/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include #include #include #include #include #include #include #include "utils.h" #include "kerncompat.h" #include "ctree.h" #include "string-table.h" #include "cmds-fi-disk_usage.h" #include "commands.h" #include "version.h" /* * Pretty print the size * PAY ATTENTION: it return a statically buffer */ char *df_pretty_sizes(u64 size, int mode) { static char buf[30]; if (mode & DF_HUMAN_UNIT) (void)pretty_size_snprintf(size, buf, sizeof(buf), UNITS_DEFAULT); else sprintf(buf, "%llu", size); return buf; } /* * Add the chunk info to the chunk_info list */ static int add_info_to_list(struct chunk_info **info_ptr, int *info_count, struct btrfs_chunk *chunk) { u64 type = btrfs_stack_chunk_type(chunk); u64 size = btrfs_stack_chunk_length(chunk); int num_stripes = btrfs_stack_chunk_num_stripes(chunk); int j; for (j = 0 ; j < num_stripes ; j++) { int i; struct chunk_info *p = 0; struct btrfs_stripe *stripe; u64 devid; stripe = btrfs_stripe_nr(chunk, j); devid = btrfs_stack_stripe_devid(stripe); for (i = 0 ; i < *info_count ; i++) if ((*info_ptr)[i].type == type && (*info_ptr)[i].devid == devid && (*info_ptr)[i].num_stripes == num_stripes ) { p = (*info_ptr) + i; break; } if (!p) { int size = sizeof(struct btrfs_chunk) * (*info_count+1); struct chunk_info *res = realloc(*info_ptr, size); if (!res) { free(*info_ptr); fprintf(stderr, "ERROR: not enough memory\n"); return -1; } *info_ptr = res; p = res + *info_count; (*info_count)++; p->devid = devid; p->type = type; p->size = 0; p->num_stripes = num_stripes; } p->size += size; } return 0; } /* * Helper to sort the chunk type */ static int cmp_chunk_block_group(u64 f1, u64 f2) { u64 mask; if ((f1 & BTRFS_BLOCK_GROUP_TYPE_MASK) == (f2 & BTRFS_BLOCK_GROUP_TYPE_MASK)) mask = BTRFS_BLOCK_GROUP_PROFILE_MASK; else if (f2 & BTRFS_BLOCK_GROUP_SYSTEM) return -1; else if (f1 & BTRFS_BLOCK_GROUP_SYSTEM) return +1; else mask = BTRFS_BLOCK_GROUP_TYPE_MASK; if ((f1 & mask) > (f2 & mask)) return +1; else if ((f1 & mask) < (f2 & mask)) return -1; else return 0; } /* * Helper to sort the chunk */ static int cmp_chunk_info(const void *a, const void *b) { return cmp_chunk_block_group( ((struct chunk_info *)a)->type, ((struct chunk_info *)b)->type); } int load_chunk_info(int fd, struct chunk_info **info_ptr, int *info_count) { int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; unsigned long off = 0; int i, e; memset(&args, 0, sizeof(args)); /* * there may be more than one ROOT_ITEM key if there are * snapshots pending deletion, we have to loop through * them. */ sk->tree_id = BTRFS_CHUNK_TREE_OBJECTID; sk->min_objectid = 0; sk->max_objectid = (u64)-1; sk->max_type = 0; sk->min_type = (u8)-1; sk->min_offset = 0; sk->max_offset = (u64)-1; sk->min_transid = 0; sk->max_transid = (u64)-1; sk->nr_items = 4096; while (1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); e = errno; if (ret < 0) { fprintf(stderr, "ERROR: can't perform the search - %s\n", strerror(e)); return -99; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; for (i = 0; i < sk->nr_items; i++) { struct btrfs_chunk *item; sh = (struct btrfs_ioctl_search_header *)(args.buf + off); off += sizeof(*sh); item = (struct btrfs_chunk *)(args.buf + off); if (add_info_to_list(info_ptr, info_count, item)) { *info_ptr = 0; return -100; } off += sh->len; sk->min_objectid = sh->objectid; sk->min_type = sh->type; sk->min_offset = sh->offset+1; } if (!sk->min_offset) /* overflow */ sk->min_type++; else continue; if (!sk->min_type) sk->min_objectid++; else continue; if (!sk->min_objectid) break; } qsort(*info_ptr, *info_count, sizeof(struct chunk_info), cmp_chunk_info); return 0; } /* * Helper to sort the struct btrfs_ioctl_space_info */ static int cmp_btrfs_ioctl_space_info(const void *a, const void *b) { return cmp_chunk_block_group( ((struct btrfs_ioctl_space_info *)a)->flags, ((struct btrfs_ioctl_space_info *)b)->flags); } /* * This function load all the information about the space usage */ static struct btrfs_ioctl_space_args *load_space_info(int fd, char *path) { struct btrfs_ioctl_space_args *sargs = 0, *sargs_orig = 0; int e, ret, count; sargs_orig = sargs = malloc(sizeof(struct btrfs_ioctl_space_args)); if (!sargs) { fprintf(stderr, "ERROR: not enough memory\n"); return NULL; } sargs->space_slots = 0; sargs->total_spaces = 0; ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs); e = errno; if (ret) { fprintf(stderr, "ERROR: couldn't get space info on '%s' - %s\n", path, strerror(e)); free(sargs); return NULL; } if (!sargs->total_spaces) { free(sargs); printf("No chunks found\n"); return NULL; } count = sargs->total_spaces; sargs = realloc(sargs, sizeof(struct btrfs_ioctl_space_args) + (count * sizeof(struct btrfs_ioctl_space_info))); if (!sargs) { free(sargs_orig); fprintf(stderr, "ERROR: not enough memory\n"); return NULL; } sargs->space_slots = count; sargs->total_spaces = 0; ret = ioctl(fd, BTRFS_IOC_SPACE_INFO, sargs); e = errno; if (ret) { fprintf(stderr, "ERROR: couldn't get space info on '%s' - %s\n", path, strerror(e)); free(sargs); return NULL; } qsort(&(sargs->spaces), count, sizeof(struct btrfs_ioctl_space_info), cmp_btrfs_ioctl_space_info); return sargs; } /* Not used, keep for later */ #if 0 /* * This function computes the space occuped by a *single* RAID5/RAID6 chunk. * The computation is performed on the basis of the number of stripes * which compose the chunk, which could be different from the number of devices * if a disk is added later. */ static int get_raid56_used(int fd, u64 *raid5_used, u64 *raid6_used) { struct chunk_info *info_ptr=0, *p; int info_count=0; int ret; *raid5_used = *raid6_used =0; ret = load_chunk_info(fd, &info_ptr, &info_count); if( ret < 0) return ret; for ( p = info_ptr; info_count ; info_count--, p++ ) { if (p->type & BTRFS_BLOCK_GROUP_RAID5) (*raid5_used) += p->size / (p->num_stripes -1); if (p->type & BTRFS_BLOCK_GROUP_RAID6) (*raid6_used) += p->size / (p->num_stripes -2); } free(info_ptr); return 0; } static int _cmd_disk_free(int fd, char *path, int mode) { struct btrfs_ioctl_space_args *sargs = 0; int i; int ret = 0; int e, width; u64 total_disk; /* filesystem size == sum of device sizes */ u64 total_chunks; /* sum of chunks sizes on disk(s) */ u64 total_used; /* logical space used */ u64 total_free; /* logical space un-used */ double K; u64 raid5_used, raid6_used; if ((sargs = load_space_info(fd, path)) == NULL) { ret = -1; goto exit; } total_disk = disk_size(path); e = errno; if (total_disk == 0) { fprintf(stderr, "ERROR: couldn't get space info on '%s' - %s\n", path, strerror(e)); ret = 19; goto exit; } if (get_raid56_used(fd, &raid5_used, &raid6_used) < 0) { fprintf(stderr, "ERROR: couldn't get space info on '%s'\n", path ); ret = 20; goto exit; } total_chunks = total_used = total_free = 0; for (i = 0; i < sargs->total_spaces; i++) { float ratio = 1; u64 allocated; u64 flags = sargs->spaces[i].flags; /* * The raid5/raid6 ratio depends by the stripes number * used by every chunk. It is computed separately */ if (flags & BTRFS_BLOCK_GROUP_RAID0) ratio = 1; else if (flags & BTRFS_BLOCK_GROUP_RAID1) ratio = 2; else if (flags & BTRFS_BLOCK_GROUP_RAID5) ratio = 0; else if (flags & BTRFS_BLOCK_GROUP_RAID6) ratio = 0; else if (flags & BTRFS_BLOCK_GROUP_DUP) ratio = 2; else if (flags & BTRFS_BLOCK_GROUP_RAID10) ratio = 2; else ratio = 1; allocated = sargs->spaces[i].total_bytes * ratio; total_chunks += allocated; total_used += sargs->spaces[i].used_bytes; total_free += (sargs->spaces[i].total_bytes - sargs->spaces[i].used_bytes); } /* add the raid5/6 allocated space */ total_chunks += raid5_used + raid6_used; K = ((double)total_used + (double)total_free) / (double)total_chunks; if (mode & DF_HUMAN_UNIT) width = 10; else width = 18; printf("Disk size:\t\t%*s\n", width, df_pretty_sizes(total_disk, mode)); printf("Disk allocated:\t\t%*s\n", width, df_pretty_sizes(total_chunks, mode)); printf("Disk unallocated:\t%*s\n", width, df_pretty_sizes(total_disk-total_chunks, mode)); printf("Used:\t\t\t%*s\n", width, df_pretty_sizes(total_used, mode)); printf("Free (Estimated):\t%*s\t(", width, df_pretty_sizes((u64)(K*total_disk-total_used), mode)); printf("Max: %s, ", df_pretty_sizes(total_disk-total_chunks+total_free, mode)); printf("min: %s)\n", df_pretty_sizes((total_disk-total_chunks)/2+total_free, mode)); printf("Data to disk ratio:\t%*.0f %%\n", width-2, K*100); exit: if (sargs) free(sargs); return ret; } #endif /* * Helper to sort the device_info structure */ static int cmp_device_info(const void *a, const void *b) { return strcmp(((struct device_info *)a)->path, ((struct device_info *)b)->path); } /* * This function loads the device_info structure and put them in an array */ int load_device_info(int fd, struct device_info **device_info_ptr, int *device_info_count) { int ret, i, ndevs; struct btrfs_ioctl_fs_info_args fi_args; struct btrfs_ioctl_dev_info_args dev_info; struct device_info *info; *device_info_count = 0; *device_info_ptr = 0; ret = ioctl(fd, BTRFS_IOC_FS_INFO, &fi_args); if (ret < 0) { fprintf(stderr, "ERROR: cannot get filesystem info\n"); return -1; } info = malloc(sizeof(struct device_info) * fi_args.num_devices); if (!info) { fprintf(stderr, "ERROR: not enough memory\n"); return -1; } for (i = 0, ndevs = 0 ; i <= fi_args.max_id ; i++) { BUG_ON(ndevs >= fi_args.num_devices); ret = get_device_info(fd, i, &dev_info); if (ret == -ENODEV) continue; if (ret) { fprintf(stderr, "ERROR: cannot get info about device devid=%d\n", i); free(info); return -1; } info[ndevs].devid = dev_info.devid; strcpy(info[ndevs].path, (char *)dev_info.path); info[ndevs].size = get_partition_size((char *)dev_info.path); ++ndevs; } BUG_ON(ndevs != fi_args.num_devices); qsort(info, fi_args.num_devices, sizeof(struct device_info), cmp_device_info); *device_info_count = fi_args.num_devices; *device_info_ptr = info; return 0; } /* * This function computes the size of a chunk in a disk */ static u64 calc_chunk_size(struct chunk_info *ci) { if (ci->type & BTRFS_BLOCK_GROUP_RAID0) return ci->size / ci->num_stripes; else if (ci->type & BTRFS_BLOCK_GROUP_RAID1) return ci->size ; else if (ci->type & BTRFS_BLOCK_GROUP_DUP) return ci->size ; else if (ci->type & BTRFS_BLOCK_GROUP_RAID5) return ci->size / (ci->num_stripes -1); else if (ci->type & BTRFS_BLOCK_GROUP_RAID6) return ci->size / (ci->num_stripes -2); else if (ci->type & BTRFS_BLOCK_GROUP_RAID10) return ci->size / ci->num_stripes; return ci->size; } /* * This function print the results of the command "btrfs fi usage" * in tabular format */ static void _cmd_filesystem_usage_tabular(int mode, struct btrfs_ioctl_space_args *sargs, struct chunk_info *chunks_info_ptr, int chunks_info_count, struct device_info *device_info_ptr, int device_info_count) { int i; u64 total_unused = 0; struct string_table *matrix = 0; int ncols, nrows; ncols = sargs->total_spaces + 2; nrows = 2 + 1 + device_info_count + 1 + 2; matrix = table_create(ncols, nrows); if (!matrix) { fprintf(stderr, "ERROR: not enough memory\n"); return; } /* header */ for (i = 0; i < sargs->total_spaces; i++) { const char *description; u64 flags = sargs->spaces[i].flags; description = btrfs_group_type_str(flags); table_printf(matrix, 1+i, 0, "<%s", description); } for (i = 0; i < sargs->total_spaces; i++) { const char *r_mode; u64 flags = sargs->spaces[i].flags; r_mode = btrfs_group_profile_str(flags); table_printf(matrix, 1+i, 1, "<%s", r_mode); } table_printf(matrix, 1+sargs->total_spaces, 1, "total_spaces ; k++) { u64 flags = sargs->spaces[k].flags; u64 devid = device_info_ptr[i].devid; int j; u64 size = 0; for (j = 0 ; j < chunks_info_count ; j++) { if (chunks_info_ptr[j].type != flags ) continue; if (chunks_info_ptr[j].devid != devid) continue; size += calc_chunk_size(chunks_info_ptr+j); } if (size) table_printf(matrix, col, i+3, ">%s", df_pretty_sizes(size, mode)); else table_printf(matrix, col, i+3, ">-"); total_allocated += size; col++; } unused = get_partition_size(device_info_ptr[i].path) - total_allocated; table_printf(matrix, sargs->total_spaces + 1, i + 3, ">%s", df_pretty_sizes(unused, mode)); total_unused += unused; } for (i = 0; i <= sargs->total_spaces; i++) table_printf(matrix, i + 1, device_info_count + 3, "="); /* footer */ table_printf(matrix, 0, device_info_count + 4, "total_spaces; i++) table_printf(matrix, 1 + i, device_info_count + 4, ">%s", df_pretty_sizes(sargs->spaces[i].total_bytes, mode)); table_printf(matrix, sargs->total_spaces + 1, device_info_count + 4, ">%s", df_pretty_sizes(total_unused, mode)); table_printf(matrix, 0, device_info_count + 5, "total_spaces; i++) table_printf(matrix, 1 + i, device_info_count+5, ">%s", df_pretty_sizes(sargs->spaces[i].used_bytes, mode)); table_dump(matrix); table_free(matrix); } /* * This function prints the unused space per every disk */ static void print_unused(struct chunk_info *info_ptr, int info_count, struct device_info *device_info_ptr, int device_info_count, int mode) { int i; for (i = 0; i < device_info_count; i++) { int j; u64 total = 0; for (j = 0; j < info_count; j++) if (info_ptr[j].devid == device_info_ptr[i].devid) total += calc_chunk_size(info_ptr+j); printf(" %s\t%10s\n", device_info_ptr[i].path, df_pretty_sizes(device_info_ptr[i].size - total, mode)); } } /* * This function prints the allocated chunk per every disk */ static void print_chunk_device(u64 chunk_type, struct chunk_info *chunks_info_ptr, int chunks_info_count, struct device_info *device_info_ptr, int device_info_count, int mode) { int i; for (i = 0; i < device_info_count; i++) { int j; u64 total = 0; for (j = 0; j < chunks_info_count; j++) { if (chunks_info_ptr[j].type != chunk_type) continue; if (chunks_info_ptr[j].devid != device_info_ptr[i].devid) continue; total += calc_chunk_size(&(chunks_info_ptr[j])); //total += chunks_info_ptr[j].size; } if (total > 0) printf(" %s\t%10s\n", device_info_ptr[i].path, df_pretty_sizes(total, mode)); } } /* * This function print the results of the command "btrfs fi usage" * in linear format */ static void _cmd_filesystem_usage_linear(int mode, struct btrfs_ioctl_space_args *sargs, struct chunk_info *info_ptr, int info_count, struct device_info *device_info_ptr, int device_info_count) { int i; for (i = 0; i < sargs->total_spaces; i++) { const char *description; const char *r_mode; u64 flags = sargs->spaces[i].flags; description = btrfs_group_type_str(flags); r_mode = btrfs_group_profile_str(flags); printf("%s,%s: Size:%s, ", description, r_mode, df_pretty_sizes(sargs->spaces[i].total_bytes , mode)); printf("Used:%s\n", df_pretty_sizes(sargs->spaces[i].used_bytes, mode)); print_chunk_device(flags, info_ptr, info_count, device_info_ptr, device_info_count, mode); printf("\n"); } printf("Unallocated:\n"); print_unused(info_ptr, info_count, device_info_ptr, device_info_count, mode); } static int _cmd_filesystem_usage(int fd, char *path, int mode, int tabular) { struct btrfs_ioctl_space_args *sargs = 0; int info_count = 0; struct chunk_info *info_ptr = 0; struct device_info *device_info_ptr = 0; int device_info_count = 0; int ret = 0; if (load_chunk_info(fd, &info_ptr, &info_count) || load_device_info(fd, &device_info_ptr, &device_info_count)) { ret = -1; goto exit; } if ((sargs = load_space_info(fd, path)) == NULL) { ret = -1; goto exit; } if (tabular) _cmd_filesystem_usage_tabular(mode, sargs, info_ptr, info_count, device_info_ptr, device_info_count); else _cmd_filesystem_usage_linear(mode, sargs, info_ptr, info_count, device_info_ptr, device_info_count); exit: if (sargs) free(sargs); if (device_info_ptr) free(device_info_ptr); if (info_ptr) free(info_ptr); return ret; } const char * const cmd_filesystem_usage_usage[] = { "btrfs filesystem usage [-b][-t] [..]", "Show in which disk the chunks are allocated.", "", "-b\tSet byte as unit", "-t\tShow data in tabular format", NULL }; int cmd_filesystem_usage(int argc, char **argv) { int flags = DF_HUMAN_UNIT; int i, more_than_one = 0; int tabular = 0; optind = 1; while (1) { char c = getopt(argc, argv, "bt"); if (c < 0) break; switch (c) { case 'b': flags &= ~DF_HUMAN_UNIT; break; case 't': tabular = 1; break; default: usage(cmd_filesystem_usage_usage); } } if (check_argc_min(argc - optind, 1)) usage(cmd_filesystem_usage_usage); for (i = optind; i < argc ; i++) { int r, fd; DIR *dirstream = NULL; if (more_than_one) printf("\n"); fd = open_file_or_dir(argv[i], &dirstream); if (fd < 0) { fprintf(stderr, "ERROR: can't access to '%s'\n", argv[1]); return 12; } r = _cmd_filesystem_usage(fd, argv[i], flags, tabular); close_file_or_dir(fd, dirstream); if (r) return r; more_than_one = 1; } return 0; } void print_device_chunks(int fd, u64 devid, u64 total_size, struct chunk_info *chunks_info_ptr, int chunks_info_count, int mode) { int i; u64 allocated = 0; for (i = 0 ; i < chunks_info_count ; i++) { const char *description; const char *r_mode; u64 flags; u64 size; if (chunks_info_ptr[i].devid != devid) continue; flags = chunks_info_ptr[i].type; description = btrfs_group_type_str(flags); r_mode = btrfs_group_profile_str(flags); size = calc_chunk_size(chunks_info_ptr+i); printf(" %s,%s:%*s%10s\n", description, r_mode, (int)(20 - strlen(description) - strlen(r_mode)), "", df_pretty_sizes(size, mode)); allocated += size; } printf(" Unallocated: %*s%10s\n", (int)(20 - strlen("Unallocated")), "", df_pretty_sizes(total_size - allocated, mode)); }