/* * Copyright (C) 2010 Oracle. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #define _GNU_SOURCE #ifndef __CHECKER__ #include #include #include "ioctl.h" #endif #include #include #include #include #include #include #include #include #include "kerncompat.h" #include "ctree.h" #include "transaction.h" #include "utils.h" /* we store all the roots we find in an rbtree so that we can * search for them later. */ struct root_lookup { struct rb_root root; }; /* * one of these for each root we find. */ struct root_info { struct rb_node rb_node; /* this root's id */ u64 root_id; /* the id of the root that references this one */ u64 ref_tree; /* the dir id we're in from ref_tree */ u64 dir_id; /* generation when the root is created or last updated */ u64 gen; /* path from the subvol we live in to this root, including the * root's name. This is null until we do the extra lookup ioctl. */ char *path; /* the name of this root in the directory it lives in */ char name[]; }; static void root_lookup_init(struct root_lookup *tree) { tree->root.rb_node = NULL; } static int comp_entry(struct root_info *entry, u64 root_id, u64 ref_tree) { if (entry->root_id > root_id) return 1; if (entry->root_id < root_id) return -1; if (entry->ref_tree > ref_tree) return 1; if (entry->ref_tree < ref_tree) return -1; return 0; } static int comp_entry_with_gen(struct root_info *entry, u64 root_id, u64 ref_tree, u64 gen) { if (entry->gen < gen) return 1; if (entry->gen > gen) return -1; return comp_entry(entry, root_id, ref_tree); } /* * insert a new root into the tree. returns the existing root entry * if one is already there. Both root_id and ref_tree are used * as the key */ static struct rb_node *tree_insert(struct rb_root *root, u64 root_id, u64 ref_tree, u64 *gen, struct rb_node *node) { struct rb_node ** p = &root->rb_node; struct rb_node * parent = NULL; struct root_info *entry; int comp; while(*p) { parent = *p; entry = rb_entry(parent, struct root_info, rb_node); if (!gen) comp = comp_entry(entry, root_id, ref_tree); else comp = comp_entry_with_gen(entry, root_id, ref_tree, *gen); if (comp < 0) p = &(*p)->rb_left; else if (comp > 0) p = &(*p)->rb_right; else return parent; } entry = rb_entry(parent, struct root_info, rb_node); rb_link_node(node, parent, p); rb_insert_color(node, root); return NULL; } /* * find a given root id in the tree. We return the smallest one, * rb_next can be used to move forward looking for more if required */ static struct root_info *tree_search(struct rb_root *root, u64 root_id) { struct rb_node * n = root->rb_node; struct root_info *entry; while(n) { entry = rb_entry(n, struct root_info, rb_node); if (entry->root_id < root_id) n = n->rb_left; else if (entry->root_id > root_id) n = n->rb_right; else { struct root_info *prev; struct rb_node *prev_n; while (1) { prev_n = rb_prev(n); if (!prev_n) break; prev = rb_entry(prev_n, struct root_info, rb_node); if (prev->root_id != root_id) break; entry = prev; n = prev_n; } return entry; } } return NULL; } /* * this allocates a new root in the lookup tree. * * root_id should be the object id of the root * * ref_tree is the objectid of the referring root. * * dir_id is the directory in ref_tree where this root_id can be found. * * name is the name of root_id in that directory * * name_len is the length of name */ static int add_root(struct root_lookup *root_lookup, u64 root_id, u64 ref_tree, u64 dir_id, char *name, int name_len, u64 *gen) { struct root_info *ri; struct rb_node *ret; ri = malloc(sizeof(*ri) + name_len + 1); if (!ri) { printf("memory allocation failed\n"); exit(1); } memset(ri, 0, sizeof(*ri) + name_len + 1); ri->path = NULL; ri->dir_id = dir_id; ri->root_id = root_id; ri->ref_tree = ref_tree; if (name) strncpy(ri->name, name, name_len); if (name_len > 0) ri->name[name_len] = 0; if (gen) ri->gen = *gen; ret = tree_insert(&root_lookup->root, root_id, ref_tree, gen, &ri->rb_node); if (ret) { printf("failed to insert tree %llu\n", (unsigned long long)root_id); exit(1); } return 0; } static int update_root(struct root_lookup *root_lookup, u64 root_id, u64 gen) { struct root_info *ri; ri = tree_search(&root_lookup->root, root_id); if (!ri || ri->root_id != root_id) { fprintf(stderr, "could not find subvol %llu\n", root_id); return -ENOENT; } ri->gen = gen; return 0; } /* * for a given root_info, search through the root_lookup tree to construct * the full path name to it. * * This can't be called until all the root_info->path fields are filled * in by lookup_ino_path */ static int resolve_root(struct root_lookup *rl, struct root_info *ri, u64 *parent_id, u64 *top_id, char **path) { char *full_path = NULL; int len = 0; struct root_info *found; /* * we go backwards from the root_info object and add pathnames * from parent directories as we go. */ *parent_id = 0; found = ri; while (1) { char *tmp; u64 next; int add_len = strlen(found->path); /* room for / and for null */ tmp = malloc(add_len + 2 + len); if (full_path) { memcpy(tmp + add_len + 1, full_path, len); tmp[add_len] = '/'; memcpy(tmp, found->path, add_len); tmp [add_len + len + 1] = '\0'; free(full_path); full_path = tmp; len += add_len + 1; } else { full_path = strdup(found->path); len = add_len; } next = found->ref_tree; /* record the first parent */ if (*parent_id == 0) *parent_id = next; /* if the ref_tree refers to ourselves, we're at the top */ if (next == found->root_id) { *top_id = next; break; } /* * if the ref_tree wasn't in our tree of roots, we're * at the top */ found = tree_search(&rl->root, next); if (!found) { *top_id = next; break; } } *path = full_path; return 0; } /* * for a single root_info, ask the kernel to give us a path name * inside it's ref_root for the dir_id where it lives. * * This fills in root_info->path with the path to the directory and and * appends this root's name. */ static int lookup_ino_path(int fd, struct root_info *ri) { struct btrfs_ioctl_ino_lookup_args args; int ret, e; if (ri->path) return 0; memset(&args, 0, sizeof(args)); args.treeid = ri->ref_tree; args.objectid = ri->dir_id; ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &args); e = errno; if (ret) { fprintf(stderr, "ERROR: Failed to lookup path for root %llu - %s\n", (unsigned long long)ri->ref_tree, strerror(e)); return ret; } if (args.name[0]) { /* * we're in a subdirectory of ref_tree, the kernel ioctl * puts a / in there for us */ ri->path = malloc(strlen(ri->name) + strlen(args.name) + 1); if (!ri->path) { perror("malloc failed"); exit(1); } strcpy(ri->path, args.name); strcat(ri->path, ri->name); } else { /* we're at the root of ref_tree */ ri->path = strdup(ri->name); if (!ri->path) { perror("strdup failed"); exit(1); } } return 0; } /* finding the generation for a given path is a two step process. * First we use the inode loookup routine to find out the root id * * Then we use the tree search ioctl to scan all the root items for a * given root id and spit out the latest generation we can find */ static u64 find_root_gen(int fd) { struct btrfs_ioctl_ino_lookup_args ino_args; int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; unsigned long off = 0; u64 max_found = 0; int i; int e; memset(&ino_args, 0, sizeof(ino_args)); ino_args.objectid = BTRFS_FIRST_FREE_OBJECTID; /* this ioctl fills in ino_args->treeid */ ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &ino_args); e = errno; if (ret) { fprintf(stderr, "ERROR: Failed to lookup path for dirid %llu - %s\n", (unsigned long long)BTRFS_FIRST_FREE_OBJECTID, strerror(e)); return 0; } memset(&args, 0, sizeof(args)); sk->tree_id = 1; /* * there may be more than one ROOT_ITEM key if there are * snapshots pending deletion, we have to loop through * them. */ sk->min_objectid = ino_args.treeid; sk->max_objectid = ino_args.treeid; sk->max_type = BTRFS_ROOT_ITEM_KEY; sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; sk->nr_items = 4096; while (1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); e = errno; if (ret < 0) { fprintf(stderr, "ERROR: can't perform the search - %s\n", strerror(e)); return 0; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; for (i = 0; i < sk->nr_items; i++) { struct btrfs_root_item *item; sh = (struct btrfs_ioctl_search_header *)(args.buf + off); off += sizeof(*sh); item = (struct btrfs_root_item *)(args.buf + off); off += sh->len; sk->min_objectid = sh->objectid; sk->min_type = sh->type; sk->min_offset = sh->offset; if (sh->objectid > ino_args.treeid) break; if (sh->objectid == ino_args.treeid && sh->type == BTRFS_ROOT_ITEM_KEY) { max_found = max(max_found, btrfs_root_generation(item)); } } if (sk->min_offset < (u64)-1) sk->min_offset++; else break; if (sk->min_type != BTRFS_ROOT_ITEM_KEY) break; if (sk->min_objectid != BTRFS_ROOT_ITEM_KEY) break; } return max_found; } /* pass in a directory id and this will return * the full path of the parent directory inside its * subvolume root. * * It may return NULL if it is in the root, or an ERR_PTR if things * go badly. */ static char *__ino_resolve(int fd, u64 dirid) { struct btrfs_ioctl_ino_lookup_args args; int ret; char *full; int e; memset(&args, 0, sizeof(args)); args.objectid = dirid; ret = ioctl(fd, BTRFS_IOC_INO_LOOKUP, &args); e = errno; if (ret) { fprintf(stderr, "ERROR: Failed to lookup path for dirid %llu - %s\n", (unsigned long long)dirid, strerror(e) ); return ERR_PTR(ret); } if (args.name[0]) { /* * we're in a subdirectory of ref_tree, the kernel ioctl * puts a / in there for us */ full = strdup(args.name); if (!full) { perror("malloc failed"); return ERR_PTR(-ENOMEM); } } else { /* we're at the root of ref_tree */ full = NULL; } return full; } /* * simple string builder, returning a new string with both * dirid and name */ char *build_name(char *dirid, char *name) { char *full; if (!dirid) return strdup(name); full = malloc(strlen(dirid) + strlen(name) + 1); if (!full) return NULL; strcpy(full, dirid); strcat(full, name); return full; } /* * given an inode number, this returns the full path name inside the subvolume * to that file/directory. cache_dirid and cache_name are used to * cache the results so we can avoid tree searches if a later call goes * to the same directory or file name */ static char *ino_resolve(int fd, u64 ino, u64 *cache_dirid, char **cache_name) { u64 dirid; char *dirname; char *name; char *full; int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; unsigned long off = 0; int namelen; int e; memset(&args, 0, sizeof(args)); sk->tree_id = 0; /* * step one, we search for the inode back ref. We just use the first * one */ sk->min_objectid = ino; sk->max_objectid = ino; sk->max_type = BTRFS_INODE_REF_KEY; sk->max_offset = (u64)-1; sk->min_type = BTRFS_INODE_REF_KEY; sk->max_transid = (u64)-1; sk->nr_items = 1; ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); e = errno; if (ret < 0) { fprintf(stderr, "ERROR: can't perform the search - %s\n", strerror(e)); return NULL; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) return NULL; off = 0; sh = (struct btrfs_ioctl_search_header *)(args.buf + off); if (sh->type == BTRFS_INODE_REF_KEY) { struct btrfs_inode_ref *ref; dirid = sh->offset; ref = (struct btrfs_inode_ref *)(sh + 1); namelen = btrfs_stack_inode_ref_name_len(ref); name = (char *)(ref + 1); name = strndup(name, namelen); /* use our cached value */ if (dirid == *cache_dirid && *cache_name) { dirname = *cache_name; goto build; } } else { return NULL; } /* * the inode backref gives us the file name and the parent directory id. * From here we use __ino_resolve to get the path to the parent */ dirname = __ino_resolve(fd, dirid); build: full = build_name(dirname, name); if (*cache_name && dirname != *cache_name) free(*cache_name); *cache_name = dirname; *cache_dirid = dirid; free(name); return full; } static int get_default_subvolid(int fd, u64 *default_id) { struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; u64 found = 0; int ret; memset(&args, 0, sizeof(args)); /* * search for a dir item with a name 'default' in the tree of * tree roots, it should point us to a default root */ sk->tree_id = 1; /* don't worry about ancient format and request only one item */ sk->nr_items = 1; sk->max_objectid = BTRFS_ROOT_TREE_DIR_OBJECTID; sk->min_objectid = BTRFS_ROOT_TREE_DIR_OBJECTID; sk->max_type = BTRFS_DIR_ITEM_KEY; sk->min_type = BTRFS_DIR_ITEM_KEY; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) return ret; /* the ioctl returns the number of items it found in nr_items */ if (sk->nr_items == 0) goto out; sh = (struct btrfs_ioctl_search_header *)args.buf; if (sh->type == BTRFS_DIR_ITEM_KEY) { struct btrfs_dir_item *di; int name_len; char *name; di = (struct btrfs_dir_item *)(sh + 1); name_len = btrfs_stack_dir_name_len(di); name = (char *)(di + 1); if (!strncmp("default", name, name_len)) found = btrfs_disk_key_objectid(&di->location); } out: *default_id = found; return 0; } static int __list_subvol_search(int fd, struct root_lookup *root_lookup) { int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; struct btrfs_root_ref *ref; struct btrfs_root_item *ri; unsigned long off = 0; int name_len; char *name; u64 dir_id; u8 type; u64 gen = 0; int i; int get_gen = 0; root_lookup_init(root_lookup); memset(&args, 0, sizeof(args)); /* search in the tree of tree roots */ sk->tree_id = 1; /* * set the min and max to backref keys. The search will * only send back this type of key now. */ sk->max_type = BTRFS_ROOT_BACKREF_KEY; sk->min_type = BTRFS_ROOT_BACKREF_KEY; sk->min_objectid = BTRFS_FIRST_FREE_OBJECTID; /* * set all the other params to the max, we'll take any objectid * and any trans */ sk->max_objectid = BTRFS_LAST_FREE_OBJECTID; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; again: /* just a big number, doesn't matter much */ sk->nr_items = 4096; while(1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) return ret; /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; /* * for each item, pull the key out of the header and then * read the root_ref item it contains */ for (i = 0; i < sk->nr_items; i++) { sh = (struct btrfs_ioctl_search_header *)(args.buf + off); off += sizeof(*sh); if (!get_gen && sh->type == BTRFS_ROOT_BACKREF_KEY) { ref = (struct btrfs_root_ref *)(args.buf + off); name_len = btrfs_stack_root_ref_name_len(ref); name = (char *)(ref + 1); dir_id = btrfs_stack_root_ref_dirid(ref); add_root(root_lookup, sh->objectid, sh->offset, dir_id, name, name_len, NULL); } else if (get_gen && sh->type == BTRFS_ROOT_ITEM_KEY) { ri = (struct btrfs_root_item *)(args.buf + off); gen = btrfs_root_generation(ri); update_root(root_lookup, sh->objectid, gen); } off += sh->len; /* * record the mins in sk so we can make sure the * next search doesn't repeat this root */ sk->min_objectid = sh->objectid; sk->min_type = sh->type; sk->min_offset = sh->offset; } sk->nr_items = 4096; /* this iteration is done, step forward one root for the next * ioctl */ if (get_gen) type = BTRFS_ROOT_ITEM_KEY; else type = BTRFS_ROOT_BACKREF_KEY; if (sk->min_type < type) { sk->min_type = type; sk->min_offset = 0; } else if (sk->min_objectid < BTRFS_LAST_FREE_OBJECTID) { sk->min_objectid++; sk->min_type = type; sk->min_offset = 0; } else break; } if (!get_gen) { memset(&args, 0, sizeof(args)); sk->tree_id = 1; sk->max_type = BTRFS_ROOT_ITEM_KEY; sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->min_objectid = BTRFS_FIRST_FREE_OBJECTID; sk->max_objectid = BTRFS_LAST_FREE_OBJECTID; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; get_gen = 1; goto again; } return 0; } static int __list_snapshot_search(int fd, struct root_lookup *root_lookup) { int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; unsigned long off = 0; u64 gen = 0; int i; root_lookup_init(root_lookup); memset(&args, 0, sizeof(args)); sk->tree_id = 1; sk->max_type = BTRFS_ROOT_ITEM_KEY; sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->min_objectid = BTRFS_FIRST_FREE_OBJECTID; sk->max_objectid = BTRFS_LAST_FREE_OBJECTID; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; sk->nr_items = 4096; while (1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); if (ret < 0) return ret; /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; /* * for each item, pull the key out of the header and then * read the root_ref item it contains */ for (i = 0; i < sk->nr_items; i++) { sh = (struct btrfs_ioctl_search_header *)(args.buf + off); off += sizeof(*sh); if (sh->type == BTRFS_ROOT_ITEM_KEY && sh->offset) { gen = sh->offset; add_root(root_lookup, sh->objectid, 0, 0, NULL, 0, &gen); } off += sh->len; /* * record the mins in sk so we can make sure the * next search doesn't repeat this root */ sk->min_objectid = sh->objectid; sk->min_type = sh->type; sk->min_offset = sh->offset; } sk->nr_items = 4096; /* this iteration is done, step forward one root for the next * ioctl */ if (sk->min_type < BTRFS_ROOT_ITEM_KEY) { sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->min_offset = 0; } else if (sk->min_objectid < BTRFS_LAST_FREE_OBJECTID) { sk->min_objectid++; sk->min_type = BTRFS_ROOT_ITEM_KEY; sk->min_offset = 0; } else break; } return 0; } static int __list_subvol_fill_paths(int fd, struct root_lookup *root_lookup) { struct rb_node *n; n = rb_first(&root_lookup->root); while (n) { struct root_info *entry; int ret; entry = rb_entry(n, struct root_info, rb_node); ret = lookup_ino_path(fd, entry); if(ret < 0) return ret; n = rb_next(n); } return 0; } int list_subvols(int fd, int print_parent, int get_default) { struct root_lookup root_lookup; struct rb_node *n; u64 default_id; int ret; if (get_default) { ret = get_default_subvolid(fd, &default_id); if (ret) { fprintf(stderr, "ERROR: can't perform the search - %s\n", strerror(errno)); return ret; } if (default_id == 0) { fprintf(stderr, "ERROR: 'default' dir item not found\n"); return ret; } /* no need to resolve roots if FS_TREE is default */ if (default_id == BTRFS_FS_TREE_OBJECTID) { printf("ID 5 (FS_TREE)\n"); return ret; } } ret = __list_subvol_search(fd, &root_lookup); if (ret) { fprintf(stderr, "ERROR: can't perform the search - %s\n", strerror(errno)); return ret; } /* * now we have an rbtree full of root_info objects, but we need to fill * in their path names within the subvol that is referencing each one. */ ret = __list_subvol_fill_paths(fd, &root_lookup); if (ret < 0) return ret; /* now that we have all the subvol-relative paths filled in, * we have to string the subvols together so that we can get * a path all the way back to the FS root */ n = rb_last(&root_lookup.root); while (n) { struct root_info *entry; u64 level; u64 parent_id; char *path; entry = rb_entry(n, struct root_info, rb_node); if (get_default && entry->root_id != default_id) { n = rb_prev(n); continue; } resolve_root(&root_lookup, entry, &parent_id, &level, &path); if (print_parent) { printf("ID %llu gen %llu parent %llu top level %llu path %s\n", (unsigned long long)entry->root_id, (unsigned long long)entry->gen, (unsigned long long)parent_id, (unsigned long long)level, path); } else { printf("ID %llu gen %llu top level %llu path %s\n", (unsigned long long)entry->root_id, (unsigned long long)entry->gen, (unsigned long long)level, path); } free(path); n = rb_prev(n); } return ret; } int list_snapshots(int fd, int print_parent, int order) { struct root_lookup root_lookup; struct root_lookup root_lookup_snap; struct rb_node *n; int ret; ret = __list_snapshot_search(fd, &root_lookup_snap); if (ret) { fprintf(stderr, "ERROR: can't perform the search - %s\n", strerror(errno)); return ret; } ret = __list_subvol_search(fd, &root_lookup); if (ret) { fprintf(stderr, "ERROR: can't perform the search - %s\n", strerror(errno)); return ret; } /* * now we have an rbtree full of root_info objects, but we need to fill * in their path names within the subvol that is referencing each one. */ ret = __list_subvol_fill_paths(fd, &root_lookup); if (ret < 0) return ret; /* now that we have all the subvol-relative paths filled in, * we have to string the subvols together so that we can get * a path all the way back to the FS root */ if (!order) n = rb_last(&root_lookup_snap.root); else n = rb_first(&root_lookup_snap.root); while (n) { struct root_info *entry_snap; struct root_info *entry; u64 level; u64 parent_id; char *path; entry_snap = rb_entry(n, struct root_info, rb_node); entry = tree_search(&root_lookup.root, entry_snap->root_id); resolve_root(&root_lookup, entry, &parent_id, &level, &path); if (print_parent) { printf("ID %llu gen %llu cgen %llu parent %llu top level %llu path %s\n", (unsigned long long)entry->root_id, (unsigned long long)entry->gen, (unsigned long long)entry_snap->gen, (unsigned long long)parent_id, (unsigned long long)level, path); } else { printf("ID %llu gen %llu cgen %llu top level %llu path %s\n", (unsigned long long)entry->root_id, (unsigned long long)entry->gen, (unsigned long long)entry_snap->gen, (unsigned long long)level, path); } free(path); if (!order) n = rb_prev(n); else n = rb_next(n); } return ret; } static int print_one_extent(int fd, struct btrfs_ioctl_search_header *sh, struct btrfs_file_extent_item *item, u64 found_gen, u64 *cache_dirid, char **cache_dir_name, u64 *cache_ino, char **cache_full_name) { u64 len = 0; u64 disk_start = 0; u64 disk_offset = 0; u8 type; int compressed = 0; int flags = 0; char *name = NULL; if (sh->objectid == *cache_ino) { name = *cache_full_name; } else if (*cache_full_name) { free(*cache_full_name); *cache_full_name = NULL; } if (!name) { name = ino_resolve(fd, sh->objectid, cache_dirid, cache_dir_name); *cache_full_name = name; *cache_ino = sh->objectid; } if (!name) return -EIO; type = btrfs_stack_file_extent_type(item); compressed = btrfs_stack_file_extent_compression(item); if (type == BTRFS_FILE_EXTENT_REG || type == BTRFS_FILE_EXTENT_PREALLOC) { disk_start = btrfs_stack_file_extent_disk_bytenr(item); disk_offset = btrfs_stack_file_extent_offset(item); len = btrfs_stack_file_extent_num_bytes(item); } else if (type == BTRFS_FILE_EXTENT_INLINE) { disk_start = 0; disk_offset = 0; len = btrfs_stack_file_extent_ram_bytes(item); } else { printf("unhandled extent type %d for inode %llu " "file offset %llu gen %llu\n", type, (unsigned long long)sh->objectid, (unsigned long long)sh->offset, (unsigned long long)found_gen); return -EIO; } printf("inode %llu file offset %llu len %llu disk start %llu " "offset %llu gen %llu flags ", (unsigned long long)sh->objectid, (unsigned long long)sh->offset, (unsigned long long)len, (unsigned long long)disk_start, (unsigned long long)disk_offset, (unsigned long long)found_gen); if (compressed) { printf("COMPRESS"); flags++; } if (type == BTRFS_FILE_EXTENT_PREALLOC) { printf("%sPREALLOC", flags ? "|" : ""); flags++; } if (type == BTRFS_FILE_EXTENT_INLINE) { printf("%sINLINE", flags ? "|" : ""); flags++; } if (!flags) printf("NONE"); printf(" %s\n", name); return 0; } int find_updated_files(int fd, u64 root_id, u64 oldest_gen) { int ret; struct btrfs_ioctl_search_args args; struct btrfs_ioctl_search_key *sk = &args.key; struct btrfs_ioctl_search_header *sh; struct btrfs_file_extent_item *item; unsigned long off = 0; u64 found_gen; u64 max_found = 0; int i; int e; u64 cache_dirid = 0; u64 cache_ino = 0; char *cache_dir_name = NULL; char *cache_full_name = NULL; struct btrfs_file_extent_item backup; memset(&backup, 0, sizeof(backup)); memset(&args, 0, sizeof(args)); sk->tree_id = root_id; /* * set all the other params to the max, we'll take any objectid * and any trans */ sk->max_objectid = (u64)-1; sk->max_offset = (u64)-1; sk->max_transid = (u64)-1; sk->max_type = BTRFS_EXTENT_DATA_KEY; sk->min_transid = oldest_gen; /* just a big number, doesn't matter much */ sk->nr_items = 4096; max_found = find_root_gen(fd); while(1) { ret = ioctl(fd, BTRFS_IOC_TREE_SEARCH, &args); e = errno; if (ret < 0) { fprintf(stderr, "ERROR: can't perform the search- %s\n", strerror(e)); return ret; } /* the ioctl returns the number of item it found in nr_items */ if (sk->nr_items == 0) break; off = 0; /* * for each item, pull the key out of the header and then * read the root_ref item it contains */ for (i = 0; i < sk->nr_items; i++) { sh = (struct btrfs_ioctl_search_header *)(args.buf + off); off += sizeof(*sh); /* * just in case the item was too big, pass something other * than garbage */ if (sh->len == 0) item = &backup; else item = (struct btrfs_file_extent_item *)(args.buf + off); found_gen = btrfs_stack_file_extent_generation(item); if (sh->type == BTRFS_EXTENT_DATA_KEY && found_gen >= oldest_gen) { print_one_extent(fd, sh, item, found_gen, &cache_dirid, &cache_dir_name, &cache_ino, &cache_full_name); } off += sh->len; /* * record the mins in sk so we can make sure the * next search doesn't repeat this root */ sk->min_objectid = sh->objectid; sk->min_offset = sh->offset; sk->min_type = sh->type; } sk->nr_items = 4096; if (sk->min_offset < (u64)-1) sk->min_offset++; else if (sk->min_objectid < (u64)-1) { sk->min_objectid++; sk->min_offset = 0; sk->min_type = 0; } else break; } free(cache_dir_name); free(cache_full_name); printf("transid marker was %llu\n", (unsigned long long)max_found); return ret; } char *path_for_root(int fd, u64 root) { struct root_lookup root_lookup; struct rb_node *n; char *ret_path = NULL; int ret; ret = __list_subvol_search(fd, &root_lookup); if (ret < 0) return ERR_PTR(ret); ret = __list_subvol_fill_paths(fd, &root_lookup); if (ret < 0) return ERR_PTR(ret); n = rb_last(&root_lookup.root); while (n) { struct root_info *entry; u64 parent_id; u64 level; char *path; entry = rb_entry(n, struct root_info, rb_node); resolve_root(&root_lookup, entry, &parent_id, &level, &path); if (entry->root_id == root) ret_path = path; else free(path); n = rb_prev(n); } return ret_path; }