#include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "print-tree.h" static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level); static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int data_size); static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *dst, struct btrfs_buffer *src); static int balance_node_right(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *dst_buf, struct btrfs_buffer *src_buf); static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level, int slot); inline void btrfs_init_path(struct btrfs_path *p) { memset(p, 0, sizeof(*p)); } void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) { int i; for (i = 0; i < BTRFS_MAX_LEVEL; i++) { if (!p->nodes[i]) break; btrfs_block_release(root, p->nodes[i]); } memset(p, 0, sizeof(*p)); } static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *buf, struct btrfs_buffer *parent, int parent_slot, struct btrfs_buffer **cow_ret) { struct btrfs_buffer *cow; if (!list_empty(&buf->dirty)) { *cow_ret = buf; return 0; } cow = btrfs_alloc_free_block(trans, root); memcpy(&cow->node, &buf->node, root->blocksize); btrfs_set_header_blocknr(&cow->node.header, cow->blocknr); *cow_ret = cow; btrfs_inc_ref(trans, root, buf); if (buf == root->node) { root->node = cow; cow->count++; if (buf != root->commit_root) btrfs_free_extent(trans, root, buf->blocknr, 1, 1); btrfs_block_release(root, buf); } else { btrfs_set_node_blockptr(&parent->node, parent_slot, cow->blocknr); BUG_ON(list_empty(&parent->dirty)); btrfs_free_extent(trans, root, buf->blocknr, 1, 1); } btrfs_block_release(root, buf); return 0; } /* * The leaf data grows from end-to-front in the node. * this returns the address of the start of the last item, * which is the stop of the leaf data stack */ static inline unsigned int leaf_data_end(struct btrfs_root *root, struct btrfs_leaf *leaf) { u32 nr = btrfs_header_nritems(&leaf->header); if (nr == 0) return BTRFS_LEAF_DATA_SIZE(root); return btrfs_item_offset(leaf->items + nr - 1); } /* * The space between the end of the leaf items and * the start of the leaf data. IOW, how much room * the leaf has left for both items and data */ int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf) { int data_end = leaf_data_end(root, leaf); int nritems = btrfs_header_nritems(&leaf->header); char *items_end = (char *)(leaf->items + nritems + 1); return (char *)(btrfs_leaf_data(leaf) + data_end) - (char *)items_end; } /* * compare two keys in a memcmp fashion */ static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) { struct btrfs_key k1; btrfs_disk_key_to_cpu(&k1, disk); if (k1.objectid > k2->objectid) return 1; if (k1.objectid < k2->objectid) return -1; if (k1.flags > k2->flags) return 1; if (k1.flags < k2->flags) return -1; if (k1.offset > k2->offset) return 1; if (k1.offset < k2->offset) return -1; return 0; } static int check_node(struct btrfs_root *root, struct btrfs_path *path, int level) { int i; struct btrfs_node *parent = NULL; struct btrfs_node *node = &path->nodes[level]->node; int parent_slot; u32 nritems = btrfs_header_nritems(&node->header); if (path->nodes[level + 1]) parent = &path->nodes[level + 1]->node; parent_slot = path->slots[level + 1]; BUG_ON(nritems == 0); if (parent) { struct btrfs_disk_key *parent_key; parent_key = &parent->ptrs[parent_slot].key; BUG_ON(memcmp(parent_key, &node->ptrs[0].key, sizeof(struct btrfs_disk_key))); BUG_ON(btrfs_node_blockptr(parent, parent_slot) != btrfs_header_blocknr(&node->header)); } BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); for (i = 0; nritems > 1 && i < nritems - 2; i++) { struct btrfs_key cpukey; btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[i + 1].key); BUG_ON(comp_keys(&node->ptrs[i].key, &cpukey) >= 0); } return 0; } static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, int level) { int i; struct btrfs_leaf *leaf = &path->nodes[level]->leaf; struct btrfs_node *parent = NULL; int parent_slot; u32 nritems = btrfs_header_nritems(&leaf->header); if (path->nodes[level + 1]) parent = &path->nodes[level + 1]->node; parent_slot = path->slots[level + 1]; BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); if (nritems == 0) return 0; if (parent) { struct btrfs_disk_key *parent_key; parent_key = &parent->ptrs[parent_slot].key; BUG_ON(memcmp(parent_key, &leaf->items[0].key, sizeof(struct btrfs_disk_key))); BUG_ON(btrfs_node_blockptr(parent, parent_slot) != btrfs_header_blocknr(&leaf->header)); } for (i = 0; nritems > 1 && i < nritems - 2; i++) { struct btrfs_key cpukey; btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key); BUG_ON(comp_keys(&leaf->items[i].key, &cpukey) >= 0); BUG_ON(btrfs_item_offset(leaf->items + i) != btrfs_item_end(leaf->items + i + 1)); if (i == 0) { BUG_ON(btrfs_item_offset(leaf->items + i) + btrfs_item_size(leaf->items + i) != BTRFS_LEAF_DATA_SIZE(root)); } } return 0; } static int check_block(struct btrfs_root *root, struct btrfs_path *path, int level) { if (level == 0) return check_leaf(root, path, level); return check_node(root, path, level); } /* * search for key in the array p. items p are item_size apart * and there are 'max' items in p * the slot in the array is returned via slot, and it points to * the place where you would insert key if it is not found in * the array. * * slot may point to max if the key is bigger than all of the keys */ static int generic_bin_search(char *p, int item_size, struct btrfs_key *key, int max, int *slot) { int low = 0; int high = max; int mid; int ret; struct btrfs_disk_key *tmp; while(low < high) { mid = (low + high) / 2; tmp = (struct btrfs_disk_key *)(p + mid * item_size); ret = comp_keys(tmp, key); if (ret < 0) low = mid + 1; else if (ret > 0) high = mid; else { *slot = mid; return 0; } } *slot = low; return 1; } /* * simple bin_search frontend that does the right thing for * leaves vs nodes */ static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot) { if (btrfs_is_leaf(c)) { struct btrfs_leaf *l = (struct btrfs_leaf *)c; return generic_bin_search((void *)l->items, sizeof(struct btrfs_item), key, btrfs_header_nritems(&c->header), slot); } else { return generic_bin_search((void *)c->ptrs, sizeof(struct btrfs_key_ptr), key, btrfs_header_nritems(&c->header), slot); } return -1; } static struct btrfs_buffer *read_node_slot(struct btrfs_root *root, struct btrfs_buffer *parent_buf, int slot) { struct btrfs_node *node = &parent_buf->node; if (slot < 0) return NULL; if (slot >= btrfs_header_nritems(&node->header)) return NULL; return read_tree_block(root, btrfs_node_blockptr(node, slot)); } static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct btrfs_buffer *right_buf; struct btrfs_buffer *mid_buf; struct btrfs_buffer *left_buf; struct btrfs_buffer *parent_buf = NULL; struct btrfs_node *right = NULL; struct btrfs_node *mid; struct btrfs_node *left = NULL; struct btrfs_node *parent = NULL; int ret = 0; int wret; int pslot; int orig_slot = path->slots[level]; u64 orig_ptr; if (level == 0) return 0; mid_buf = path->nodes[level]; mid = &mid_buf->node; orig_ptr = btrfs_node_blockptr(mid, orig_slot); if (level < BTRFS_MAX_LEVEL - 1) parent_buf = path->nodes[level + 1]; pslot = path->slots[level + 1]; /* * deal with the case where there is only one pointer in the root * by promoting the node below to a root */ if (!parent_buf) { struct btrfs_buffer *child; u64 blocknr = mid_buf->blocknr; if (btrfs_header_nritems(&mid->header) != 1) return 0; /* promote the child to a root */ child = read_node_slot(root, mid_buf, 0); BUG_ON(!child); root->node = child; path->nodes[level] = NULL; /* once for the path */ btrfs_block_release(root, mid_buf); /* once for the root ptr */ btrfs_block_release(root, mid_buf); clean_tree_block(trans, root, mid_buf); return btrfs_free_extent(trans, root, blocknr, 1, 1); } parent = &parent_buf->node; if (btrfs_header_nritems(&mid->header) > BTRFS_NODEPTRS_PER_BLOCK(root) / 4) return 0; left_buf = read_node_slot(root, parent_buf, pslot - 1); right_buf = read_node_slot(root, parent_buf, pslot + 1); /* first, try to make some room in the middle buffer */ if (left_buf) { btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1, &left_buf); left = &left_buf->node; orig_slot += btrfs_header_nritems(&left->header); wret = push_node_left(trans, root, left_buf, mid_buf); if (wret < 0) ret = wret; } /* * then try to empty the right most buffer into the middle */ if (right_buf) { btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1, &right_buf); right = &right_buf->node; wret = push_node_left(trans, root, mid_buf, right_buf); if (wret < 0) ret = wret; if (btrfs_header_nritems(&right->header) == 0) { u64 blocknr = right_buf->blocknr; btrfs_block_release(root, right_buf); clean_tree_block(trans, root, right_buf); right_buf = NULL; right = NULL; wret = del_ptr(trans, root, path, level + 1, pslot + 1); if (wret) ret = wret; wret = btrfs_free_extent(trans, root, blocknr, 1, 1); if (wret) ret = wret; } else { memcpy(&parent->ptrs[pslot + 1].key, &right->ptrs[0].key, sizeof(struct btrfs_disk_key)); BUG_ON(list_empty(&parent_buf->dirty)); } } if (btrfs_header_nritems(&mid->header) == 1) { /* * we're not allowed to leave a node with one item in the * tree during a delete. A deletion from lower in the tree * could try to delete the only pointer in this node. * So, pull some keys from the left. * There has to be a left pointer at this point because * otherwise we would have pulled some pointers from the * right */ BUG_ON(!left_buf); wret = balance_node_right(trans, root, mid_buf, left_buf); if (wret < 0) ret = wret; BUG_ON(wret == 1); } if (btrfs_header_nritems(&mid->header) == 0) { /* we've managed to empty the middle node, drop it */ u64 blocknr = mid_buf->blocknr; btrfs_block_release(root, mid_buf); clean_tree_block(trans, root, mid_buf); mid_buf = NULL; mid = NULL; wret = del_ptr(trans, root, path, level + 1, pslot); if (wret) ret = wret; wret = btrfs_free_extent(trans, root, blocknr, 1, 1); if (wret) ret = wret; } else { /* update the parent key to reflect our changes */ memcpy(&parent->ptrs[pslot].key, &mid->ptrs[0].key, sizeof(struct btrfs_disk_key)); BUG_ON(list_empty(&parent_buf->dirty)); } /* update the path */ if (left_buf) { if (btrfs_header_nritems(&left->header) > orig_slot) { left_buf->count++; // released below path->nodes[level] = left_buf; path->slots[level + 1] -= 1; path->slots[level] = orig_slot; if (mid_buf) btrfs_block_release(root, mid_buf); } else { orig_slot -= btrfs_header_nritems(&left->header); path->slots[level] = orig_slot; } } /* double check we haven't messed things up */ check_block(root, path, level); if (orig_ptr != btrfs_node_blockptr(&path->nodes[level]->node, path->slots[level])) BUG(); if (right_buf) btrfs_block_release(root, right_buf); if (left_buf) btrfs_block_release(root, left_buf); return ret; } /* * look for key in the tree. path is filled in with nodes along the way * if key is found, we return zero and you can find the item in the leaf * level of the path (level 0) * * If the key isn't found, the path points to the slot where it should * be inserted, and 1 is returned. If there are other errors during the * search a negative error number is returned. * * if ins_len > 0, nodes and leaves will be split as we walk down the * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if * possible) */ int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *key, struct btrfs_path *p, int ins_len, int cow) { struct btrfs_buffer *b; struct btrfs_buffer *cow_buf; struct btrfs_node *c; int slot; int ret; int level; again: b = root->node; b->count++; while (b) { level = btrfs_header_level(&b->node.header); if (cow) { int wret; wret = btrfs_cow_block(trans, root, b, p->nodes[level + 1], p->slots[level + 1], &cow_buf); b = cow_buf; } BUG_ON(!cow && ins_len); c = &b->node; p->nodes[level] = b; ret = check_block(root, p, level); if (ret) return -1; ret = bin_search(c, key, &slot); if (!btrfs_is_leaf(c)) { if (ret && slot > 0) slot -= 1; p->slots[level] = slot; if (ins_len > 0 && btrfs_header_nritems(&c->header) == BTRFS_NODEPTRS_PER_BLOCK(root)) { int sret = split_node(trans, root, p, level); BUG_ON(sret > 0); if (sret) return sret; b = p->nodes[level]; c = &b->node; slot = p->slots[level]; } else if (ins_len < 0) { int sret = balance_level(trans, root, p, level); if (sret) return sret; b = p->nodes[level]; if (!b) goto again; c = &b->node; slot = p->slots[level]; BUG_ON(btrfs_header_nritems(&c->header) == 1); } b = read_tree_block(root, btrfs_node_blockptr(c, slot)); } else { struct btrfs_leaf *l = (struct btrfs_leaf *)c; p->slots[level] = slot; if (ins_len > 0 && btrfs_leaf_free_space(root, l) < sizeof(struct btrfs_item) + ins_len) { int sret = split_leaf(trans, root, p, ins_len); BUG_ON(sret > 0); if (sret) return sret; } BUG_ON(root->node->count == 1); return ret; } } BUG_ON(root->node->count == 1); return 1; } /* * adjust the pointers going up the tree, starting at level * making sure the right key of each node is points to 'key'. * This is used after shifting pointers to the left, so it stops * fixing up pointers when a given leaf/node is not in slot 0 of the * higher levels * * If this fails to write a tree block, it returns -1, but continues * fixing up the blocks in ram so the tree is consistent. */ static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_disk_key *key, int level) { int i; int ret = 0; for (i = level; i < BTRFS_MAX_LEVEL; i++) { struct btrfs_node *t; int tslot = path->slots[i]; if (!path->nodes[i]) break; t = &path->nodes[i]->node; memcpy(&t->ptrs[tslot].key, key, sizeof(*key)); BUG_ON(list_empty(&path->nodes[i]->dirty)); if (tslot != 0) break; } return ret; } /* * try to push data from one node into the next node left in the * tree. * * returns 0 if some ptrs were pushed left, < 0 if there was some horrible * error, and > 0 if there was no room in the left hand block. */ static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *dst_buf, struct btrfs_buffer *src_buf) { struct btrfs_node *src = &src_buf->node; struct btrfs_node *dst = &dst_buf->node; int push_items = 0; int src_nritems; int dst_nritems; int ret = 0; src_nritems = btrfs_header_nritems(&src->header); dst_nritems = btrfs_header_nritems(&dst->header); push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; if (push_items <= 0) { return 1; } if (src_nritems < push_items) push_items = src_nritems; memcpy(dst->ptrs + dst_nritems, src->ptrs, push_items * sizeof(struct btrfs_key_ptr)); if (push_items < src_nritems) { memmove(src->ptrs, src->ptrs + push_items, (src_nritems - push_items) * sizeof(struct btrfs_key_ptr)); } btrfs_set_header_nritems(&src->header, src_nritems - push_items); btrfs_set_header_nritems(&dst->header, dst_nritems + push_items); BUG_ON(list_empty(&src_buf->dirty)); BUG_ON(list_empty(&dst_buf->dirty)); return ret; } /* * try to push data from one node into the next node right in the * tree. * * returns 0 if some ptrs were pushed, < 0 if there was some horrible * error, and > 0 if there was no room in the right hand block. * * this will only push up to 1/2 the contents of the left node over */ static int balance_node_right(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_buffer *dst_buf, struct btrfs_buffer *src_buf) { struct btrfs_node *src = &src_buf->node; struct btrfs_node *dst = &dst_buf->node; int push_items = 0; int max_push; int src_nritems; int dst_nritems; int ret = 0; src_nritems = btrfs_header_nritems(&src->header); dst_nritems = btrfs_header_nritems(&dst->header); push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; if (push_items <= 0) { return 1; } max_push = src_nritems / 2 + 1; /* don't try to empty the node */ if (max_push > src_nritems) return 1; if (max_push < push_items) push_items = max_push; memmove(dst->ptrs + push_items, dst->ptrs, dst_nritems * sizeof(struct btrfs_key_ptr)); memcpy(dst->ptrs, src->ptrs + src_nritems - push_items, push_items * sizeof(struct btrfs_key_ptr)); btrfs_set_header_nritems(&src->header, src_nritems - push_items); btrfs_set_header_nritems(&dst->header, dst_nritems + push_items); BUG_ON(list_empty(&src_buf->dirty)); BUG_ON(list_empty(&dst_buf->dirty)); return ret; } /* * helper function to insert a new root level in the tree. * A new node is allocated, and a single item is inserted to * point to the existing root * * returns zero on success or < 0 on failure. */ static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct btrfs_buffer *t; struct btrfs_node *lower; struct btrfs_node *c; struct btrfs_disk_key *lower_key; BUG_ON(path->nodes[level]); BUG_ON(path->nodes[level-1] != root->node); t = btrfs_alloc_free_block(trans, root); c = &t->node; memset(c, 0, root->blocksize); btrfs_set_header_nritems(&c->header, 1); btrfs_set_header_level(&c->header, level); btrfs_set_header_blocknr(&c->header, t->blocknr); btrfs_set_header_parentid(&c->header, btrfs_header_parentid(&root->node->node.header)); lower = &path->nodes[level-1]->node; if (btrfs_is_leaf(lower)) lower_key = &((struct btrfs_leaf *)lower)->items[0].key; else lower_key = &lower->ptrs[0].key; memcpy(&c->ptrs[0].key, lower_key, sizeof(struct btrfs_disk_key)); btrfs_set_node_blockptr(c, 0, path->nodes[level - 1]->blocknr); /* the super has an extra ref to root->node */ btrfs_block_release(root, root->node); root->node = t; t->count++; path->nodes[level] = t; path->slots[level] = 0; return 0; } /* * worker function to insert a single pointer in a node. * the node should have enough room for the pointer already * * slot and level indicate where you want the key to go, and * blocknr is the block the key points to. * * returns zero on success and < 0 on any error */ static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_disk_key *key, u64 blocknr, int slot, int level) { struct btrfs_node *lower; int nritems; BUG_ON(!path->nodes[level]); lower = &path->nodes[level]->node; nritems = btrfs_header_nritems(&lower->header); if (slot > nritems) BUG(); if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) BUG(); if (slot != nritems) { memmove(lower->ptrs + slot + 1, lower->ptrs + slot, (nritems - slot) * sizeof(struct btrfs_key_ptr)); } memcpy(&lower->ptrs[slot].key, key, sizeof(struct btrfs_disk_key)); btrfs_set_node_blockptr(lower, slot, blocknr); btrfs_set_header_nritems(&lower->header, nritems + 1); BUG_ON(list_empty(&path->nodes[level]->dirty)); return 0; } /* * split the node at the specified level in path in two. * The path is corrected to point to the appropriate node after the split * * Before splitting this tries to make some room in the node by pushing * left and right, if either one works, it returns right away. * * returns 0 on success and < 0 on failure */ static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level) { struct btrfs_buffer *t; struct btrfs_node *c; struct btrfs_buffer *split_buffer; struct btrfs_node *split; int mid; int ret; int wret; u32 c_nritems; t = path->nodes[level]; c = &t->node; if (t == root->node) { /* trying to split the root, lets make a new one */ ret = insert_new_root(trans, root, path, level + 1); if (ret) return ret; } c_nritems = btrfs_header_nritems(&c->header); split_buffer = btrfs_alloc_free_block(trans, root); split = &split_buffer->node; btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header)); btrfs_set_header_level(&split->header, btrfs_header_level(&c->header)); btrfs_set_header_blocknr(&split->header, split_buffer->blocknr); btrfs_set_header_parentid(&split->header, btrfs_header_parentid(&root->node->node.header)); mid = (c_nritems + 1) / 2; memcpy(split->ptrs, c->ptrs + mid, (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); btrfs_set_header_nritems(&split->header, c_nritems - mid); btrfs_set_header_nritems(&c->header, mid); ret = 0; BUG_ON(list_empty(&t->dirty)); wret = insert_ptr(trans, root, path, &split->ptrs[0].key, split_buffer->blocknr, path->slots[level + 1] + 1, level + 1); if (wret) ret = wret; if (path->slots[level] >= mid) { path->slots[level] -= mid; btrfs_block_release(root, t); path->nodes[level] = split_buffer; path->slots[level + 1] += 1; } else { btrfs_block_release(root, split_buffer); } return ret; } /* * how many bytes are required to store the items in a leaf. start * and nr indicate which items in the leaf to check. This totals up the * space used both by the item structs and the item data */ static int leaf_space_used(struct btrfs_leaf *l, int start, int nr) { int data_len; int end = start + nr - 1; if (!nr) return 0; data_len = btrfs_item_end(l->items + start); data_len = data_len - btrfs_item_offset(l->items + end); data_len += sizeof(struct btrfs_item) * nr; return data_len; } /* * push some data in the path leaf to the right, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise * * returns 1 if the push failed because the other node didn't have enough * room, 0 if everything worked out and < 0 if there were major errors. */ static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int data_size) { struct btrfs_buffer *left_buf = path->nodes[0]; struct btrfs_leaf *left = &left_buf->leaf; struct btrfs_leaf *right; struct btrfs_buffer *right_buf; struct btrfs_buffer *upper; int slot; int i; int free_space; int push_space = 0; int push_items = 0; struct btrfs_item *item; u32 left_nritems; u32 right_nritems; slot = path->slots[1]; if (!path->nodes[1]) { return 1; } upper = path->nodes[1]; if (slot >= btrfs_header_nritems(&upper->node.header) - 1) { return 1; } right_buf = read_tree_block(root, btrfs_node_blockptr(&upper->node, slot + 1)); right = &right_buf->leaf; free_space = btrfs_leaf_free_space(root, right); if (free_space < data_size + sizeof(struct btrfs_item)) { btrfs_block_release(root, right_buf); return 1; } /* cow and double check */ btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf); right = &right_buf->leaf; free_space = btrfs_leaf_free_space(root, right); if (free_space < data_size + sizeof(struct btrfs_item)) { btrfs_block_release(root, right_buf); return 1; } left_nritems = btrfs_header_nritems(&left->header); for (i = left_nritems - 1; i >= 0; i--) { item = left->items + i; if (path->slots[0] == i) push_space += data_size + sizeof(*item); if (btrfs_item_size(item) + sizeof(*item) + push_space > free_space) break; push_items++; push_space += btrfs_item_size(item) + sizeof(*item); } if (push_items == 0) { btrfs_block_release(root, right_buf); return 1; } right_nritems = btrfs_header_nritems(&right->header); /* push left to right */ push_space = btrfs_item_end(left->items + left_nritems - push_items); push_space -= leaf_data_end(root, left); /* make room in the right data area */ memmove(btrfs_leaf_data(right) + leaf_data_end(root, right) - push_space, btrfs_leaf_data(right) + leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) - leaf_data_end(root, right)); /* copy from the left data area */ memcpy(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - push_space, btrfs_leaf_data(left) + leaf_data_end(root, left), push_space); memmove(right->items + push_items, right->items, right_nritems * sizeof(struct btrfs_item)); /* copy the items from left to right */ memcpy(right->items, left->items + left_nritems - push_items, push_items * sizeof(struct btrfs_item)); /* update the item pointers */ right_nritems += push_items; btrfs_set_header_nritems(&right->header, right_nritems); push_space = BTRFS_LEAF_DATA_SIZE(root); for (i = 0; i < right_nritems; i++) { btrfs_set_item_offset(right->items + i, push_space - btrfs_item_size(right->items + i)); push_space = btrfs_item_offset(right->items + i); } left_nritems -= push_items; btrfs_set_header_nritems(&left->header, left_nritems); BUG_ON(list_empty(&left_buf->dirty)); BUG_ON(list_empty(&right_buf->dirty)); memcpy(&upper->node.ptrs[slot + 1].key, &right->items[0].key, sizeof(struct btrfs_disk_key)); BUG_ON(list_empty(&upper->dirty)); /* then fixup the leaf pointer in the path */ if (path->slots[0] >= left_nritems) { path->slots[0] -= left_nritems; btrfs_block_release(root, path->nodes[0]); path->nodes[0] = right_buf; path->slots[1] += 1; } else { btrfs_block_release(root, right_buf); } return 0; } /* * push some data in the path leaf to the left, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise */ static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int data_size) { struct btrfs_buffer *right_buf = path->nodes[0]; struct btrfs_leaf *right = &right_buf->leaf; struct btrfs_buffer *t; struct btrfs_leaf *left; int slot; int i; int free_space; int push_space = 0; int push_items = 0; struct btrfs_item *item; u32 old_left_nritems; int ret = 0; int wret; slot = path->slots[1]; if (slot == 0) { return 1; } if (!path->nodes[1]) { return 1; } t = read_tree_block(root, btrfs_node_blockptr(&path->nodes[1]->node, slot - 1)); left = &t->leaf; free_space = btrfs_leaf_free_space(root, left); if (free_space < data_size + sizeof(struct btrfs_item)) { btrfs_block_release(root, t); return 1; } /* cow and double check */ btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t); left = &t->leaf; free_space = btrfs_leaf_free_space(root, left); if (free_space < data_size + sizeof(struct btrfs_item)) { btrfs_block_release(root, t); return 1; } for (i = 0; i < btrfs_header_nritems(&right->header); i++) { item = right->items + i; if (path->slots[0] == i) push_space += data_size + sizeof(*item); if (btrfs_item_size(item) + sizeof(*item) + push_space > free_space) break; push_items++; push_space += btrfs_item_size(item) + sizeof(*item); } if (push_items == 0) { btrfs_block_release(root, t); return 1; } /* push data from right to left */ memcpy(left->items + btrfs_header_nritems(&left->header), right->items, push_items * sizeof(struct btrfs_item)); push_space = BTRFS_LEAF_DATA_SIZE(root) - btrfs_item_offset(right->items + push_items -1); memcpy(btrfs_leaf_data(left) + leaf_data_end(root, left) - push_space, btrfs_leaf_data(right) + btrfs_item_offset(right->items + push_items - 1), push_space); old_left_nritems = btrfs_header_nritems(&left->header); BUG_ON(old_left_nritems < 0); for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { u32 ioff = btrfs_item_offset(left->items + i); btrfs_set_item_offset(left->items + i, ioff - (BTRFS_LEAF_DATA_SIZE(root) - btrfs_item_offset(left->items + old_left_nritems - 1))); } btrfs_set_header_nritems(&left->header, old_left_nritems + push_items); /* fixup right node */ push_space = btrfs_item_offset(right->items + push_items - 1) - leaf_data_end(root, right); memmove(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - push_space, btrfs_leaf_data(right) + leaf_data_end(root, right), push_space); memmove(right->items, right->items + push_items, (btrfs_header_nritems(&right->header) - push_items) * sizeof(struct btrfs_item)); btrfs_set_header_nritems(&right->header, btrfs_header_nritems(&right->header) - push_items); push_space = BTRFS_LEAF_DATA_SIZE(root); for (i = 0; i < btrfs_header_nritems(&right->header); i++) { btrfs_set_item_offset(right->items + i, push_space - btrfs_item_size(right->items + i)); push_space = btrfs_item_offset(right->items + i); } BUG_ON(list_empty(&t->dirty)); BUG_ON(list_empty(&right_buf->dirty)); wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1); if (wret) ret = wret; /* then fixup the leaf pointer in the path */ if (path->slots[0] < push_items) { path->slots[0] += old_left_nritems; btrfs_block_release(root, path->nodes[0]); path->nodes[0] = t; path->slots[1] -= 1; } else { btrfs_block_release(root, t); path->slots[0] -= push_items; } BUG_ON(path->slots[0] < 0); return ret; } /* * split the path's leaf in two, making sure there is at least data_size * available for the resulting leaf level of the path. * * returns 0 if all went well and < 0 on failure. */ static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int data_size) { struct btrfs_buffer *l_buf; struct btrfs_leaf *l; u32 nritems; int mid; int slot; struct btrfs_leaf *right; struct btrfs_buffer *right_buffer; int space_needed = data_size + sizeof(struct btrfs_item); int data_copy_size; int rt_data_off; int i; int ret; int wret; /* first try to make some room by pushing left and right */ wret = push_leaf_left(trans, root, path, data_size); if (wret < 0) return wret; if (wret) { wret = push_leaf_right(trans, root, path, data_size); if (wret < 0) return wret; } l_buf = path->nodes[0]; l = &l_buf->leaf; /* did the pushes work? */ if (btrfs_leaf_free_space(root, l) >= sizeof(struct btrfs_item) + data_size) return 0; if (!path->nodes[1]) { ret = insert_new_root(trans, root, path, 1); if (ret) return ret; } slot = path->slots[0]; nritems = btrfs_header_nritems(&l->header); mid = (nritems + 1)/ 2; right_buffer = btrfs_alloc_free_block(trans, root); BUG_ON(!right_buffer); BUG_ON(mid == nritems); right = &right_buffer->leaf; memset(&right->header, 0, sizeof(right->header)); if (mid <= slot) { /* FIXME, just alloc a new leaf here */ if (leaf_space_used(l, mid, nritems - mid) + space_needed > BTRFS_LEAF_DATA_SIZE(root)) BUG(); } else { /* FIXME, just alloc a new leaf here */ if (leaf_space_used(l, 0, mid + 1) + space_needed > BTRFS_LEAF_DATA_SIZE(root)) BUG(); } btrfs_set_header_nritems(&right->header, nritems - mid); btrfs_set_header_blocknr(&right->header, right_buffer->blocknr); btrfs_set_header_level(&right->header, 0); btrfs_set_header_parentid(&right->header, btrfs_header_parentid(&root->node->node.header)); data_copy_size = btrfs_item_end(l->items + mid) - leaf_data_end(root, l); memcpy(right->items, l->items + mid, (nritems - mid) * sizeof(struct btrfs_item)); memcpy(btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - data_copy_size, btrfs_leaf_data(l) + leaf_data_end(root, l), data_copy_size); rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - btrfs_item_end(l->items + mid); for (i = 0; i < btrfs_header_nritems(&right->header); i++) { u32 ioff = btrfs_item_offset(right->items + i); btrfs_set_item_offset(right->items + i, ioff + rt_data_off); } btrfs_set_header_nritems(&l->header, mid); ret = 0; wret = insert_ptr(trans, root, path, &right->items[0].key, right_buffer->blocknr, path->slots[1] + 1, 1); if (wret) ret = wret; BUG_ON(list_empty(&right_buffer->dirty)); BUG_ON(list_empty(&l_buf->dirty)); BUG_ON(path->slots[0] != slot); if (mid <= slot) { btrfs_block_release(root, path->nodes[0]); path->nodes[0] = right_buffer; path->slots[0] -= mid; path->slots[1] += 1; } else btrfs_block_release(root, right_buffer); BUG_ON(path->slots[0] < 0); return ret; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, struct btrfs_key *cpu_key, u32 data_size) { int ret = 0; int slot; int slot_orig; struct btrfs_leaf *leaf; struct btrfs_buffer *leaf_buf; u32 nritems; unsigned int data_end; struct btrfs_disk_key disk_key; btrfs_cpu_key_to_disk(&disk_key, cpu_key); /* create a root if there isn't one */ if (!root->node) BUG(); ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1); if (ret == 0) { btrfs_release_path(root, path); return -EEXIST; } if (ret < 0) goto out; slot_orig = path->slots[0]; leaf_buf = path->nodes[0]; leaf = &leaf_buf->leaf; nritems = btrfs_header_nritems(&leaf->header); data_end = leaf_data_end(root, leaf); if (btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item) + data_size) BUG(); slot = path->slots[0]; BUG_ON(slot < 0); if (slot != nritems) { int i; unsigned int old_data = btrfs_item_end(leaf->items + slot); /* * item0..itemN ... dataN.offset..dataN.size .. data0.size */ /* first correct the data pointers */ for (i = slot; i < nritems; i++) { u32 ioff = btrfs_item_offset(leaf->items + i); btrfs_set_item_offset(leaf->items + i, ioff - data_size); } /* shift the items */ memmove(leaf->items + slot + 1, leaf->items + slot, (nritems - slot) * sizeof(struct btrfs_item)); /* shift the data */ memmove(btrfs_leaf_data(leaf) + data_end - data_size, btrfs_leaf_data(leaf) + data_end, old_data - data_end); data_end = old_data; } /* setup the item for the new data */ memcpy(&leaf->items[slot].key, &disk_key, sizeof(struct btrfs_disk_key)); btrfs_set_item_offset(leaf->items + slot, data_end - data_size); btrfs_set_item_size(leaf->items + slot, data_size); btrfs_set_header_nritems(&leaf->header, nritems + 1); ret = 0; if (slot == 0) ret = fixup_low_keys(trans, root, path, &disk_key, 1); BUG_ON(list_empty(&leaf_buf->dirty)); if (btrfs_leaf_free_space(root, leaf) < 0) BUG(); check_leaf(root, path, 0); out: return ret; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_key *cpu_key, void *data, u32 data_size) { int ret = 0; struct btrfs_path path; u8 *ptr; btrfs_init_path(&path); ret = btrfs_insert_empty_item(trans, root, &path, cpu_key, data_size); if (!ret) { ptr = btrfs_item_ptr(&path.nodes[0]->leaf, path.slots[0], u8); memcpy(ptr, data, data_size); } btrfs_release_path(root, &path); return ret; } /* * delete the pointer from a given node. * * If the delete empties a node, the node is removed from the tree, * continuing all the way the root if required. The root is converted into * a leaf if all the nodes are emptied. */ static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path, int level, int slot) { struct btrfs_node *node; struct btrfs_buffer *parent = path->nodes[level]; u32 nritems; int ret = 0; int wret; node = &parent->node; nritems = btrfs_header_nritems(&node->header); if (slot != nritems -1) { memmove(node->ptrs + slot, node->ptrs + slot + 1, sizeof(struct btrfs_key_ptr) * (nritems - slot - 1)); } nritems--; btrfs_set_header_nritems(&node->header, nritems); if (nritems == 0 && parent == root->node) { BUG_ON(btrfs_header_level(&root->node->node.header) != 1); /* just turn the root into a leaf and break */ btrfs_set_header_level(&root->node->node.header, 0); } else if (slot == 0) { wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key, level + 1); if (wret) ret = wret; } BUG_ON(list_empty(&parent->dirty)); return ret; } /* * delete the item at the leaf level in path. If that empties * the leaf, remove it from the tree */ int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct btrfs_path *path) { int slot; struct btrfs_leaf *leaf; struct btrfs_buffer *leaf_buf; int doff; int dsize; int ret = 0; int wret; u32 nritems; leaf_buf = path->nodes[0]; leaf = &leaf_buf->leaf; slot = path->slots[0]; doff = btrfs_item_offset(leaf->items + slot); dsize = btrfs_item_size(leaf->items + slot); nritems = btrfs_header_nritems(&leaf->header); if (slot != nritems - 1) { int i; int data_end = leaf_data_end(root, leaf); memmove(btrfs_leaf_data(leaf) + data_end + dsize, btrfs_leaf_data(leaf) + data_end, doff - data_end); for (i = slot + 1; i < nritems; i++) { u32 ioff = btrfs_item_offset(leaf->items + i); btrfs_set_item_offset(leaf->items + i, ioff + dsize); } memmove(leaf->items + slot, leaf->items + slot + 1, sizeof(struct btrfs_item) * (nritems - slot - 1)); } btrfs_set_header_nritems(&leaf->header, nritems - 1); nritems--; /* delete the leaf if we've emptied it */ if (nritems == 0) { if (leaf_buf == root->node) { btrfs_set_header_level(&leaf->header, 0); BUG_ON(list_empty(&leaf_buf->dirty)); } else { clean_tree_block(trans, root, leaf_buf); wret = del_ptr(trans, root, path, 1, path->slots[1]); if (wret) ret = wret; wret = btrfs_free_extent(trans, root, leaf_buf->blocknr, 1, 1); if (wret) ret = wret; } } else { int used = leaf_space_used(leaf, 0, nritems); if (slot == 0) { wret = fixup_low_keys(trans, root, path, &leaf->items[0].key, 1); if (wret) ret = wret; } BUG_ON(list_empty(&leaf_buf->dirty)); /* delete the leaf if it is mostly empty */ if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { /* push_leaf_left fixes the path. * make sure the path still points to our leaf * for possible call to del_ptr below */ slot = path->slots[1]; leaf_buf->count++; wret = push_leaf_left(trans, root, path, 1); if (wret < 0) ret = wret; if (path->nodes[0] == leaf_buf && btrfs_header_nritems(&leaf->header)) { wret = push_leaf_right(trans, root, path, 1); if (wret < 0) ret = wret; } if (btrfs_header_nritems(&leaf->header) == 0) { u64 blocknr = leaf_buf->blocknr; clean_tree_block(trans, root, leaf_buf); wret = del_ptr(trans, root, path, 1, slot); if (wret) ret = wret; btrfs_block_release(root, leaf_buf); wret = btrfs_free_extent(trans, root, blocknr, 1, 1); if (wret) ret = wret; } else { btrfs_block_release(root, leaf_buf); } } } return ret; } /* * walk up the tree as far as required to find the next leaf. * returns 0 if it found something or 1 if there are no greater leaves. * returns < 0 on io errors. */ int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) { int slot; int level = 1; u64 blocknr; struct btrfs_buffer *c; struct btrfs_buffer *next = NULL; while(level < BTRFS_MAX_LEVEL) { if (!path->nodes[level]) return 1; slot = path->slots[level] + 1; c = path->nodes[level]; if (slot >= btrfs_header_nritems(&c->node.header)) { level++; continue; } blocknr = btrfs_node_blockptr(&c->node, slot); if (next) btrfs_block_release(root, next); next = read_tree_block(root, blocknr); break; } path->slots[level] = slot; while(1) { level--; c = path->nodes[level]; btrfs_block_release(root, c); path->nodes[level] = next; path->slots[level] = 0; if (!level) break; next = read_tree_block(root, btrfs_node_blockptr(&next->node, 0)); } return 0; }