZE]; read_extent_buffer(eb, uuid, (unsigned long)btrfs_device_uuid(dev_item), BTRFS_UUID_SIZE); uuid_unparse(uuid, uuid_str); read_extent_buffer(eb, fsid, (unsigned long)btrfs_device_fsid(dev_item), BTRFS_UUID_SIZE); uuid_unparse(fsid, fsid_str); printf("\t\tdevid %llu total_bytes %llu bytes_used %llu\n" "\t\tio_align %u io_width %u sector_size %u type %llu\n" "\t\tgeneration %llu start_offset %llu dev_group %u\n" "\t\tseek_speed %hhu bandwidth %hhu\n" "\t\tuuid %s\n" "\t\tfsid %s\n", (unsigned long long)btrfs_device_id(eb, dev_item), (unsigned long long)btrfs_device_total_bytes(eb, dev_item), (unsigned long long)btrfs_device_bytes_used(eb, dev_item), btrfs_device_io_align(eb, dev_item), btrfs_device_io_width(eb, dev_item), btrfs_device_sector_size(eb, dev_item), (unsigned long long)btrfs_device_type(eb, dev_item), (unsigned long long)btrfs_device_generation(eb, dev_item), (unsigned long long)btrfs_device_start_offset(eb, dev_item), btrfs_device_group(eb, dev_item), btrfs_device_seek_speed(eb, dev_item), btrfs_device_bandwidth(eb, dev_item), uuid_str, fsid_str); } static void print_uuids(struct extent_buffer *eb) { char fs_uuid[BTRFS_UUID_UNPARSED_SIZE]; char chunk_uuid[BTRFS_UUID_UNPARSED_SIZE]; u8 disk_uuid[BTRFS_UUID_SIZE]; read_extent_buffer(eb, disk_uuid, btrfs_header_fsid(), BTRFS_FSID_SIZE); fs_uuid[BTRFS_UUID_UNPARSED_SIZE - 1] = '\0'; uuid_unparse(disk_uuid, fs_uuid); read_extent_buffer(eb, disk_uuid, btrfs_header_chunk_tree_uuid(eb), BTRFS_UUID_SIZE); chunk_uuid[BTRFS_UUID_UNPARSED_SIZE - 1] = '\0'; uuid_unparse(disk_uuid, chunk_uuid); printf("fs uuid %s\nchunk uuid %s\n", fs_uuid, chunk_uuid); } static void compress_type_to_str(u8 compress_type, char *ret) { switch (compress_type) { case BTRFS_COMPRESS_NONE: strcpy(ret, "none"); break; case BTRFS_COMPRESS_ZLIB: strcpy(ret, "zlib"); break; case BTRFS_COMPRESS_LZO: strcpy(ret, "lzo"); break; case BTRFS_COMPRESS_ZSTD: strcpy(ret, "zstd"); break; default: sprintf(ret, "UNKNOWN.%d", compress_type); } } static const char* file_extent_type_to_str(u8 type) { switch (type) { case BTRFS_FILE_EXTENT_INLINE: return "inline"; case BTRFS_FILE_EXTENT_PREALLOC: return "prealloc"; case BTRFS_FILE_EXTENT_REG: return "regular"; default: return "unknown"; } } static void print_file_extent_item(struct extent_buffer *eb, int slot, struct btrfs_file_extent_item *fi) { unsigned char extent_type = btrfs_file_extent_type(eb, fi); char compress_str[16]; compress_type_to_str(btrfs_file_extent_compression(eb, fi), compress_str); printf("\t\tgeneration %llu type %hhu (%s)\n", btrfs_file_extent_generation(eb, fi), extent_type, file_extent_type_to_str(extent_type)); if (extent_type == BTRFS_FILE_EXTENT_INLINE) { printf("\t\tinline extent data size %u ram_bytes %llu compression %hhu (%s)\n", btrfs_file_extent_inline_item_len(eb, slot), btrfs_file_extent_ram_bytes(eb, fi), btrfs_file_extent_compression(eb, fi), compress_str); return; } if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { printf("\t\tprealloc data disk byte %llu nr %llu\n", (unsigned long long)btrfs_file_extent_disk_bytenr(eb, fi), (unsigned long long)btrfs_file_extent_disk_num_bytes(eb, fi)); printf("\t\tprealloc data offset %llu nr %llu\n", (unsigned long long)btrfs_file_extent_offset(eb, fi), (unsigned long long)btrfs_file_extent_num_bytes(eb, fi)); return; } printf("\t\textent data disk byte %llu nr %llu\n", (unsigned long long)btrfs_file_extent_disk_bytenr(eb, fi), (unsigned long long)btrfs_file_extent_disk_num_bytes(eb, fi)); printf("\t\textent data offset %llu nr %llu ram %llu\n", (unsigned long long)btrfs_file_extent_offset(eb, fi), (unsigned long long)btrfs_file_extent_num_bytes(eb, fi), (unsigned long long)btrfs_file_extent_ram_bytes(eb, fi)); printf("\t\textent compression %hhu (%s)\n", btrfs_file_extent_compression(eb, fi), compress_str); } /* Caller should ensure sizeof(*ret) >= 16("DATA|TREE_BLOCK") */ static void extent_flags_to_str(u64 flags, char *ret) { int empty = 1; ret[0] = 0; if (flags & BTRFS_EXTENT_FLAG_DATA) { empty = 0; strcpy(ret, "DATA"); } if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { if (!empty) { empty = 0; strcat(ret, "|"); } strcat(ret, "TREE_BLOCK"); } if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { strcat(ret, "|"); strcat(ret, "FULL_BACKREF"); } } void print_extent_item(struct extent_buffer *eb, int slot, int metadata) { struct btrfs_extent_item *ei; struct btrfs_extent_inline_ref *iref; struct btrfs_extent_data_ref *dref; struct btrfs_shared_data_ref *sref; struct btrfs_disk_key key; unsigned long end; unsigned long ptr; int type; u32 item_size = btrfs_item_size(eb, slot); u64 flags; u64 offset; char flags_str[32] = {0}; if (item_size < sizeof(*ei)) return; ei = btrfs_item_ptr(eb, slot, struct btrfs_extent_item); flags = btrfs_extent_flags(eb, ei); extent_flags_to_str(flags, flags_str); printf("\t\trefs %llu gen %llu flags %s\n", (unsigned long long)btrfs_extent_refs(eb, ei), (unsigned long long)btrfs_extent_generation(eb, ei), flags_str); if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !metadata) { struct btrfs_tree_block_info *info; info = (struct btrfs_tree_block_info *)(ei + 1); btrfs_tree_block_key(eb, info, &key); printf("\t\ttree block "); btrfs_print_key(&key); printf(" level %d\n", btrfs_tree_block_level(eb, info)); iref = (struct btrfs_extent_inline_ref *)(info + 1); } else if (metadata) { struct btrfs_key tmp; btrfs_item_key_to_cpu(eb, &tmp, slot); printf("\t\ttree block skinny level %d\n", (int)tmp.offset); iref = (struct btrfs_extent_inline_ref *)(ei + 1); } else{ iref = (struct btrfs_extent_inline_ref *)(ei + 1); } ptr = (unsigned long)iref; end = (unsigned long)ei + item_size; while (ptr < end) { u64 seq; iref = (struct btrfs_extent_inline_ref *)ptr; type = btrfs_extent_inline_ref_type(eb, iref); offset = btrfs_extent_inline_ref_offset(eb, iref); seq = offset; switch (type) { case BTRFS_TREE_BLOCK_REF_KEY: printf("\t\t(%u 0x%llx) tree block backref root ", type, seq); print_objectid(stdout, offset, 0); printf("\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: printf("\t\t(%u 0x%llx) shared block backref parent %llu\n", type, seq, offset); break; case BTRFS_EXTENT_DATA_REF_KEY: dref = (struct btrfs_extent_data_ref *)(&iref->offset); seq = hash_extent_data_ref( btrfs_extent_data_ref_root(eb, dref), btrfs_extent_data_ref_objectid(eb, dref), btrfs_extent_data_ref_offset(eb, dref)); printf("\t\t(%u 0x%llx) extent data backref root ", type, seq); print_objectid(stdout, btrfs_extent_data_ref_root(eb, dref), 0); printf(" objectid %llu offset %llu count %u\n", btrfs_extent_data_ref_objectid(eb, dref), btrfs_extent_data_ref_offset(eb, dref), btrfs_extent_data_ref_count(eb, dref)); break; case BTRFS_SHARED_DATA_REF_KEY: sref = (struct btrfs_shared_data_ref *)(iref + 1); printf("\t\t(%u 0x%llx) shared data backref parent %llu count %u\n", type, seq, offset, btrfs_shared_data_ref_count(eb, sref)); break; case BTRFS_EXTENT_OWNER_REF_KEY: printf("\t\(%u 0x%llx) textent owner root %llu\n", type, seq, offset); break; default: return; } ptr += btrfs_extent_inline_ref_size(type); } WARN_ON(ptr > end); } static void print_root_ref(struct extent_buffer *leaf, int slot, const char *tag) { struct btrfs_root_ref *ref; char namebuf[BTRFS_NAME_LEN]; int namelen; ref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); namelen = btrfs_root_ref_name_len(leaf, ref); read_extent_buffer(leaf, namebuf, (unsigned long)(ref + 1), namelen); printf("\t\troot %s key dirid %llu sequence %llu name %.*s\n", tag, (unsigned long long)btrfs_root_ref_dirid(leaf, ref), (unsigned long long)btrfs_root_ref_sequence(leaf, ref), namelen, namebuf); } /* * Caller must ensure sizeof(*ret) >= 7 "RDONLY" */ static void root_flags_to_str(u64 flags, char *ret) { if (flags & BTRFS_ROOT_SUBVOL_RDONLY) strcat(ret, "RDONLY"); else strcat(ret, "none"); } static void print_timespec(struct extent_buffer *eb, struct btrfs_timespec *timespec, const char *prefix, const char *suffix) { struct tm tm; u64 tmp_u64; u32 tmp_u32; time_t tmp_time; char timestamp[256]; tmp_u64 = btrfs_timespec_sec(eb, timespec); tmp_u32 = btrfs_timespec_nsec(eb, timespec); tmp_time = tmp_u64; localtime_r(&tmp_time, &tm); strftime(timestamp, sizeof(timestamp), "%Y-%m-%d %H:%M:%S", &tm); printf("%s%llu.%u (%s)%s", prefix, (unsigned long long)tmp_u64, tmp_u32, timestamp, suffix); } static void print_root_item(struct extent_buffer *leaf, int slot) { struct btrfs_root_item *ri; struct btrfs_root_item root_item; int len; char uuid_str[BTRFS_UUID_UNPARSED_SIZE]; char flags_str[32] = {0}; struct btrfs_key drop_key; ri = btrfs_item_ptr(leaf, slot, struct btrfs_root_item); len = btrfs_item_size(leaf, slot); memset(&root_item, 0, sizeof(root_item)); read_extent_buffer(leaf, &root_item, (unsigned long)ri, len); root_flags_to_str(btrfs_root_flags(&root_item), flags_str); printf("\t\tgeneration %llu root_dirid %llu bytenr %llu byte_limit %llu bytes_used %llu\n", (unsigned long long)btrfs_root_generation(&root_item), (unsigned long long)btrfs_root_dirid(&root_item), (unsigned long long)btrfs_root_bytenr(&root_item), (unsigned long long)btrfs_root_limit(&root_item), (unsigned long long)btrfs_root_used(&root_item)); printf("\t\tlast_snapshot %llu flags 0x%llx(%s) refs %u\n", (unsigned long long)btrfs_root_last_snapshot(&root_item), (unsigned long long)btrfs_root_flags(&root_item), flags_str, btrfs_root_refs(&root_item)); btrfs_disk_key_to_cpu(&drop_key, &root_item.drop_progress); printf("\t\tdrop_progress "); btrfs_print_key(&root_item.drop_progress); printf(" drop_level %hhu\n", root_item.drop_level); printf("\t\tlevel %hhu generation_v2 %llu\n", btrfs_root_level(&root_item), root_item.generation_v2); if (root_item.generation == root_item.generation_v2) { uuid_unparse(root_item.uuid, uuid_str); printf("\t\tuuid %s\n", uuid_str); uuid_unparse(root_item.parent_uuid, uuid_str); printf("\t\tparent_uuid %s\n", uuid_str); uuid_unparse(root_item.received_uuid, uuid_str); printf("\t\treceived_uuid %s\n", uuid_str); printf("\t\tctransid %llu otransid %llu stransid %llu rtransid %llu\n", btrfs_root_ctransid(&root_item), btrfs_root_otransid(&root_item), btrfs_root_stransid(&root_item), btrfs_root_rtransid(&root_item)); print_timespec(leaf, btrfs_root_ctime(ri), "\t\tctime ", "\n"); print_timespec(leaf, btrfs_root_otime(ri), "\t\totime ", "\n"); print_timespec(leaf, btrfs_root_stime(ri), "\t\tstime ", "\n"); print_timespec(leaf, btrfs_root_rtime(ri), "\t\trtime ", "\n"); } } static void print_free_space_header(struct extent_buffer *leaf, int slot) { struct btrfs_free_space_header *header; struct btrfs_disk_key location; header = btrfs_item_ptr(leaf, slot, struct btrfs_free_space_header); btrfs_free_space_key(leaf, header, &location); printf("\t\tlocation "); btrfs_print_key(&location); printf("\n"); printf("\t\tcache generation %llu entries %llu bitmaps %llu\n", (unsigned long long)btrfs_free_space_generation(leaf, header), (unsigned long long)btrfs_free_space_entries(leaf, header), (unsigned long long)btrfs_free_space_bitmaps(leaf, header)); } static void print_raid_stripe_key(struct extent_buffer *eb, u32 item_size, struct btrfs_stripe_extent *stripe) { int num_stripes = item_size / sizeof(struct btrfs_raid_stride); for (int i = 0; i < num_stripes; i++) printf("\t\t\tstripe %d devid %llu physical %llu\n", i, (unsigned long long)btrfs_raid_stride_devid_nr(eb, stripe, i), (unsigned long long)btrfs_raid_stride_offset_nr(eb, stripe, i)); } void print_key_type(FILE *stream, u64 objectid, u8 type) { static const char* key_to_str[256] = { [BTRFS_INODE_ITEM_KEY] = "INODE_ITEM", [BTRFS_INODE_REF_KEY] = "INODE_REF", [BTRFS_INODE_EXTREF_KEY] = "INODE_EXTREF", [BTRFS_DIR_ITEM_KEY] = "DIR_ITEM", [BTRFS_DIR_INDEX_KEY] = "DIR_INDEX", [BTRFS_DIR_LOG_ITEM_KEY] = "DIR_LOG_ITEM", [BTRFS_DIR_LOG_INDEX_KEY] = "DIR_LOG_INDEX", [BTRFS_XATTR_ITEM_KEY] = "XATTR_ITEM", [BTRFS_VERITY_DESC_ITEM_KEY] = "VERITY_DESC_ITEM", [BTRFS_VERITY_MERKLE_ITEM_KEY] = "VERITY_MERKLE_ITEM", [BTRFS_ORPHAN_ITEM_KEY] = "ORPHAN_ITEM", [BTRFS_ROOT_ITEM_KEY] = "ROOT_ITEM", [BTRFS_ROOT_REF_KEY] = "ROOT_REF", [BTRFS_ROOT_BACKREF_KEY] = "ROOT_BACKREF", [BTRFS_EXTENT_ITEM_KEY] = "EXTENT_ITEM", [BTRFS_METADATA_ITEM_KEY] = "METADATA_ITEM", [BTRFS_TREE_BLOCK_REF_KEY] = "TREE_BLOCK_REF", [BTRFS_SHARED_BLOCK_REF_KEY] = "SHARED_BLOCK_REF", [BTRFS_EXTENT_DATA_REF_KEY] = "EXTENT_DATA_REF", [BTRFS_SHARED_DATA_REF_KEY] = "SHARED_DATA_REF", [BTRFS_EXTENT_REF_V0_KEY] = "EXTENT_REF_V0", [BTRFS_EXTENT_OWNER_REF_KEY] = "EXTENT_OWNER_REF", [BTRFS_CSUM_ITEM_KEY] = "CSUM_ITEM", [BTRFS_EXTENT_CSUM_KEY] = "EXTENT_CSUM", [BTRFS_EXTENT_DATA_KEY] = "EXTENT_DATA", [BTRFS_BLOCK_GROUP_ITEM_KEY] = "BLOCK_GROUP_ITEM", [BTRFS_FREE_SPACE_INFO_KEY] = "FREE_SPACE_INFO", [BTRFS_FREE_SPACE_EXTENT_KEY] = "FREE_SPACE_EXTENT", [BTRFS_FREE_SPACE_BITMAP_KEY] = "FREE_SPACE_BITMAP", [BTRFS_CHUNK_ITEM_KEY] = "CHUNK_ITEM", [BTRFS_DEV_ITEM_KEY] = "DEV_ITEM", [BTRFS_DEV_EXTENT_KEY] = "DEV_EXTENT", [BTRFS_TEMPORARY_ITEM_KEY] = "TEMPORARY_ITEM", [BTRFS_DEV_REPLACE_KEY] = "DEV_REPLACE", [BTRFS_STRING_ITEM_KEY] = "STRING_ITEM", [BTRFS_QGROUP_STATUS_KEY] = "QGROUP_STATUS", [BTRFS_QGROUP_RELATION_KEY] = "QGROUP_RELATION", [BTRFS_QGROUP_INFO_KEY] = "QGROUP_INFO", [BTRFS_QGROUP_LIMIT_KEY] = "QGROUP_LIMIT", [BTRFS_PERSISTENT_ITEM_KEY] = "PERSISTENT_ITEM", [BTRFS_UUID_KEY_SUBVOL] = "UUID_KEY_SUBVOL", [BTRFS_UUID_KEY_RECEIVED_SUBVOL] = "UUID_KEY_RECEIVED_SUBVOL", [BTRFS_RAID_STRIPE_KEY] = "RAID_STRIPE", }; if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID) { fprintf(stream, "UNTYPED"); return; } if (key_to_str[type]) fputs(key_to_str[type], stream); else fprintf(stream, "UNKNOWN.%d", type); } void print_objectid(FILE *stream, u64 objectid, u8 type) { switch (type) { case BTRFS_PERSISTENT_ITEM_KEY: if (objectid == BTRFS_DEV_STATS_OBJECTID) fprintf(stream, "DEV_STATS"); else fprintf(stream, "%llu", (unsigned long long)objectid); return; case BTRFS_DEV_EXTENT_KEY: /* device id */ fprintf(stream, "%llu", (unsigned long long)objectid); return; case BTRFS_QGROUP_RELATION_KEY: fprintf(stream, "%u/%llu", btrfs_qgroup_level(objectid), btrfs_qgroup_subvolid(objectid)); return; case BTRFS_UUID_KEY_SUBVOL: case BTRFS_UUID_KEY_RECEIVED_SUBVOL: fprintf(stream, "0x%016llx", (unsigned long long)objectid); return; } switch (objectid) { case BTRFS_ROOT_TREE_OBJECTID: /* * BTRFS_ROOT_TREE_OBJECTID and BTRFS_DEV_ITEMS_OBJECTID are * defined with the same value 1, we need to distinguish them * by the type. */ if (type == BTRFS_DEV_ITEM_KEY) fprintf(stream, "DEV_ITEMS"); else fprintf(stream, "ROOT_TREE"); break; case BTRFS_EXTENT_TREE_OBJECTID: fprintf(stream, "EXTENT_TREE"); break; case BTRFS_CHUNK_TREE_OBJECTID: fprintf(stream, "CHUNK_TREE"); break; case BTRFS_DEV_TREE_OBJECTID: fprintf(stream, "DEV_TREE"); break; case BTRFS_FS_TREE_OBJECTID: fprintf(stream, "FS_TREE"); break; case BTRFS_ROOT_TREE_DIR_OBJECTID: fprintf(stream, "ROOT_TREE_DIR"); break; case BTRFS_CSUM_TREE_OBJECTID: fprintf(stream, "CSUM_TREE"); break; case BTRFS_BALANCE_OBJECTID: fprintf(stream, "BALANCE"); break; case BTRFS_ORPHAN_OBJECTID: fprintf(stream, "ORPHAN"); break; case BTRFS_TREE_LOG_OBJECTID: fprintf(stream, "TREE_LOG"); break; case BTRFS_TREE_LOG_FIXUP_OBJECTID: fprintf(stream, "LOG_FIXUP"); break; case BTRFS_TREE_RELOC_OBJECTID: fprintf(stream, "TREE_RELOC"); break; case BTRFS_DATA_RELOC_TREE_OBJECTID: fprintf(stream, "DATA_RELOC_TREE"); break; case BTRFS_EXTENT_CSUM_OBJECTID: fprintf(stream, "EXTENT_CSUM"); break; case BTRFS_FREE_SPACE_OBJECTID: fprintf(stream, "FREE_SPACE"); break; case BTRFS_FREE_INO_OBJECTID: fprintf(stream, "FREE_INO"); break; case BTRFS_QUOTA_TREE_OBJECTID: fprintf(stream, "QUOTA_TREE"); break; case BTRFS_UUID_TREE_OBJECTID: fprintf(stream, "UUID_TREE"); break; case BTRFS_FREE_SPACE_TREE_OBJECTID: fprintf(stream, "FREE_SPACE_TREE"); break; case BTRFS_MULTIPLE_OBJECTIDS: fprintf(stream, "MULTIPLE"); break; case BTRFS_BLOCK_GROUP_TREE_OBJECTID: fprintf(stream, "BLOCK_GROUP_TREE"); break; case BTRFS_CSUM_CHANGE_OBJECTID: fprintf(stream, "CSUM_CHANGE"); break; case BTRFS_RAID_STRIPE_TREE_OBJECTID: fprintf(stream, "RAID_STRIPE_TREE"); break; case (u64)-1: fprintf(stream, "-1"); break; case BTRFS_FIRST_CHUNK_TREE_OBJECTID: if (type == BTRFS_CHUNK_ITEM_KEY) { fprintf(stream, "FIRST_CHUNK_TREE"); break; } fallthrough; default: fprintf(stream, "%llu", (unsigned long long)objectid); } } void btrfs_print_key(struct btrfs_disk_key *disk_key) { u64 objectid = btrfs_disk_key_objectid(disk_key); u8 type = btrfs_disk_key_type(disk_key); u64 offset = btrfs_disk_key_offset(disk_key); printf("key ("); print_objectid(stdout, objectid, type); printf(" "); print_key_type(stdout, objectid, type); switch (type) { case BTRFS_QGROUP_RELATION_KEY: case BTRFS_QGROUP_INFO_KEY: case BTRFS_QGROUP_LIMIT_KEY: printf(" %u/%llu)", btrfs_qgroup_level(offset), btrfs_qgroup_subvolid(offset)); break; case BTRFS_UUID_KEY_SUBVOL: case BTRFS_UUID_KEY_RECEIVED_SUBVOL: printf(" 0x%016llx)", (unsigned long long)offset); break; /* * Key offsets of ROOT_ITEM point to tree root, print them in human * readable format. Especially useful for trees like data/tree reloc * tree, whose tree id can be negative. */ case BTRFS_ROOT_ITEM_KEY: printf(" "); /* * Normally offset of ROOT_ITEM should present the generation * of creation time of the root. * However if this is reloc tree, offset is the subvolume * id of its source. Here we do extra check on this. */ if (objectid == BTRFS_TREE_RELOC_OBJECTID) print_objectid(stdout, offset, type); else printf("%llu", offset); printf(")"); break; default: if (offset == (u64)-1) printf(" -1)"); else printf(" %llu)", (unsigned long long)offset); break; } } static void print_uuid_item(struct extent_buffer *l, unsigned long offset, u32 item_size) { if (item_size & (sizeof(u64) - 1)) { printf("btrfs: uuid item with illegal size %lu!\n", (unsigned long)item_size); return; } while (item_size) { __le64 subvol_id; read_extent_buffer(l, &subvol_id, offset, sizeof(u64)); printf("\t\tsubvol_id %llu\n", (unsigned long long)le64_to_cpu(subvol_id)); item_size -= sizeof(u64); offset += sizeof(u64); } } /* Btrfs inode flag stringification helper */ #define STRCAT_ONE_INODE_FLAG(flags, name, empty, dst) ({ \ if (flags & BTRFS_INODE_##name) { \ if (!empty) \ strcat(dst, "|"); \ strcat(dst, #name); \ empty = 0; \ } \ }) /* * Caller should ensure sizeof(*ret) >= 102: all characters plus '|' of * BTRFS_INODE_* flags */ static void inode_flags_to_str(u64 flags, char *ret) { int empty = 1; STRCAT_ONE_INODE_FLAG(flags, NODATASUM, empty, ret); STRCAT_ONE_INODE_FLAG(flags, NODATACOW, empty, ret); STRCAT_ONE_INODE_FLAG(flags, READONLY, empty, ret); STRCAT_ONE_INODE_FLAG(flags, NOCOMPRESS, empty, ret); STRCAT_ONE_INODE_FLAG(flags, PREALLOC, empty, ret); STRCAT_ONE_INODE_FLAG(flags, SYNC, empty, ret); STRCAT_ONE_INODE_FLAG(flags, IMMUTABLE, empty, ret); STRCAT_ONE_INODE_FLAG(flags, APPEND, empty, ret); STRCAT_ONE_INODE_FLAG(flags, NODUMP, empty, ret); STRCAT_ONE_INODE_FLAG(flags, NOATIME, empty, ret); STRCAT_ONE_INODE_FLAG(flags, DIRSYNC, empty, ret); STRCAT_ONE_INODE_FLAG(flags, COMPRESS, empty, ret); if (empty) strcat(ret, "none"); } static void print_inode_item(struct extent_buffer *eb, struct btrfs_inode_item *ii) { char flags_str[256]; memset(flags_str, 0, sizeof(flags_str)); inode_flags_to_str(btrfs_inode_flags(eb, ii), flags_str); printf("\t\tgeneration %llu transid %llu size %llu nbytes %llu\n" "\t\tblock group %llu mode %o links %u uid %u gid %u rdev %llu\n" "\t\tsequence %llu flags 0x%llx(%s)\n", (unsigned long long)btrfs_inode_generation(eb, ii), (unsigned long long)btrfs_inode_transid(eb, ii), (unsigned long long)btrfs_inode_size(eb, ii), (unsigned long long)btrfs_inode_nbytes(eb, ii), (unsigned long long)btrfs_inode_block_group(eb,ii), btrfs_inode_mode(eb, ii), btrfs_inode_nlink(eb, ii), btrfs_inode_uid(eb, ii), btrfs_inode_gid(eb, ii), (unsigned long long)btrfs_inode_rdev(eb,ii), (unsigned long long)btrfs_inode_sequence(eb, ii), (unsigned long long)btrfs_inode_flags(eb,ii), flags_str); print_timespec(eb, btrfs_inode_atime(ii), "\t\tatime ", "\n"); print_timespec(eb, btrfs_inode_ctime(ii), "\t\tctime ", "\n"); print_timespec(eb, btrfs_inode_mtime(ii), "\t\tmtime ", "\n"); print_timespec(eb, btrfs_inode_otime(ii), "\t\totime ", "\n"); } static void print_disk_balance_args(struct btrfs_disk_balance_args *ba) { printf("\t\tprofiles %llu devid %llu target %llu flags %llu\n", (unsigned long long)le64_to_cpu(ba->profiles), (unsigned long long)le64_to_cpu(ba->devid), (unsigned long long)le64_to_cpu(ba->target), (unsigned long long)le64_to_cpu(ba->flags)); printf("\t\tusage_min %u usage_max %u pstart %llu pend %llu\n", le32_to_cpu(ba->usage_min), le32_to_cpu(ba->usage_max), (unsigned long long)le64_to_cpu(ba->pstart), (unsigned long long)le64_to_cpu(ba->pend)); printf("\t\tvstart %llu vend %llu limit_min %u limit_max %u\n", (unsigned long long)le64_to_cpu(ba->vstart), (unsigned long long)le64_to_cpu(ba->vend), le32_to_cpu(ba->limit_min), le32_to_cpu(ba->limit_max)); printf("\t\tstripes_min %u stripes_max %u\n", le32_to_cpu(ba->stripes_min), le32_to_cpu(ba->stripes_max)); } static void print_balance_item(struct extent_buffer *eb, struct btrfs_balance_item *bi) { struct btrfs_disk_balance_args ba; printf("\t\tbalance status flags %llu\n", btrfs_balance_flags(eb, bi)); printf("\t\tDATA\n"); btrfs_balance_data(eb, bi, &ba); print_disk_balance_args(&ba); printf("\t\tMETADATA\n"); btrfs_balance_meta(eb, bi, &ba); print_disk_balance_args(&ba); printf("\t\tSYSTEM\n"); btrfs_balance_sys(eb, bi, &ba); print_disk_balance_args(&ba); } static void print_dev_stats(struct extent_buffer *eb, struct btrfs_dev_stats_item *stats, u32 size) { u32 known = BTRFS_DEV_STAT_VALUES_MAX * sizeof(__le64); int i; printf("\t\tdevice stats\n"); printf("\t\twrite_errs %llu read_errs %llu flush_errs %llu corruption_errs %llu generation %llu\n", btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_WRITE_ERRS), btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_READ_ERRS), btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_FLUSH_ERRS), btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_CORRUPTION_ERRS), btrfs_dev_stats_value(eb, stats, BTRFS_DEV_STAT_GENERATION_ERRS)); if (known < size) { printf("\t\tunknown stats item bytes %u", size - known); for (i = BTRFS_DEV_STAT_VALUES_MAX; i * sizeof(__le64) < size; i++) { printf("\t\tunknown item %d offset %zu value %llu\n", i, i * sizeof(__le64), btrfs_dev_stats_value(eb, stats, i)); } } } static void print_block_group_item(struct extent_buffer *eb, struct btrfs_block_group_item *bgi) { struct btrfs_block_group_item bg_item; char flags_str[BG_FLAG_STRING_LEN] = {}; read_extent_buffer(eb, &bg_item, (unsigned long)bgi, sizeof(bg_item)); memset(flags_str, 0, sizeof(flags_str)); bg_flags_to_str(btrfs_stack_block_group_flags(&bg_item), flags_str); printf("\t\tblock group used %llu chunk_objectid %llu flags %s\n", btrfs_stack_block_group_used(&bg_item), btrfs_stack_block_group_chunk_objectid(&bg_item), flags_str); } static void print_extent_data_ref(struct extent_buffer *eb, int slot) { struct btrfs_extent_data_ref *dref; dref = btrfs_item_ptr(eb, slot, struct btrfs_extent_data_ref); printf("\t\textent data backref root "); print_objectid(stdout, (unsigned long long)btrfs_extent_data_ref_root(eb, dref), 0); printf(" objectid %llu offset %llu count %u\n", (unsigned long long)btrfs_extent_data_ref_objectid(eb, dref), (unsigned long long)btrfs_extent_data_ref_offset(eb, dref), btrfs_extent_data_ref_count(eb, dref)); } static void print_shared_data_ref(struct extent_buffer *eb, int slot) { struct btrfs_shared_data_ref *sref; sref = btrfs_item_ptr(eb, slot, struct btrfs_shared_data_ref); printf("\t\tshared data backref count %u\n", btrfs_shared_data_ref_count(eb, sref)); } static void print_extent_owner_ref(struct extent_buffer *eb, int slot) { struct btrfs_extent_owner_ref *oref; u64 root_id; oref = btrfs_item_ptr(eb, slot, struct btrfs_extent_owner_ref); root_id = btrfs_extent_owner_ref_root_id(eb, oref); printf("\t\textent owner root %llu\n", root_id); } static void print_free_space_info(struct extent_buffer *eb, int slot) { struct btrfs_free_space_info *free_info; free_info = btrfs_item_ptr(eb, slot, struct btrfs_free_space_info); printf("\t\tfree space info extent count %u flags %u\n", (unsigned)btrfs_free_space_extent_count(eb, free_info), (unsigned)btrfs_free_space_flags(eb, free_info)); } static void print_dev_extent(struct extent_buffer *eb, int slot) { struct btrfs_dev_extent *dev_extent; u8 uuid[BTRFS_UUID_SIZE]; char uuid_str[BTRFS_UUID_UNPARSED_SIZE]; dev_extent = btrfs_item_ptr(eb, slot, struct btrfs_dev_extent); read_extent_buffer(eb, uuid, (unsigned long)btrfs_dev_extent_chunk_tree_uuid(dev_extent), BTRFS_UUID_SIZE); uuid_unparse(uuid, uuid_str); printf("\t\tdev extent chunk_tree %llu\n" "\t\tchunk_objectid %llu chunk_offset %llu " "length %llu\n" "\t\tchunk_tree_uuid %s\n", (unsigned long long)btrfs_dev_extent_chunk_tree(eb, dev_extent), (unsigned long long)btrfs_dev_extent_chunk_objectid(eb, dev_extent), (unsigned long long)btrfs_dev_extent_chunk_offset(eb, dev_extent), (unsigned long long)btrfs_dev_extent_length(eb, dev_extent), uuid_str); } static void print_qgroup_status(struct extent_buffer *eb, int slot) { struct btrfs_qgroup_status_item *qg_status; char flags_str[256]; qg_status = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_status_item); memset(flags_str, 0, sizeof(flags_str)); qgroup_flags_to_str(btrfs_qgroup_status_flags(eb, qg_status), flags_str); printf("\t\tversion %llu generation %llu flags %s scan %llu", (unsigned long long)btrfs_qgroup_status_version(eb, qg_status), (unsigned long long)btrfs_qgroup_status_generation(eb, qg_status), flags_str, (unsigned long long)btrfs_qgroup_status_rescan(eb, qg_status)); if (btrfs_fs_incompat(eb->fs_info, SIMPLE_QUOTA)) printf(" enable_gen %llu\n", (unsigned long long)btrfs_qgroup_status_enable_gen(eb, qg_status)); else printf("\n"); } static void print_qgroup_info(struct extent_buffer *eb, int slot) { struct btrfs_qgroup_info_item *qg_info; qg_info = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_info_item); printf("\t\tgeneration %llu\n" "\t\treferenced %llu referenced_compressed %llu\n" "\t\texclusive %llu exclusive_compressed %llu\n", (unsigned long long)btrfs_qgroup_info_generation(eb, qg_info), (unsigned long long)btrfs_qgroup_info_rfer(eb, qg_info), (unsigned long long)btrfs_qgroup_info_rfer_cmpr(eb, qg_info), (unsigned long long)btrfs_qgroup_info_excl(eb, qg_info), (unsigned long long)btrfs_qgroup_info_excl_cmpr(eb, qg_info)); } static void print_qgroup_limit(struct extent_buffer *eb, int slot) { struct btrfs_qgroup_limit_item *qg_limit; qg_limit = btrfs_item_ptr(eb, slot, struct btrfs_qgroup_limit_item); printf("\t\tflags %llx\n" "\t\tmax_referenced %lld max_exclusive %lld\n" "\t\trsv_referenced %lld rsv_exclusive %lld\n", (unsigned long long)btrfs_qgroup_limit_flags(eb, qg_limit), (long long)btrfs_qgroup_limit_max_rfer(eb, qg_limit), (long long)btrfs_qgroup_limit_max_excl(eb, qg_limit), (long long)btrfs_qgroup_limit_rsv_rfer(eb, qg_limit), (long long)btrfs_qgroup_limit_rsv_excl(eb, qg_limit)); } static void print_persistent_item(struct extent_buffer *eb, void *ptr, u32 item_size, u64 objectid, u64 offset) { printf("\t\tpersistent item objectid "); print_objectid(stdout, objectid, BTRFS_PERSISTENT_ITEM_KEY); printf(" offset %llu\n", (unsigned long long)offset); switch (objectid) { case BTRFS_DEV_STATS_OBJECTID: print_dev_stats(eb, ptr, item_size); break; default: printf("\t\tunknown persistent item objectid %llu\n", objectid); } } static void print_temporary_item(struct extent_buffer *eb, void *ptr, u64 objectid, u64 offset) { printf("\t\ttemporary item objectid "); print_objectid(stdout, objectid, BTRFS_TEMPORARY_ITEM_KEY); printf(" offset %llu\n", (unsigned long long)offset); switch (objectid) { case BTRFS_BALANCE_OBJECTID: print_balance_item(eb, ptr); break; case BTRFS_CSUM_CHANGE_OBJECTID: if (offset < btrfs_get_num_csums()) printf("\t\ttarget csum type %s (%llu)\n", btrfs_super_csum_name(offset) ,offset); else printf("\t\tunknown csum type %llu\n", offset); break; default: printf("\t\tunknown temporary item objectid %llu\n", objectid); } } static void print_extent_csum(struct extent_buffer *eb, int item_size, u64 offset, void *ptr, bool print_csum_items) { struct btrfs_fs_info *fs_info = eb->fs_info; u32 size; int csum_size; /* * If we don't have fs_info, only output its start position as we * don't have sectorsize for the calculation */ if (!fs_info) { printf("\t\trange start %llu\n", (unsigned long long)offset); return; } csum_size = fs_info->csum_size; size = (item_size / csum_size) * fs_info->sectorsize; printf("\t\trange start %llu end %llu length %u\n", (unsigned long long)offset, (unsigned long long)offset + size, size); /* * Fill one long line, which is 1 item of sha256/blake2, * 2x xxhash, 4x crc32c with format: * [offset] 0xCHECKSUM [offset] 0xCHECKSUM */ if (print_csum_items) { const int one_line = max(1, BTRFS_CSUM_SIZE / csum_size / 2); int curline; const u8 *csum = (const u8 *)(eb->data + (unsigned long)ptr); curline = one_line; while (size > 0) { int i; if (curline == one_line) { printf("\t\t"); } else if (curline == 0) { curline = one_line; printf("\n\t\t"); } else { putchar(' '); } printf("[%llu] 0x", offset); for (i = 0; i < csum_size; i++) printf("%02x", *csum++); offset += fs_info->sectorsize; size -= fs_info->sectorsize; curline--; } putchar('\n'); } } /* Caller must ensure sizeof(*ret) >= 14 "WRITTEN|RELOC" */ static void header_flags_to_str(u64 flags, char *ret) { int empty = 1; ret[0] = 0; if (flags & BTRFS_HEADER_FLAG_WRITTEN) { empty = 0; strcpy(ret, "WRITTEN"); } if (flags & BTRFS_HEADER_FLAG_RELOC) { if (!empty) strcat(ret, "|"); strcat(ret, "RELOC"); } } static void print_header_info(struct extent_buffer *eb, unsigned int mode) { struct btrfs_fs_info *fs_info = eb->fs_info; char flags_str[128]; #if EXPERIMENTAL u8 csum[BTRFS_CSUM_SIZE]; #endif u64 flags; u32 nr; u8 backref_rev; char csum_str[2 * BTRFS_CSUM_SIZE + strlen(" csum 0x") + 1]; int i; int csum_size = fs_info->csum_size; flags = btrfs_header_flags(eb) & ~BTRFS_BACKREF_REV_MASK; backref_rev = btrfs_header_flags(eb) >> BTRFS_BACKREF_REV_SHIFT; header_flags_to_str(flags, flags_str); nr = btrfs_header_nritems(eb); if (btrfs_header_level(eb)) printf( "node %llu level %d items %u free space %u generation %llu owner ", (unsigned long long)eb->start, btrfs_header_level(eb), nr, (u32)BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb) - nr, (unsigned long long)btrfs_header_generation(eb)); else printf( "leaf %llu items %u free space %d generation %llu owner ", (unsigned long long)btrfs_header_bytenr(eb), nr, btrfs_leaf_free_space(eb), (unsigned long long)btrfs_header_generation(eb)); print_objectid(stdout, btrfs_header_owner(eb), 0); printf("\n"); if (fs_info && (mode & BTRFS_PRINT_TREE_CSUM_HEADERS)) { char *tmp = csum_str; u8 *tree_csum = (u8 *)(eb->data + offsetof(struct btrfs_header, csum)); strcpy(csum_str, " csum 0x"); tmp = csum_str + strlen(csum_str); for (i = 0; i < csum_size; i++) { sprintf(tmp, "%02x", tree_csum[i]); tmp++; tmp++; } } else { /* We don't have fs_info, can't print the csum */ csum_str[0] = 0; } printf("%s %llu flags 0x%llx(%s) backref revision %d%s\n", btrfs_header_level(eb) ? "node" : "leaf", btrfs_header_bytenr(eb), flags, flags_str, backref_rev, csum_str); #if EXPERIMENTAL printf("checksum stored "); for (i = 0; i < csum_size; i++) printf("%02hhx", (int)(eb->data[i])); printf("\n"); memset(csum, 0, sizeof(csum)); btrfs_csum_data(fs_info, btrfs_super_csum_type(fs_info->super_copy), (u8 *)eb->data + BTRFS_CSUM_SIZE, csum, fs_info->nodesize - BTRFS_CSUM_SIZE); printf("checksum calced "); for (i = 0; i < csum_size; i++) printf("%02hhx", (int)(csum[i])); printf("\n"); #endif print_uuids(eb); fflush(stdout); } #define DEV_REPLACE_STRING_LEN 64 #define CASE_DEV_REPLACE_MODE_ENTRY(dest, name) \ case BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_##name: \ strncpy_null((dest), #name, DEV_REPLACE_STRING_LEN); \ break; static void replace_mode_to_str(u64 flags, char *ret) { ret[0] = 0; switch(flags) { CASE_DEV_REPLACE_MODE_ENTRY(ret, ALWAYS); CASE_DEV_REPLACE_MODE_ENTRY(ret, AVOID); default: snprintf(ret, DEV_REPLACE_STRING_LEN, "unknown(%llu)", flags); } } #undef DEV_REPLACE_MODE_ENTRY #define CASE_DEV_REPLACE_STATE_ENTRY(dest, name) \ case BTRFS_IOCTL_DEV_REPLACE_STATE_##name: \ strncpy_null((dest), #name, DEV_REPLACE_STRING_LEN); \ break; static void replace_state_to_str(u64 flags, char *ret) { ret[0] = '\0'; switch(flags) { CASE_DEV_REPLACE_STATE_ENTRY(ret, NEVER_STARTED); CASE_DEV_REPLACE_STATE_ENTRY(ret, FINISHED); CASE_DEV_REPLACE_STATE_ENTRY(ret, CANCELED); CASE_DEV_REPLACE_STATE_ENTRY(ret, STARTED); CASE_DEV_REPLACE_STATE_ENTRY(ret, SUSPENDED); default: snprintf(ret, DEV_REPLACE_STRING_LEN, "unknown(%llu)", flags); } } #undef DEV_REPLACE_STATE_ENTRY static void print_u64_timespec(u64 timespec, const char *prefix) { char time_str[256]; struct tm tm; time_t time = timespec; localtime_r(&time, &tm); strftime(time_str, sizeof(time_str), "%Y-%m-%d %H:%M:%S", &tm); printf("%s%llu (%s)\n", prefix, timespec, time_str); } static void print_dev_replace_item(struct extent_buffer *eb, struct btrfs_dev_replace_item *ptr) { char mode_str[DEV_REPLACE_STRING_LEN] = { 0 }; char state_str[DEV_REPLACE_STRING_LEN] = { 0 }; replace_mode_to_str(btrfs_dev_replace_cont_reading_from_srcdev_mode(eb, ptr), mode_str); replace_state_to_str(btrfs_dev_replace_replace_state(eb, ptr), state_str); printf("\t\tsrc devid %lld cursor left %llu cursor right %llu mode %s\n", btrfs_dev_replace_src_devid(eb, ptr), btrfs_dev_replace_cursor_left(eb, ptr), btrfs_dev_replace_cursor_right(eb, ptr), mode_str); printf("\t\tstate %s write errors %llu uncorrectable read errors %llu\n", state_str, btrfs_dev_replace_num_write_errors(eb, ptr), btrfs_dev_replace_num_uncorrectable_read_errors(eb, ptr)); print_u64_timespec(btrfs_dev_replace_time_started(eb, ptr), "\t\tstart time "); print_u64_timespec(btrfs_dev_replace_time_started(eb, ptr), "\t\tstop time "); } void __btrfs_print_leaf(struct extent_buffer *eb, unsigned int mode) { struct btrfs_disk_key disk_key; u32 leaf_data_size = BTRFS_LEAF_DATA_SIZE(eb->fs_info); u32 i; u32 nr; const bool print_csum_items = (mode & BTRFS_PRINT_TREE_CSUM_ITEMS); print_header_info(eb, mode); nr = btrfs_header_nritems(eb); for (i = 0; i < nr; i++) { u32 item_size; void *ptr; u64 objectid; u32 type; u64 offset; /* * Extra check on item pointers * Here we don't need to be as strict as kernel leaf check. * Only need to ensure all pointers are pointing range inside * the leaf, thus no segfault. */ if (btrfs_item_offset(eb, i) > leaf_data_size || btrfs_item_size(eb, i) + btrfs_item_offset(eb, i) > leaf_data_size) { error( "leaf %llu slot %u pointer invalid, offset %u size %u leaf data limit %u", btrfs_header_bytenr(eb), i, btrfs_item_offset(eb, i), btrfs_item_size(eb, i), leaf_data_size); error("skip remaining slots"); break; } item_size = btrfs_item_size(eb, i); /* Untyped extraction of slot from btrfs_item_ptr */ ptr = btrfs_item_ptr(eb, i, void*); btrfs_item_key(eb, &disk_key, i); objectid = btrfs_disk_key_objectid(&disk_key); type = btrfs_disk_key_type(&disk_key); offset = btrfs_disk_key_offset(&disk_key); printf("\titem %u ", i); btrfs_print_key(&disk_key); printf(" itemoff %u itemsize %u\n", btrfs_item_offset(eb, i), btrfs_item_size(eb, i)); if (type == 0 && objectid == BTRFS_FREE_SPACE_OBJECTID) print_free_space_header(eb, i); switch (type) { case BTRFS_INODE_ITEM_KEY: print_inode_item(eb, ptr); break; case BTRFS_INODE_REF_KEY: print_inode_ref_item(eb, item_size, ptr); break; case BTRFS_INODE_EXTREF_KEY: print_inode_extref_item(eb, item_size, ptr); break; case BTRFS_DIR_ITEM_KEY: case BTRFS_DIR_INDEX_KEY: case BTRFS_XATTR_ITEM_KEY: print_dir_item(eb, item_size, ptr); break; case BTRFS_DIR_LOG_INDEX_KEY: case BTRFS_DIR_LOG_ITEM_KEY: { struct btrfs_dir_log_item *dlog; dlog = btrfs_item_ptr(eb, i, struct btrfs_dir_log_item); printf("\t\tdir log end %llu\n", (unsigned long long)btrfs_dir_log_end(eb, dlog)); break; } case BTRFS_ORPHAN_ITEM_KEY: printf("\t\torphan item\n"); break; case BTRFS_ROOT_ITEM_KEY: print_root_item(eb, i); break; case BTRFS_ROOT_REF_KEY: print_root_ref(eb, i, "ref"); break; case BTRFS_ROOT_BACKREF_KEY: print_root_ref(eb, i, "backref"); break; case BTRFS_EXTENT_ITEM_KEY: print_extent_item(eb, i, 0); break; case BTRFS_METADATA_ITEM_KEY: print_extent_item(eb, i, 1); break; case BTRFS_TREE_BLOCK_REF_KEY: printf("\t\ttree block backref\n"); break; case BTRFS_SHARED_BLOCK_REF_KEY: printf("\t\tshared block backref\n"); break; case BTRFS_EXTENT_DATA_REF_KEY: print_extent_data_ref(eb, i); break; case BTRFS_SHARED_DATA_REF_KEY: print_shared_data_ref(eb, i); break; case BTRFS_EXTENT_OWNER_REF_KEY: print_extent_owner_ref(eb, i); break; case BTRFS_EXTENT_REF_V0_KEY: printf("\t\textent ref v0 (deprecated)\n"); break; case BTRFS_CSUM_ITEM_KEY: printf("\t\tcsum item\n"); break; case BTRFS_EXTENT_CSUM_KEY: print_extent_csum(eb, item_size, offset, ptr, print_csum_items); break; case BTRFS_EXTENT_DATA_KEY: print_file_extent_item(eb, i, ptr); break; case BTRFS_BLOCK_GROUP_ITEM_KEY: print_block_group_item(eb, ptr); break; case BTRFS_FREE_SPACE_INFO_KEY: print_free_space_info(eb, i); break; case BTRFS_FREE_SPACE_EXTENT_KEY: printf("\t\tfree space extent\n"); break; case BTRFS_FREE_SPACE_BITMAP_KEY: printf("\t\tfree space bitmap\n"); break; case BTRFS_CHUNK_ITEM_KEY: print_chunk_item(eb, ptr); break; case BTRFS_DEV_ITEM_KEY: print_dev_item(eb, ptr); break; case BTRFS_DEV_EXTENT_KEY: print_dev_extent(eb, i); break; case BTRFS_QGROUP_STATUS_KEY: print_qgroup_status(eb, i); break; case BTRFS_QGROUP_RELATION_KEY: break; case BTRFS_QGROUP_INFO_KEY: print_qgroup_info(eb, i); break; case BTRFS_QGROUP_LIMIT_KEY: print_qgroup_limit(eb, i); break; case BTRFS_UUID_KEY_SUBVOL: case BTRFS_UUID_KEY_RECEIVED_SUBVOL: print_uuid_item(eb, btrfs_item_ptr_offset(eb, i), btrfs_item_size(eb, i)); break; case BTRFS_STRING_ITEM_KEY: { const char *str = eb->data + btrfs_item_ptr_offset(eb, i); printf("\t\titem data %.*s\n", item_size, str); break; } case BTRFS_PERSISTENT_ITEM_KEY: print_persistent_item(eb, ptr, item_size, objectid, offset); break; case BTRFS_TEMPORARY_ITEM_KEY: print_temporary_item(eb, ptr, objectid, offset); break; case BTRFS_RAID_STRIPE_KEY: print_raid_stripe_key(eb, item_size, ptr); break; case BTRFS_DEV_REPLACE_KEY: print_dev_replace_item(eb, ptr); break; }; fflush(stdout); } } /* Helper function to reach the leftmost tree block at @path->lowest_level */ static int search_leftmost_tree_block(struct btrfs_fs_info *fs_info, struct btrfs_path *path, int root_level) { int i; int ret = 0; /* Release all nodes except path->nodes[root_level] */ for (i = 0; i < root_level; i++) { path->slots[i] = 0; if (!path->nodes[i]) continue; free_extent_buffer(path->nodes[i]); } /* Reach the leftmost tree block by always reading out slot 0 */ for (i = root_level; i > path->lowest_level; i--) { struct extent_buffer *eb; path->slots[i] = 0; eb = btrfs_read_node_slot(path->nodes[i], 0); if (!extent_buffer_uptodate(eb)) { ret = -EIO; goto out; } path->nodes[i - 1] = eb; } out: return ret; } /* * Walk up the tree as far as necessary to find the next sibling tree block. * More generic version of btrfs_next_leaf(), as it could find sibling nodes if * @path->lowest_level is not 0. * * Returns 0 if it found something or 1 if there are no greater leaves. * Returns < 0 on io errors. */ static int next_sibling_tree_block(struct btrfs_fs_info *fs_info, struct btrfs_path *path) { int slot; int level = path->lowest_level + 1; struct extent_buffer *eb; struct extent_buffer *next = NULL; BUG_ON(path->lowest_level + 1 >= BTRFS_MAX_LEVEL); do { if (!path->nodes[level]) return 1; slot = path->slots[level] + 1; eb = path->nodes[level]; if (slot >= btrfs_header_nritems(eb)) { level++; if (level == BTRFS_MAX_LEVEL) return 1; continue; } next = btrfs_read_node_slot(eb, slot); if (!extent_buffer_uptodate(next)) return -EIO; break; } while (level < BTRFS_MAX_LEVEL); path->slots[level] = slot; while(1) { level--; eb = path->nodes[level]; free_extent_buffer(eb); path->nodes[level] = next; path->slots[level] = 0; if (level == path->lowest_level) break; next = btrfs_read_node_slot(next, 0); if (!extent_buffer_uptodate(next)) return -EIO; } return 0; } static void bfs_print_children(struct extent_buffer *root_eb, unsigned int mode) { struct btrfs_fs_info *fs_info = root_eb->fs_info; struct btrfs_path path = { 0 }; int root_level = btrfs_header_level(root_eb); int cur_level; int ret; if (root_level < 1) return; mode &= ~(BTRFS_PRINT_TREE_FOLLOW); mode |= BTRFS_PRINT_TREE_BFS; mode &= ~(BTRFS_PRINT_TREE_DFS); /* For path */ extent_buffer_get(root_eb); path.nodes[root_level] = root_eb; for (cur_level = root_level - 1; cur_level >= 0; cur_level--) { path.lowest_level = cur_level; /* Use the leftmost tree block as a starting point */ ret = search_leftmost_tree_block(fs_info, &path, root_level); if (ret < 0) goto out; /* Print all sibling tree blocks */ while (1) { btrfs_print_tree(path.nodes[cur_level], mode); ret = next_sibling_tree_block(fs_info, &path); if (ret < 0) goto out; if (ret > 0) { ret = 0; break; } } } out: btrfs_release_path(&path); return; } static void dfs_print_children(struct extent_buffer *root_eb, unsigned int mode) { struct btrfs_fs_info *fs_info = root_eb->fs_info; struct extent_buffer *next; int nr = btrfs_header_nritems(root_eb); int root_eb_level = btrfs_header_level(root_eb); int i; mode |= BTRFS_PRINT_TREE_FOLLOW; mode |= BTRFS_PRINT_TREE_DFS; mode &= ~(BTRFS_PRINT_TREE_BFS); for (i = 0; i < nr; i++) { struct btrfs_tree_parent_check check = { .owner_root = btrfs_header_owner(root_eb), .transid = btrfs_node_ptr_generation(root_eb, i), .level = root_eb_level, }; next = read_tree_block(fs_info, btrfs_node_blockptr(root_eb, i), &check); if (!extent_buffer_uptodate(next)) { fprintf(stderr, "failed to read %llu in tree %llu\n", btrfs_node_blockptr(root_eb, i), btrfs_header_owner(root_eb)); continue; } if (btrfs_header_level(next) != root_eb_level - 1) { warning( "eb corrupted: parent bytenr %llu slot %d level %d child bytenr %llu level has %d expect %d, skipping the slot", btrfs_header_bytenr(root_eb), i, root_eb_level, btrfs_header_bytenr(next), btrfs_header_level(next), root_eb_level - 1); free_extent_buffer(next); continue; } btrfs_print_tree(next, mode); free_extent_buffer(next); } } /* * Print a tree block (applies to both node and leaf). * * @eb: tree block where to start * @mode: bits setting mode of operation, see BTRFS_PRINT_TREE_* */ void btrfs_print_tree(struct extent_buffer *eb, unsigned int mode) { u32 i; u32 nr; u32 ptr_num; struct btrfs_fs_info *fs_info = eb->fs_info; struct btrfs_disk_key disk_key; struct btrfs_key key; const bool follow = (mode & BTRFS_PRINT_TREE_FOLLOW); unsigned int traverse = BTRFS_PRINT_TREE_DEFAULT; /* BFS is default and takes precedence if both are set */ if (mode & BTRFS_PRINT_TREE_DFS) traverse = BTRFS_PRINT_TREE_DFS; if (mode & BTRFS_PRINT_TREE_BFS) traverse = BTRFS_PRINT_TREE_BFS; nr = btrfs_header_nritems(eb); if (btrfs_is_leaf(eb)) { __btrfs_print_leaf(eb, mode); return; } /* We are crossing eb boundary, this node must be corrupted */ if (nr > BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb)) warning( "node nr_items corrupted, has %u limit %u, continue anyway", nr, BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb)); print_header_info(eb, mode); ptr_num = BTRFS_NODEPTRS_PER_EXTENT_BUFFER(eb); for (i = 0; i < nr && i < ptr_num; i++) { u64 blocknr = btrfs_node_blockptr(eb, i); btrfs_node_key(eb, &disk_key, i); btrfs_disk_key_to_cpu(&key, &disk_key); printf("\t"); btrfs_print_key(&disk_key); printf(" block %llu gen %llu\n", (unsigned long long)blocknr, (unsigned long long)btrfs_node_ptr_generation(eb, i)); fflush(stdout); } if (!follow) return; if (follow && !fs_info) return; /* Keep non-traversal modes */ mode &= ~(BTRFS_PRINT_TREE_DFS | BTRFS_PRINT_TREE_BFS); if (traverse == BTRFS_PRINT_TREE_DFS) { dfs_print_children(eb, mode); } else { bfs_print_children(eb, mode); } } static bool is_valid_csum_type(u16 csum_type) { switch (csum_type) { case BTRFS_CSUM_TYPE_CRC32: case BTRFS_CSUM_TYPE_XXHASH: case BTRFS_CSUM_TYPE_SHA256: case BTRFS_CSUM_TYPE_BLAKE2: return true; default: return false; } } static int check_csum_sblock(void *sb, int csum_size, u16 csum_type) { u8 result[BTRFS_CSUM_SIZE]; btrfs_csum_data(NULL, csum_type, (u8 *)sb + BTRFS_CSUM_SIZE, result, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); return !memcmp(sb, result, csum_size); } struct readable_flag_entry { u64 bit; char *output; }; #define DEF_COMPAT_RO_FLAG_ENTRY(bit_name) \ {BTRFS_FEATURE_COMPAT_RO_##bit_name, #bit_name} static struct readable_flag_entry compat_ro_flags_array[] = { DEF_COMPAT_RO_FLAG_ENTRY(FREE_SPACE_TREE), DEF_COMPAT_RO_FLAG_ENTRY(FREE_SPACE_TREE_VALID), DEF_COMPAT_RO_FLAG_ENTRY(BLOCK_GROUP_TREE), }; static const int compat_ro_flags_num = sizeof(compat_ro_flags_array) / sizeof(struct readable_flag_entry); #define DEF_INCOMPAT_FLAG_ENTRY(bit_name) \ {BTRFS_FEATURE_INCOMPAT_##bit_name, #bit_name} static struct readable_flag_entry incompat_flags_array[] = { DEF_INCOMPAT_FLAG_ENTRY(MIXED_BACKREF), DEF_INCOMPAT_FLAG_ENTRY(DEFAULT_SUBVOL), DEF_INCOMPAT_FLAG_ENTRY(MIXED_GROUPS), DEF_INCOMPAT_FLAG_ENTRY(COMPRESS_LZO), DEF_INCOMPAT_FLAG_ENTRY(COMPRESS_ZSTD), DEF_INCOMPAT_FLAG_ENTRY(BIG_METADATA), DEF_INCOMPAT_FLAG_ENTRY(EXTENDED_IREF), DEF_INCOMPAT_FLAG_ENTRY(RAID56), DEF_INCOMPAT_FLAG_ENTRY(SKINNY_METADATA), DEF_INCOMPAT_FLAG_ENTRY(NO_HOLES), DEF_INCOMPAT_FLAG_ENTRY(METADATA_UUID), DEF_INCOMPAT_FLAG_ENTRY(RAID1C34), DEF_INCOMPAT_FLAG_ENTRY(ZONED), DEF_INCOMPAT_FLAG_ENTRY(EXTENT_TREE_V2), DEF_INCOMPAT_FLAG_ENTRY(RAID_STRIPE_TREE), DEF_INCOMPAT_FLAG_ENTRY(SIMPLE_QUOTA), }; static const int incompat_flags_num = sizeof(incompat_flags_array) / sizeof(struct readable_flag_entry); #define DEF_HEADER_FLAG_ENTRY(bit_name) \ {BTRFS_HEADER_FLAG_##bit_name, #bit_name} #define DEF_SUPER_FLAG_ENTRY(bit_name) \ {BTRFS_SUPER_FLAG_##bit_name, #bit_name} static struct readable_flag_entry super_flags_array[] = { DEF_HEADER_FLAG_ENTRY(WRITTEN), DEF_HEADER_FLAG_ENTRY(RELOC), DEF_SUPER_FLAG_ENTRY(CHANGING_FSID), DEF_SUPER_FLAG_ENTRY(CHANGING_FSID_V2), DEF_SUPER_FLAG_ENTRY(SEEDING), DEF_SUPER_FLAG_ENTRY(METADUMP), DEF_SUPER_FLAG_ENTRY(METADUMP_V2), DEF_SUPER_FLAG_ENTRY(CHANGING_BG_TREE), DEF_SUPER_FLAG_ENTRY(CHANGING_DATA_CSUM), DEF_SUPER_FLAG_ENTRY(CHANGING_META_CSUM), }; static const int super_flags_num = ARRAY_SIZE(super_flags_array); static void __print_readable_flag(u64 flag, struct readable_flag_entry *array, int array_size, u64 supported_flags) { int i; int first = 1; struct readable_flag_entry *entry; if (!flag) return; printf("\t\t\t( "); for (i = 0; i < array_size; i++) { entry = array + i; if ((flag & supported_flags) && (flag & entry->bit)) { if (first) printf("%s ", entry->output); else printf("|\n\t\t\t %s ", entry->output); first = 0; } } flag &= ~supported_flags; if (flag) { if (first) printf("unknown flag: 0x%llx ", flag); else printf("|\n\t\t\t unknown flag: 0x%llx ", flag); } printf(")\n"); } static void print_readable_compat_ro_flag(u64 flag) { u64 print_flags = 0; for (int i = 0; i < compat_ro_flags_num; i++) print_flags |= compat_ro_flags_array[i].bit; return __print_readable_flag(flag, compat_ro_flags_array, compat_ro_flags_num, print_flags); } static void print_readable_incompat_flag(u64 flag) { u64 print_flags = 0; for (int i = 0; i < incompat_flags_num; i++) print_flags |= incompat_flags_array[i].bit; return __print_readable_flag(flag, incompat_flags_array, incompat_flags_num, print_flags); } static void print_readable_super_flag(u64 flag) { u64 print_flags = 0; for (int i = 0; i < super_flags_num; i++) print_flags |= super_flags_array[i].bit; return __print_readable_flag(flag, super_flags_array, super_flags_num, print_flags); } static void print_sys_chunk_array(struct btrfs_super_block *sb) { struct extent_buffer *buf; struct btrfs_disk_key *disk_key; struct btrfs_chunk *chunk; u8 *array_ptr; unsigned long sb_array_offset; u32 num_stripes; u32 array_size; u32 len = 0; u32 cur_offset; struct btrfs_key key; int item; buf = alloc_dummy_extent_buffer(NULL, 0, BTRFS_SUPER_INFO_SIZE); if (!buf) { error_msg(ERROR_MSG_MEMORY, NULL); return; } write_extent_buffer(buf, sb, 0, sizeof(*sb)); buf->len = sizeof(*sb); array_size = btrfs_super_sys_array_size(sb); array_ptr = sb->sys_chunk_array; sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); if (array_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { error("sys_array_size %u shouldn't exceed %u bytes", array_size, BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); goto out; } cur_offset = 0; item = 0; while (cur_offset < array_size) { disk_key = (struct btrfs_disk_key *)array_ptr; len = sizeof(*disk_key); if (cur_offset + len > array_size) goto out_short_read; btrfs_disk_key_to_cpu(&key, disk_key); array_ptr += len; sb_array_offset += len; cur_offset += len; printf("\titem %d ", item); btrfs_print_key(disk_key); putchar('\n'); if (key.type == BTRFS_CHUNK_ITEM_KEY) { chunk = (struct btrfs_chunk *)sb_array_offset; /* * At least one btrfs_chunk with one stripe must be * present, exact stripe count check comes afterwards */ len = btrfs_chunk_item_size(1); if (cur_offset + len > array_size) goto out_short_read; num_stripes = btrfs_chunk_num_stripes(buf, chunk); if (!num_stripes) { error( "invalid number of stripes %u in sys_array at offset %u", num_stripes, cur_offset); break; } len = btrfs_chunk_item_size(num_stripes); if (cur_offset + len > array_size) goto out_short_read; print_chunk_item(buf, chunk); } else { error("unexpected item type %u in sys_array at offset %u", (u32)key.type, cur_offset); break; } array_ptr += len; sb_array_offset += len; cur_offset += len; item++; } out: free_extent_buffer(buf); return; out_short_read: error("sys_array too short to read %u bytes at offset %u", len, cur_offset); free_extent_buffer(buf); } static int empty_backup(struct btrfs_root_backup *backup) { if (backup == NULL || (backup->tree_root == 0 && backup->tree_root_gen == 0)) return 1; return 0; } static void print_root_backup(struct btrfs_root_backup *backup, bool extent_tree_v2) { const char *extent_tree_str = "backup_extent_root"; if (extent_tree_v2) extent_tree_str = "backup_block_group_root"; printf("\t\tbackup_tree_root:\t%llu\tgen: %llu\tlevel: %d\n", btrfs_backup_tree_root(backup), btrfs_backup_tree_root_gen(backup), btrfs_backup_tree_root_level(backup)); printf("\t\tbackup_chunk_root:\t%llu\tgen: %llu\tlevel: %d\n", btrfs_backup_chunk_root(backup), btrfs_backup_chunk_root_gen(backup), btrfs_backup_chunk_root_level(backup)); printf("\t\t%s:\t%llu\tgen: %llu\tlevel: %d\n", extent_tree_str, btrfs_backup_extent_root(backup), btrfs_backup_extent_root_gen(backup), btrfs_backup_extent_root_level(backup)); printf("\t\tbackup_fs_root:\t\t%llu\tgen: %llu\tlevel: %d\n", btrfs_backup_fs_root(backup), btrfs_backup_fs_root_gen(backup), btrfs_backup_fs_root_level(backup)); printf("\t\tbackup_dev_root:\t%llu\tgen: %llu\tlevel: %d\n", btrfs_backup_dev_root(backup), btrfs_backup_dev_root_gen(backup), btrfs_backup_dev_root_level(backup)); printf("\t\tcsum_root:\t%llu\tgen: %llu\tlevel: %d\n", btrfs_backup_csum_root(backup), btrfs_backup_csum_root_gen(backup), btrfs_backup_csum_root_level(backup)); printf("\t\tbackup_total_bytes:\t%llu\n", btrfs_backup_total_bytes(backup)); printf("\t\tbackup_bytes_used:\t%llu\n", btrfs_backup_bytes_used(backup)); printf("\t\tbackup_num_devices:\t%llu\n", btrfs_backup_num_devices(backup)); putchar('\n'); } static void print_backup_roots(struct btrfs_super_block *sb) { struct btrfs_root_backup *backup; int i; bool extent_tree_v2 = (btrfs_super_incompat_flags(sb) & BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2); for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { backup = sb->super_roots + i; if (!empty_backup(backup)) { printf("\tbackup %d:\n", i); print_root_backup(backup, extent_tree_v2); } } } void btrfs_print_superblock(struct btrfs_super_block *sb, int full) { int i; char *s, buf[BTRFS_UUID_UNPARSED_SIZE]; u8 *p; u32 csum_size; u16 csum_type; bool metadata_uuid_present = (btrfs_super_incompat_flags(sb) & BTRFS_FEATURE_INCOMPAT_METADATA_UUID); int cmp_res = 0; csum_type = btrfs_super_csum_type(sb); csum_size = BTRFS_CSUM_SIZE; printf("csum_type\t\t%hu (", csum_type); if (!is_valid_csum_type(csum_type)) { printf("INVALID"); } else { printf("%s", btrfs_super_csum_name(csum_type)); csum_size = btrfs_super_csum_size(sb); } printf(")\n"); printf("csum_size\t\t%llu\n", (unsigned long long)csum_size); printf("csum\t\t\t0x"); for (i = 0, p = sb->csum; i < csum_size; i++) printf("%02x", p[i]); if (!is_valid_csum_type(csum_type)) printf(" [UNKNOWN CSUM TYPE OR SIZE]"); else if (check_csum_sblock(sb, csum_size, csum_type)) printf(" [match]"); else printf(" [DON'T MATCH]"); putchar('\n'); printf("bytenr\t\t\t%llu\n", (unsigned long long)btrfs_super_bytenr(sb)); printf("flags\t\t\t0x%llx\n", (unsigned long long)btrfs_super_flags(sb)); print_readable_super_flag(btrfs_super_flags(sb)); printf("magic\t\t\t"); s = (char *) &sb->magic; for (i = 0; i < 8; i++) putchar(isprint(s[i]) ? s[i] : '.'); if (btrfs_super_magic(sb) == BTRFS_MAGIC) printf(" [match]\n"); else printf(" [DON'T MATCH]\n"); uuid_unparse(sb->fsid, buf); printf("fsid\t\t\t%s\n", buf); uuid_unparse(sb->metadata_uuid, buf); printf("metadata_uuid\t\t%s\n", buf); printf("label\t\t\t"); s = sb->label; for (i = 0; i < BTRFS_LABEL_SIZE && s[i]; i++) putchar(isprint(s[i]) ? s[i] : '.'); putchar('\n'); printf("generation\t\t%llu\n", (unsigned long long)btrfs_super_generation(sb)); printf("root\t\t\t%llu\n", (unsigned long long)btrfs_super_root(sb)); printf("sys_array_size\t\t%llu\n", (unsigned long long)btrfs_super_sys_array_size(sb)); printf("chunk_root_generation\t%llu\n", (unsigned long long)btrfs_super_chunk_root_generation(sb)); printf("root_level\t\t%llu\n", (unsigned long long)btrfs_super_root_level(sb)); printf("chunk_root\t\t%llu\n", (unsigned long long)btrfs_super_chunk_root(sb)); printf("chunk_root_level\t%llu\n", (unsigned long long)btrfs_super_chunk_root_level(sb)); printf("log_root\t\t%llu\n", (unsigned long long)btrfs_super_log_root(sb)); printf("log_root_transid (deprecated)\t%llu\n", le64_to_cpu(sb->__unused_log_root_transid)); printf("log_root_level\t\t%llu\n", (unsigned long long)btrfs_super_log_root_level(sb)); printf("total_bytes\t\t%llu\n", (unsigned long long)btrfs_super_total_bytes(sb)); printf("bytes_used\t\t%llu\n", (unsigned long long)btrfs_super_bytes_used(sb)); printf("sectorsize\t\t%llu\n", (unsigned long long)btrfs_super_sectorsize(sb)); printf("nodesize\t\t%llu\n", (unsigned long long)btrfs_super_nodesize(sb)); printf("leafsize (deprecated)\t%u\n", le32_to_cpu(sb->__unused_leafsize)); printf("stripesize\t\t%llu\n", (unsigned long long)btrfs_super_stripesize(sb)); printf("root_dir\t\t%llu\n", (unsigned long long)btrfs_super_root_dir(sb)); printf("num_devices\t\t%llu\n", (unsigned long long)btrfs_super_num_devices(sb)); printf("compat_flags\t\t0x%llx\n", (unsigned long long)btrfs_super_compat_flags(sb)); printf("compat_ro_flags\t\t0x%llx\n", (unsigned long long)btrfs_super_compat_ro_flags(sb)); print_readable_compat_ro_flag(btrfs_super_compat_ro_flags(sb)); printf("incompat_flags\t\t0x%llx\n", (unsigned long long)btrfs_super_incompat_flags(sb)); print_readable_incompat_flag(btrfs_super_incompat_flags(sb)); printf("cache_generation\t%llu\n", (unsigned long long)btrfs_super_cache_generation(sb)); printf("uuid_tree_generation\t%llu\n", (unsigned long long)btrfs_super_uuid_tree_generation(sb)); uuid_unparse(sb->dev_item.uuid, buf); printf("dev_item.uuid\t\t%s\n", buf); uuid_unparse(sb->dev_item.fsid, buf); if (metadata_uuid_present) { cmp_res = !memcmp(sb->dev_item.fsid, sb->metadata_uuid, BTRFS_FSID_SIZE); } else { cmp_res = !memcmp(sb->dev_item.fsid, sb->fsid, BTRFS_FSID_SIZE); } printf("dev_item.fsid\t\t%s %s\n", buf, cmp_res ? "[match]" : "[DON'T MATCH]"); printf("dev_item.type\t\t%llu\n", (unsigned long long) btrfs_stack_device_type(&sb->dev_item)); printf("dev_item.total_bytes\t%llu\n", (unsigned long long) btrfs_stack_device_total_bytes(&sb->dev_item)); printf("dev_item.bytes_used\t%llu\n", (unsigned long long) btrfs_stack_device_bytes_used(&sb->dev_item)); printf("dev_item.io_align\t%u\n", (unsigned int) btrfs_stack_device_io_align(&sb->dev_item)); printf("dev_item.io_width\t%u\n", (unsigned int) btrfs_stack_device_io_width(&sb->dev_item)); printf("dev_item.sector_size\t%u\n", (unsigned int) btrfs_stack_device_sector_size(&sb->dev_item)); printf("dev_item.devid\t\t%llu\n", btrfs_stack_device_id(&sb->dev_item)); printf("dev_item.dev_group\t%u\n", (unsigned int) btrfs_stack_device_group(&sb->dev_item)); printf("dev_item.seek_speed\t%u\n", (unsigned int) btrfs_stack_device_seek_speed(&sb->dev_item)); printf("dev_item.bandwidth\t%u\n", (unsigned int) btrfs_stack_device_bandwidth(&sb->dev_item)); printf("dev_item.generation\t%llu\n", (unsigned long long) btrfs_stack_device_generation(&sb->dev_item)); if (full) { printf("sys_chunk_array[%d]:\n", BTRFS_SYSTEM_CHUNK_ARRAY_SIZE); print_sys_chunk_array(sb); printf("backup_roots[%d]:\n", BTRFS_NUM_BACKUP_ROOTS); print_backup_roots(sb); } }