/* * Copyright (C) 2013 FUJITSU LIMITED. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include "kerncompat.h" #include #include #include #include #include #include #include #include #include #include "kernel-lib/list.h" #include "kernel-shared/accessors.h" #include "kernel-shared/extent-io-tree.h" #include "kernel-shared/locking.h" #include "kernel-shared/uapi/btrfs_tree.h" #include "kernel-shared/ctree.h" #include "kernel-shared/disk-io.h" #include "kernel-shared/volumes.h" #include "kernel-shared/transaction.h" #include "kernel-shared/extent_io.h" #include "common/internal.h" #include "common/messages.h" #include "common/extent-cache.h" #include "common/utils.h" #include "cmds/rescue.h" #include "check/common.h" struct recover_control { int verbose; int yes; u16 csum_size; u16 csum_type; u32 sectorsize; u32 nodesize; u64 generation; u64 chunk_root_generation; struct btrfs_fs_devices *fs_devices; struct cache_tree chunk; struct block_group_tree bg; struct device_extent_tree devext; struct cache_tree eb_cache; struct list_head good_chunks; struct list_head bad_chunks; struct list_head rebuild_chunks; struct list_head unrepaired_chunks; pthread_mutex_t rc_lock; }; struct extent_record { struct cache_extent cache; u64 generation; u8 csum[BTRFS_CSUM_SIZE]; struct btrfs_device *devices[BTRFS_MAX_MIRRORS]; u64 offsets[BTRFS_MAX_MIRRORS]; int nmirrors; }; struct device_scan { struct recover_control *rc; struct btrfs_device *dev; int fd; u64 bytenr; }; static struct extent_record *btrfs_new_extent_record(struct extent_buffer *eb) { struct extent_record *rec; rec = calloc(1, sizeof(*rec)); if (!rec) { error_msg(ERROR_MSG_MEMORY, "extent record"); exit(1); } rec->cache.start = btrfs_header_bytenr(eb); rec->cache.size = eb->len; rec->generation = btrfs_header_generation(eb); read_extent_buffer(eb, rec->csum, 0, BTRFS_CSUM_SIZE); return rec; } static int process_extent_buffer(struct cache_tree *eb_cache, struct extent_buffer *eb, struct btrfs_device *device, u64 offset) { struct extent_record *rec; struct extent_record *exist; struct cache_extent *cache; int ret = 0; rec = btrfs_new_extent_record(eb); if (!rec->cache.size) goto free_out; again: cache = lookup_cache_extent(eb_cache, rec->cache.start, rec->cache.size); if (cache) { exist = container_of(cache, struct extent_record, cache); if (exist->generation > rec->generation) goto free_out; if (exist->generation == rec->generation) { if (exist->cache.start != rec->cache.start || exist->cache.size != rec->cache.size || memcmp(exist->csum, rec->csum, BTRFS_CSUM_SIZE)) { ret = -EEXIST; } else { BUG_ON(exist->nmirrors >= BTRFS_MAX_MIRRORS); exist->devices[exist->nmirrors] = device; exist->offsets[exist->nmirrors] = offset; exist->nmirrors++; } goto free_out; } remove_cache_extent(eb_cache, cache); free(exist); goto again; } rec->devices[0] = device; rec->offsets[0] = offset; rec->nmirrors++; ret = insert_cache_extent(eb_cache, &rec->cache); if (ret < 0) { errno = -ret; error("cannot insert extent to cache start %llu size %llu: %m", rec->cache.start, rec->cache.size); } out: return ret; free_out: free(rec); goto out; } static void free_extent_record(struct cache_extent *cache) { struct extent_record *er; er = container_of(cache, struct extent_record, cache); free(er); } FREE_EXTENT_CACHE_BASED_TREE(extent_record, free_extent_record); static struct btrfs_chunk *create_chunk_item(struct chunk_record *record) { struct btrfs_chunk *ret; struct btrfs_stripe *chunk_stripe; int i; if (!record || record->num_stripes == 0) return NULL; ret = malloc(btrfs_chunk_item_size(record->num_stripes)); if (!ret) return NULL; btrfs_set_stack_chunk_length(ret, record->length); btrfs_set_stack_chunk_owner(ret, record->owner); btrfs_set_stack_chunk_stripe_len(ret, record->stripe_len); btrfs_set_stack_chunk_type(ret, record->type_flags); btrfs_set_stack_chunk_io_align(ret, record->io_align); btrfs_set_stack_chunk_io_width(ret, record->io_width); btrfs_set_stack_chunk_sector_size(ret, record->sector_size); btrfs_set_stack_chunk_num_stripes(ret, record->num_stripes); btrfs_set_stack_chunk_sub_stripes(ret, record->sub_stripes); for (i = 0, chunk_stripe = &ret->stripe; i < record->num_stripes; i++, chunk_stripe++) { btrfs_set_stack_stripe_devid(chunk_stripe, record->stripes[i].devid); btrfs_set_stack_stripe_offset(chunk_stripe, record->stripes[i].offset); memcpy(chunk_stripe->dev_uuid, record->stripes[i].dev_uuid, BTRFS_UUID_SIZE); } return ret; } static void init_recover_control(struct recover_control *rc, int yes) { memset(rc, 0, sizeof(struct recover_control)); cache_tree_init(&rc->chunk); cache_tree_init(&rc->eb_cache); block_group_tree_init(&rc->bg); device_extent_tree_init(&rc->devext); INIT_LIST_HEAD(&rc->good_chunks); INIT_LIST_HEAD(&rc->bad_chunks); INIT_LIST_HEAD(&rc->rebuild_chunks); INIT_LIST_HEAD(&rc->unrepaired_chunks); rc->verbose = bconf.verbose; rc->yes = yes; pthread_mutex_init(&rc->rc_lock, NULL); } static void free_recover_control(struct recover_control *rc) { free_block_group_tree(&rc->bg); free_chunk_cache_tree(&rc->chunk); free_device_extent_tree(&rc->devext); free_extent_record_tree(&rc->eb_cache); pthread_mutex_destroy(&rc->rc_lock); } static int process_block_group_item(struct block_group_tree *bg_cache, struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct block_group_record *rec; struct block_group_record *exist; struct cache_extent *cache; int ret = 0; rec = btrfs_new_block_group_record(leaf, key, slot); if (!rec->cache.size) goto free_out; again: cache = lookup_cache_extent(&bg_cache->tree, rec->cache.start, rec->cache.size); if (cache) { exist = container_of(cache, struct block_group_record, cache); /*check the generation and replace if needed*/ if (exist->generation > rec->generation) goto free_out; if (exist->generation == rec->generation) { int offset = offsetof(struct block_group_record, generation); /* * According to the current kernel code, the following * case is impossible, or there is something wrong in * the kernel code. */ if (memcmp(((void *)exist) + offset, ((void *)rec) + offset, sizeof(*rec) - offset)) ret = -EEXIST; goto free_out; } remove_cache_extent(&bg_cache->tree, cache); list_del_init(&exist->list); free(exist); /* * We must do search again to avoid the following cache. * /--old bg 1--//--old bg 2--/ * /--new bg--/ */ goto again; } ret = insert_block_group_record(bg_cache, rec); if (ret < 0) { errno = -ret; error("cannot insert qgroup record %llu: %m", rec->cache.start); goto free_out; } out: return ret; free_out: free(rec); goto out; } static int process_chunk_item(struct cache_tree *chunk_cache, struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct chunk_record *rec; struct chunk_record *exist; struct cache_extent *cache; int ret = 0; rec = btrfs_new_chunk_record(leaf, key, slot); if (!rec->cache.size) goto free_out; again: cache = lookup_cache_extent(chunk_cache, rec->offset, rec->length); if (cache) { exist = container_of(cache, struct chunk_record, cache); if (exist->generation > rec->generation) goto free_out; if (exist->generation == rec->generation) { int num_stripes = rec->num_stripes; int rec_size = btrfs_chunk_record_size(num_stripes); int offset = offsetof(struct chunk_record, generation); if (exist->num_stripes != rec->num_stripes || memcmp(((void *)exist) + offset, ((void *)rec) + offset, rec_size - offset)) ret = -EEXIST; goto free_out; } remove_cache_extent(chunk_cache, cache); free(exist); goto again; } ret = insert_cache_extent(chunk_cache, &rec->cache); if (ret < 0) { errno = -ret; error("cannot insert extent to cache start %llu size %llu: %m", rec->cache.start, rec->cache.size); } out: return ret; free_out: free(rec); goto out; } static int process_device_extent_item(struct device_extent_tree *devext_cache, struct extent_buffer *leaf, struct btrfs_key *key, int slot) { struct device_extent_record *rec; struct device_extent_record *exist; struct cache_extent *cache; int ret = 0; rec = btrfs_new_device_extent_record(leaf, key, slot); if (!rec->cache.size) goto free_out; again: cache = lookup_cache_extent2(&devext_cache->tree, rec->cache.objectid, rec->cache.start, rec->cache.size); if (cache) { exist = container_of(cache, struct device_extent_record, cache); if (exist->generation > rec->generation) goto free_out; if (exist->generation == rec->generation) { int offset = offsetof(struct device_extent_record, generation); if (memcmp(((void *)exist) + offset, ((void *)rec) + offset, sizeof(*rec) - offset)) ret = -EEXIST; goto free_out; } remove_cache_extent(&devext_cache->tree, cache); list_del_init(&exist->chunk_list); list_del_init(&exist->device_list); free(exist); goto again; } ret = insert_device_extent_record(devext_cache, rec); if (ret < 0) { errno = -ret; error("cannot insert device extent record to cache start %llu size %llu: %m", rec->cache.start, rec->cache.size); } out: return ret; free_out: free(rec); goto out; } static void print_block_group_info(struct block_group_record *rec, char *prefix) { if (prefix) printf("%s", prefix); printf("Block Group: start = %llu, len = %llu, flag = %llx\n", rec->objectid, rec->offset, rec->flags); } static void print_block_group_tree(struct block_group_tree *tree) { struct cache_extent *cache; struct block_group_record *rec; printf("All Block Groups:\n"); for (cache = first_cache_extent(&tree->tree); cache; cache = next_cache_extent(cache)) { rec = container_of(cache, struct block_group_record, cache); print_block_group_info(rec, "\t"); } printf("\n"); } static void print_stripe_info(struct stripe *data, char *prefix1, char *prefix2, int index) { if (prefix1) printf("%s", prefix1); if (prefix2) printf("%s", prefix2); printf("[%2d] Stripe: devid = %llu, offset = %llu\n", index, data->devid, data->offset); } static void print_chunk_self_info(struct chunk_record *rec, char *prefix) { int i; if (prefix) printf("%s", prefix); printf("Chunk: start = %llu, len = %llu, type = %llx, num_stripes = %u\n", rec->offset, rec->length, rec->type_flags, rec->num_stripes); if (prefix) printf("%s", prefix); printf(" Stripes list:\n"); for (i = 0; i < rec->num_stripes; i++) print_stripe_info(&rec->stripes[i], prefix, " ", i); } static void print_chunk_tree(struct cache_tree *tree) { struct cache_extent *n; struct chunk_record *entry; printf("All Chunks:\n"); for (n = first_cache_extent(tree); n; n = next_cache_extent(n)) { entry = container_of(n, struct chunk_record, cache); print_chunk_self_info(entry, "\t"); } printf("\n"); } static void print_device_extent_info(struct device_extent_record *rec, char *prefix) { if (prefix) printf("%s", prefix); printf("Device extent: devid = %llu, start = %llu, len = %llu, chunk offset = %llu\n", rec->objectid, rec->offset, rec->length, rec->chunk_offset); } static void print_device_extent_tree(struct device_extent_tree *tree) { struct cache_extent *n; struct device_extent_record *entry; printf("All Device Extents:\n"); for (n = first_cache_extent(&tree->tree); n; n = next_cache_extent(n)) { entry = container_of(n, struct device_extent_record, cache); print_device_extent_info(entry, "\t"); } printf("\n"); } static void print_scan_result(struct recover_control *rc) { if (!rc->verbose) return; printf("DEVICE SCAN RESULT:\n"); printf("Filesystem Information:\n"); printf("\tsectorsize: %d\n", rc->sectorsize); printf("\tnodesize: %d\n", rc->nodesize); printf("\ttree root generation: %llu\n", rc->generation); printf("\tchunk root generation: %llu\n", rc->chunk_root_generation); printf("\n"); print_all_devices(&rc->fs_devices->devices); print_block_group_tree(&rc->bg); print_chunk_tree(&rc->chunk); print_device_extent_tree(&rc->devext); } static void print_chunk_info(struct chunk_record *chunk, char *prefix) { struct device_extent_record *devext; int i; print_chunk_self_info(chunk, prefix); if (prefix) printf("%s", prefix); if (chunk->bg_rec) print_block_group_info(chunk->bg_rec, " "); else printf(" No block group.\n"); if (prefix) printf("%s", prefix); if (list_empty(&chunk->dextents)) { printf(" No device extent.\n"); } else { printf(" Device extent list:\n"); i = 0; list_for_each_entry(devext, &chunk->dextents, chunk_list) { if (prefix) printf("%s", prefix); printf("%s[%2d]", " ", i); print_device_extent_info(devext, NULL); i++; } } } static void print_check_result(struct recover_control *rc) { struct chunk_record *chunk; struct block_group_record *bg; struct device_extent_record *devext; int total = 0; int good = 0; int bad = 0; if (!rc->verbose) return; printf("CHECK RESULT:\n"); printf("Recoverable Chunks:\n"); list_for_each_entry(chunk, &rc->good_chunks, list) { print_chunk_info(chunk, " "); good++; total++; } list_for_each_entry(chunk, &rc->rebuild_chunks, list) { print_chunk_info(chunk, " "); good++; total++; } list_for_each_entry(chunk, &rc->unrepaired_chunks, list) { print_chunk_info(chunk, " "); good++; total++; } printf("Unrecoverable Chunks:\n"); list_for_each_entry(chunk, &rc->bad_chunks, list) { print_chunk_info(chunk, " "); bad++; total++; } printf("\n"); printf("Total Chunks:\t\t%d\n", total); printf(" Recoverable:\t\t%d\n", good); printf(" Unrecoverable:\t%d\n", bad); printf("\n"); printf("Orphan Block Groups:\n"); list_for_each_entry(bg, &rc->bg.block_groups, list) print_block_group_info(bg, " "); printf("\n"); printf("Orphan Device Extents:\n"); list_for_each_entry(devext, &rc->devext.no_chunk_orphans, chunk_list) print_device_extent_info(devext, " "); printf("\n"); } static int check_chunk_by_metadata(struct recover_control *rc, struct btrfs_root *root, struct chunk_record *chunk, int bg_only) { struct btrfs_fs_info *fs_info = root->fs_info; int ret; int i; int slot; struct btrfs_path path = { 0 }; struct btrfs_key key; struct btrfs_root *dev_root; struct stripe *stripe; struct btrfs_dev_extent *dev_extent; struct btrfs_block_group_item *bg_ptr; struct extent_buffer *l; if (bg_only) goto bg_check; dev_root = root->fs_info->dev_root; for (i = 0; i < chunk->num_stripes; i++) { stripe = &chunk->stripes[i]; key.objectid = stripe->devid; key.type = BTRFS_DEV_EXTENT_KEY; key.offset = stripe->offset; ret = btrfs_search_slot(NULL, dev_root, &key, &path, 0, 0); if (ret < 0) { fprintf(stderr, "Search device extent failed(%d)\n", ret); btrfs_release_path(&path); return ret; } else if (ret > 0) { if (rc->verbose) fprintf(stderr, "No device extent[%llu, %llu]\n", stripe->devid, stripe->offset); btrfs_release_path(&path); return -ENOENT; } l = path.nodes[0]; slot = path.slots[0]; dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); if (chunk->offset != btrfs_dev_extent_chunk_offset(l, dev_extent)) { if (rc->verbose) fprintf(stderr, "Device tree mismatch with chunks dev_extent[%llu, %llu], chunk[%llu, %llu]\n", btrfs_dev_extent_chunk_offset(l, dev_extent), btrfs_dev_extent_length(l, dev_extent), chunk->offset, chunk->length); btrfs_release_path(&path); return -ENOENT; } btrfs_release_path(&path); } bg_check: key.objectid = chunk->offset; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; key.offset = chunk->length; root = btrfs_extent_root(fs_info, key.objectid); ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0); if (ret < 0) { fprintf(stderr, "Search block group failed(%d)\n", ret); btrfs_release_path(&path); return ret; } else if (ret > 0) { if (rc->verbose) fprintf(stderr, "No block group[%llu, %llu]\n", key.objectid, key.offset); btrfs_release_path(&path); return -ENOENT; } l = path.nodes[0]; slot = path.slots[0]; bg_ptr = btrfs_item_ptr(l, slot, struct btrfs_block_group_item); if (chunk->type_flags != btrfs_block_group_flags(l, bg_ptr)) { if (rc->verbose) fprintf(stderr, "Chunk[%llu, %llu]'s type(%llu) is different with Block Group's type(%llu)\n", chunk->offset, chunk->length, chunk->type_flags, btrfs_block_group_flags(l, bg_ptr)); btrfs_release_path(&path); return -ENOENT; } btrfs_release_path(&path); return 0; } static int check_all_chunks_by_metadata(struct recover_control *rc, struct btrfs_root *root) { struct chunk_record *chunk; struct chunk_record *next; LIST_HEAD(orphan_chunks); int ret = 0; int err; list_for_each_entry_safe(chunk, next, &rc->good_chunks, list) { err = check_chunk_by_metadata(rc, root, chunk, 0); if (err) { if (err == -ENOENT) list_move_tail(&chunk->list, &orphan_chunks); else if (err && !ret) ret = err; } } list_for_each_entry_safe(chunk, next, &rc->unrepaired_chunks, list) { err = check_chunk_by_metadata(rc, root, chunk, 1); if (err == -ENOENT) list_move_tail(&chunk->list, &orphan_chunks); else if (err && !ret) ret = err; } list_for_each_entry(chunk, &rc->bad_chunks, list) { err = check_chunk_by_metadata(rc, root, chunk, 1); if (err != -ENOENT && !ret) ret = err ? err : -EINVAL; } list_splice(&orphan_chunks, &rc->bad_chunks); return ret; } static int extract_metadata_record(struct recover_control *rc, struct extent_buffer *leaf) { struct btrfs_key key; int ret = 0; int i; u32 nritems; nritems = btrfs_header_nritems(leaf); for (i = 0; i < nritems; i++) { btrfs_item_key_to_cpu(leaf, &key, i); switch (key.type) { case BTRFS_BLOCK_GROUP_ITEM_KEY: pthread_mutex_lock(&rc->rc_lock); ret = process_block_group_item(&rc->bg, leaf, &key, i); pthread_mutex_unlock(&rc->rc_lock); break; case BTRFS_CHUNK_ITEM_KEY: pthread_mutex_lock(&rc->rc_lock); ret = process_chunk_item(&rc->chunk, leaf, &key, i); pthread_mutex_unlock(&rc->rc_lock); break; case BTRFS_DEV_EXTENT_KEY: pthread_mutex_lock(&rc->rc_lock); ret = process_device_extent_item(&rc->devext, leaf, &key, i); pthread_mutex_unlock(&rc->rc_lock); break; } if (ret) break; } return ret; } static inline int is_super_block_address(u64 offset) { int i; for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { if (offset == btrfs_sb_offset(i)) return 1; } return 0; } static int scan_one_device(void *dev_scan_struct) { struct extent_buffer *buf; u64 bytenr; int ret = 0; struct device_scan *dev_scan = (struct device_scan *)dev_scan_struct; struct recover_control *rc = dev_scan->rc; struct btrfs_device *device = dev_scan->dev; int fd = dev_scan->fd; int oldtype; ret = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &oldtype); if (ret) return 1; buf = malloc(sizeof(*buf) + rc->nodesize); if (!buf) return -ENOMEM; buf->len = rc->nodesize; bytenr = 0; while (1) { dev_scan->bytenr = bytenr; if (is_super_block_address(bytenr)) bytenr += rc->sectorsize; if (pread(fd, buf->data, rc->nodesize, bytenr) < rc->nodesize) break; if (memcmp_extent_buffer(buf, rc->fs_devices->metadata_uuid, btrfs_header_fsid(), BTRFS_FSID_SIZE)) { bytenr += rc->sectorsize; continue; } if (verify_tree_block_csum_silent(buf, rc->csum_size, rc->csum_type)) { bytenr += rc->sectorsize; continue; } pthread_mutex_lock(&rc->rc_lock); ret = process_extent_buffer(&rc->eb_cache, buf, device, bytenr); pthread_mutex_unlock(&rc->rc_lock); if (ret) goto out; if (btrfs_header_level(buf) != 0) goto next_node; switch (btrfs_header_owner(buf)) { case BTRFS_EXTENT_TREE_OBJECTID: case BTRFS_DEV_TREE_OBJECTID: /* different tree use different generation */ if (btrfs_header_generation(buf) > rc->generation) break; ret = extract_metadata_record(rc, buf); if (ret) goto out; break; case BTRFS_CHUNK_TREE_OBJECTID: if (btrfs_header_generation(buf) > rc->chunk_root_generation) break; ret = extract_metadata_record(rc, buf); if (ret) goto out; break; } next_node: bytenr += rc->nodesize; } out: close(fd); free(buf); return ret; } static int scan_devices(struct recover_control *rc) { int ret = 0; int fd; struct btrfs_device *dev; struct device_scan *dev_scans; pthread_t *t_scans; long *t_rets; int devnr = 0; int devidx = 0; int i; bool all_done; list_for_each_entry(dev, &rc->fs_devices->devices, dev_list) devnr++; dev_scans = (struct device_scan *)malloc(sizeof(struct device_scan) * devnr); if (!dev_scans) return -ENOMEM; t_scans = (pthread_t *)malloc(sizeof(pthread_t) * devnr); if (!t_scans) { free(dev_scans); return -ENOMEM; } t_rets = (long *)malloc(sizeof(long) * devnr); if (!t_rets) { free(dev_scans); free(t_scans); return -ENOMEM; } list_for_each_entry(dev, &rc->fs_devices->devices, dev_list) { fd = open(dev->name, O_RDONLY); if (fd < 0) { fprintf(stderr, "Failed to open device %s\n", dev->name); ret = 1; goto out2; } dev_scans[devidx].rc = rc; dev_scans[devidx].dev = dev; dev_scans[devidx].fd = fd; dev_scans[devidx].bytenr = -1; devidx++; } for (i = 0; i < devidx; i++) { ret = pthread_create(&t_scans[i], NULL, (void *)scan_one_device, (void *)&dev_scans[i]); if (ret) goto out1; dev_scans[i].bytenr = 0; } while (1) { all_done = true; for (i = 0; i < devidx; i++) { if (dev_scans[i].bytenr == -1) continue; ret = pthread_tryjoin_np(t_scans[i], (void **)&t_rets[i]); if (ret == EBUSY) { all_done = false; continue; } if (ret || t_rets[i]) { ret = 1; goto out1; } dev_scans[i].bytenr = -1; } printf("\rScanning: "); for (i = 0; i < devidx; i++) { if (dev_scans[i].bytenr == -1) printf("%sDONE in dev%d", i ? ", " : "", i); else printf("%s%llu in dev%d", i ? ", " : "", dev_scans[i].bytenr, i); } /* clear chars if exist in tail */ printf(" "); printf("\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b"); fflush(stdout); if (all_done) { printf("\n"); break; } sleep(1); } out1: for (i = 0; i < devidx; i++) { if (dev_scans[i].bytenr == -1) continue; pthread_cancel(t_scans[i]); } out2: free(dev_scans); free(t_scans); free(t_rets); return !!ret; } static int build_device_map_by_chunk_record(struct btrfs_root *root, struct chunk_record *chunk) { int ret = 0; int i; u64 devid; u8 uuid[BTRFS_UUID_SIZE]; u16 num_stripes; struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_mapping_tree *map_tree; struct map_lookup *map; struct stripe *stripe; map_tree = &fs_info->mapping_tree; num_stripes = chunk->num_stripes; map = malloc(btrfs_map_lookup_size(num_stripes)); if (!map) return -ENOMEM; map->ce.start = chunk->offset; map->ce.size = chunk->length; map->num_stripes = num_stripes; map->io_width = chunk->io_width; map->io_align = chunk->io_align; map->sector_size = chunk->sector_size; map->stripe_len = chunk->stripe_len; map->type = chunk->type_flags; map->sub_stripes = chunk->sub_stripes; for (i = 0, stripe = chunk->stripes; i < num_stripes; i++, stripe++) { devid = stripe->devid; memcpy(uuid, stripe->dev_uuid, BTRFS_UUID_SIZE); map->stripes[i].physical = stripe->offset; map->stripes[i].dev = btrfs_find_device(fs_info, devid, uuid, NULL); if (!map->stripes[i].dev) { free(map); return -EIO; } } ret = insert_cache_extent(&map_tree->cache_tree, &map->ce); return ret; } static int build_device_maps_by_chunk_records(struct recover_control *rc, struct btrfs_root *root) { int ret = 0; struct chunk_record *chunk; list_for_each_entry(chunk, &rc->good_chunks, list) { ret = build_device_map_by_chunk_record(root, chunk); if (ret) return ret; } list_for_each_entry(chunk, &rc->rebuild_chunks, list) { ret = build_device_map_by_chunk_record(root, chunk); if (ret) return ret; } return ret; } static int block_group_remove_all_extent_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct block_group_record *bg) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_key key; struct btrfs_path path = { 0 }; struct extent_buffer *leaf; u64 start = bg->objectid; u64 end = bg->objectid + bg->offset; u64 old_val; int nitems; int ret; int i; int del_s, del_nr; root = btrfs_extent_root(fs_info, start); key.objectid = start; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; again: ret = btrfs_search_slot(trans, root, &key, &path, -1, 1); if (ret < 0) goto err; else if (ret > 0) ret = 0; leaf = path.nodes[0]; nitems = btrfs_header_nritems(leaf); if (!nitems) { /* The tree is empty. */ ret = 0; goto err; } if (path.slots[0] >= nitems) { ret = btrfs_next_leaf(root, &path); if (ret < 0) goto err; if (ret > 0) { ret = 0; goto err; } leaf = path.nodes[0]; btrfs_item_key_to_cpu(leaf, &key, 0); if (key.objectid >= end) goto err; btrfs_release_path(&path); goto again; } del_nr = 0; del_s = -1; for (i = path.slots[0]; i < nitems; i++) { btrfs_item_key_to_cpu(leaf, &key, i); if (key.objectid >= end) break; if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { if (del_nr == 0) continue; else break; } if (del_s == -1) del_s = i; del_nr++; if (key.type == BTRFS_EXTENT_ITEM_KEY || key.type == BTRFS_METADATA_ITEM_KEY) { old_val = btrfs_super_bytes_used(fs_info->super_copy); if (key.type == BTRFS_METADATA_ITEM_KEY) old_val += fs_info->nodesize; else old_val += key.offset; btrfs_set_super_bytes_used(fs_info->super_copy, old_val); } } if (del_nr) { ret = btrfs_del_items(trans, root, &path, del_s, del_nr); if (ret) goto err; } if (key.objectid < end) { if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { key.objectid += fs_info->sectorsize; key.type = BTRFS_EXTENT_ITEM_KEY; key.offset = 0; } btrfs_release_path(&path); goto again; } err: btrfs_release_path(&path); return ret; } static int block_group_free_all_extent(struct btrfs_trans_handle *trans, struct block_group_record *bg) { struct btrfs_block_group *cache; struct btrfs_fs_info *info; u64 start; u64 end; info = trans->fs_info; cache = btrfs_lookup_block_group(info, bg->objectid); if (!cache) return -ENOENT; start = cache->start; end = start + cache->length - 1; if (list_empty(&cache->dirty_list)) list_add_tail(&cache->dirty_list, &trans->dirty_bgs); set_extent_dirty(&info->free_space_cache, start, end, GFP_NOFS); cache->used = 0; return 0; } static int remove_chunk_extent_item(struct btrfs_trans_handle *trans, struct recover_control *rc, struct btrfs_root *root) { struct chunk_record *chunk; int ret = 0; list_for_each_entry(chunk, &rc->good_chunks, list) { if (!(chunk->type_flags & BTRFS_BLOCK_GROUP_SYSTEM)) continue; ret = block_group_remove_all_extent_items(trans, root, chunk->bg_rec); if (ret) return ret; ret = block_group_free_all_extent(trans, chunk->bg_rec); if (ret) return ret; } return ret; } static int __rebuild_chunk_root(struct btrfs_trans_handle *trans, struct recover_control *rc, struct btrfs_root *root) { u64 min_devid = -1; struct btrfs_device *dev; struct extent_buffer *cow; struct btrfs_disk_key disk_key; int ret = 0; list_for_each_entry(dev, &rc->fs_devices->devices, dev_list) { if (min_devid > dev->devid) min_devid = dev->devid; } btrfs_set_disk_key_objectid(&disk_key, BTRFS_DEV_ITEMS_OBJECTID); btrfs_set_disk_key_type(&disk_key, BTRFS_DEV_ITEM_KEY); btrfs_set_disk_key_offset(&disk_key, min_devid); cow = btrfs_alloc_tree_block(trans, root, 0, BTRFS_CHUNK_TREE_OBJECTID, &disk_key, 0, 0, 0, BTRFS_NESTING_NORMAL); btrfs_set_header_bytenr(cow, cow->start); btrfs_set_header_generation(cow, trans->transid); btrfs_set_header_nritems(cow, 0); btrfs_set_header_level(cow, 0); btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(cow, BTRFS_CHUNK_TREE_OBJECTID); write_extent_buffer(cow, root->fs_info->fs_devices->metadata_uuid, btrfs_header_fsid(), BTRFS_FSID_SIZE); write_extent_buffer(cow, root->fs_info->chunk_tree_uuid, btrfs_header_chunk_tree_uuid(cow), BTRFS_UUID_SIZE); root->node = cow; btrfs_mark_buffer_dirty(cow); return ret; } static int __rebuild_device_items(struct btrfs_trans_handle *trans, struct recover_control *rc, struct btrfs_root *root) { struct btrfs_device *dev; struct btrfs_key key; struct btrfs_dev_item dev_item_tmp; struct btrfs_dev_item *dev_item = &dev_item_tmp; int ret = 0; list_for_each_entry(dev, &rc->fs_devices->devices, dev_list) { key.objectid = BTRFS_DEV_ITEMS_OBJECTID; key.type = BTRFS_DEV_ITEM_KEY; key.offset = dev->devid; btrfs_set_stack_device_generation(dev_item, 0); btrfs_set_stack_device_type(dev_item, dev->type); btrfs_set_stack_device_id(dev_item, dev->devid); btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes); btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used); btrfs_set_stack_device_io_align(dev_item, dev->io_align); btrfs_set_stack_device_io_width(dev_item, dev->io_width); btrfs_set_stack_device_sector_size(dev_item, dev->sector_size); memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE); memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid, BTRFS_FSID_SIZE); ret = btrfs_insert_item(trans, root, &key, dev_item, sizeof(*dev_item)); } return ret; } static int __insert_chunk_item(struct btrfs_trans_handle *trans, struct chunk_record *chunk_rec, struct btrfs_root *chunk_root) { struct btrfs_key key; struct btrfs_chunk *chunk = NULL; int ret = 0; chunk = create_chunk_item(chunk_rec); if (!chunk) return -ENOMEM; key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.type = BTRFS_CHUNK_ITEM_KEY; key.offset = chunk_rec->offset; ret = btrfs_insert_item(trans, chunk_root, &key, chunk, btrfs_chunk_item_size(chunk_rec->num_stripes)); free(chunk); return ret; } static int __rebuild_chunk_items(struct btrfs_trans_handle *trans, struct recover_control *rc, struct btrfs_root *root) { struct btrfs_root *chunk_root; struct chunk_record *chunk_rec; int ret; chunk_root = root->fs_info->chunk_root; list_for_each_entry(chunk_rec, &rc->good_chunks, list) { ret = __insert_chunk_item(trans, chunk_rec, chunk_root); if (ret) return ret; } list_for_each_entry(chunk_rec, &rc->rebuild_chunks, list) { ret = __insert_chunk_item(trans, chunk_rec, chunk_root); if (ret) return ret; } return 0; } static int rebuild_chunk_tree(struct btrfs_trans_handle *trans, struct recover_control *rc, struct btrfs_root *root) { int ret = 0; root = root->fs_info->chunk_root; ret = __rebuild_chunk_root(trans, rc, root); if (ret) return ret; ret = __rebuild_device_items(trans, rc, root); if (ret) return ret; ret = __rebuild_chunk_items(trans, rc, root); return ret; } static int rebuild_sys_array(struct recover_control *rc, struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct btrfs_chunk *chunk; struct btrfs_key key; struct chunk_record *chunk_rec; int ret = 0; u16 num_stripes; btrfs_set_super_sys_array_size(fs_info->super_copy, 0); list_for_each_entry(chunk_rec, &rc->good_chunks, list) { if (!(chunk_rec->type_flags & BTRFS_BLOCK_GROUP_SYSTEM)) continue; num_stripes = chunk_rec->num_stripes; chunk = create_chunk_item(chunk_rec); if (!chunk) { ret = -ENOMEM; break; } key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; key.type = BTRFS_CHUNK_ITEM_KEY; key.offset = chunk_rec->offset; ret = btrfs_add_system_chunk(fs_info, &key, chunk, btrfs_chunk_item_size(num_stripes)); free(chunk); if (ret) break; } return ret; } static int calculate_bg_used(struct btrfs_root *extent_root, struct chunk_record *chunk_rec, struct btrfs_path *path, u64 *used) { struct extent_buffer *node; struct btrfs_key found_key; int slot; int ret = 0; u64 used_ret = 0; while (1) { node = path->nodes[0]; slot = path->slots[0]; btrfs_item_key_to_cpu(node, &found_key, slot); if (found_key.objectid >= chunk_rec->offset + chunk_rec->length) break; if (found_key.type != BTRFS_METADATA_ITEM_KEY && found_key.type != BTRFS_EXTENT_DATA_KEY) goto next; if (found_key.type == BTRFS_METADATA_ITEM_KEY) used_ret += extent_root->fs_info->nodesize; else used_ret += found_key.offset; next: if (slot + 1 < btrfs_header_nritems(node)) { slot++; } else { ret = btrfs_next_leaf(extent_root, path); if (ret > 0) { ret = 0; break; } if (ret < 0) break; } } if (!ret) *used = used_ret; return ret; } static int __insert_block_group(struct btrfs_trans_handle *trans, struct chunk_record *chunk_rec, struct btrfs_root *extent_root, u64 used) { struct btrfs_block_group_item bg_item; struct btrfs_key key; int ret = 0; btrfs_set_stack_block_group_used(&bg_item, used); btrfs_set_stack_block_group_chunk_objectid(&bg_item, used); btrfs_set_stack_block_group_flags(&bg_item, chunk_rec->type_flags); key.objectid = chunk_rec->offset; key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; key.offset = chunk_rec->length; ret = btrfs_insert_item(trans, extent_root, &key, &bg_item, sizeof(bg_item)); return ret; } /* * Search through the extent tree to rebuild the 'used' member of the block * group. * However, since block group and extent item shares the extent tree, * the extent item may also missing. * In that case, we fill the 'used' with the length of the block group to * ensure no write into the block group. * Btrfsck will hate it but we will inform user to call '--init-extent-tree' * if possible, or just salvage as much data as possible from the fs. */ static int rebuild_block_group(struct btrfs_trans_handle *trans, struct recover_control *rc, struct btrfs_root *root) { struct btrfs_fs_info *fs_info = root->fs_info; struct chunk_record *chunk_rec; struct btrfs_key search_key; struct btrfs_path path = { 0 }; u64 used = 0; int ret = 0; if (list_empty(&rc->rebuild_chunks)) return 0; list_for_each_entry(chunk_rec, &rc->rebuild_chunks, list) { search_key.objectid = chunk_rec->offset; search_key.type = BTRFS_EXTENT_ITEM_KEY; search_key.offset = 0; root = btrfs_extent_root(fs_info, chunk_rec->offset); ret = btrfs_search_slot(NULL, root, &search_key, &path, 0, 0); if (ret < 0) goto out; ret = calculate_bg_used(root, chunk_rec, &path, &used); /* * Extent tree is damaged, better to rebuild the whole extent * tree. Currently, change the used to chunk's len to prevent * write/block reserve happening in that block group. */ if (ret < 0) { fprintf(stderr, "Fail to search extent tree for block group: [%llu,%llu]\n", chunk_rec->offset, chunk_rec->offset + chunk_rec->length); fprintf(stderr, "Mark the block group full to prevent block rsv problems\n"); used = chunk_rec->length; } btrfs_release_path(&path); ret = __insert_block_group(trans, chunk_rec, root, used); if (ret < 0) goto out; } out: btrfs_release_path(&path); return ret; } static struct btrfs_root * open_ctree_with_broken_chunk(struct recover_control *rc) { struct btrfs_fs_info *fs_info; struct btrfs_super_block *disk_super; struct extent_buffer *eb; u64 features; int ret; fs_info = btrfs_new_fs_info(1, BTRFS_SUPER_INFO_OFFSET); if (!fs_info) { error_msg(ERROR_MSG_MEMORY, "fs_info"); return ERR_PTR(-ENOMEM); } fs_info->is_chunk_recover = 1; fs_info->fs_devices = rc->fs_devices; ret = btrfs_open_devices(fs_info, fs_info->fs_devices, O_RDWR); if (ret) goto out; disk_super = fs_info->super_copy; ret = btrfs_read_dev_super(fs_info->fs_devices->latest_bdev, disk_super, fs_info->super_bytenr, SBREAD_RECOVER); if (ret) { fprintf(stderr, "No valid btrfs found\n"); goto out_devices; } UASSERT(!memcmp(disk_super->fsid, rc->fs_devices->fsid, BTRFS_FSID_SIZE)); fs_info->sectorsize = btrfs_super_sectorsize(disk_super); fs_info->nodesize = btrfs_super_nodesize(disk_super); fs_info->stripesize = btrfs_super_stripesize(disk_super); ret = btrfs_check_fs_compatibility(disk_super, OPEN_CTREE_WRITES); if (ret) goto out_devices; features = btrfs_super_incompat_flags(disk_super); if (features & BTRFS_FEATURE_INCOMPAT_METADATA_UUID) UASSERT(!memcmp(disk_super->metadata_uuid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE)); btrfs_setup_root(fs_info->chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); ret = build_device_maps_by_chunk_records(rc, fs_info->chunk_root); if (ret) goto out_cleanup; ret = btrfs_setup_all_roots(fs_info, 0, 0); if (ret) goto out_failed; eb = fs_info->tree_root->node; read_extent_buffer(eb, fs_info->chunk_tree_uuid, btrfs_header_chunk_tree_uuid(eb), BTRFS_UUID_SIZE); return fs_info->fs_root; out_failed: btrfs_release_all_roots(fs_info); out_cleanup: btrfs_cleanup_all_caches(fs_info); out_devices: btrfs_close_devices(fs_info->fs_devices); out: btrfs_free_fs_info(fs_info); return ERR_PTR(ret); } static int recover_prepare(struct recover_control *rc, const char *path) { int ret; int fd; struct btrfs_super_block sb; struct btrfs_fs_devices *fs_devices; ret = 0; fd = open(path, O_RDONLY); if (fd < 0) { fprintf(stderr, "open %s\n error.\n", path); return -1; } ret = btrfs_read_dev_super(fd, &sb, BTRFS_SUPER_INFO_OFFSET, SBREAD_RECOVER); if (ret) { fprintf(stderr, "read super block error\n"); goto out_close_fd; } rc->sectorsize = btrfs_super_sectorsize(&sb); rc->nodesize = btrfs_super_nodesize(&sb); rc->generation = btrfs_super_generation(&sb); rc->chunk_root_generation = btrfs_super_chunk_root_generation(&sb); rc->csum_size = btrfs_super_csum_size(&sb); rc->csum_type = btrfs_super_csum_type(&sb); /* if seed, the result of scanning below will be partial */ if (btrfs_super_flags(&sb) & BTRFS_SUPER_FLAG_SEEDING) { fprintf(stderr, "this device is seed device\n"); ret = -1; goto out_close_fd; } ret = btrfs_scan_fs_devices(fd, path, &fs_devices, 0, SBREAD_RECOVER, 0); if (ret) goto out_close_fd; rc->fs_devices = fs_devices; if (rc->verbose) print_all_devices(&rc->fs_devices->devices); out_close_fd: close(fd); return ret; } static int btrfs_get_device_extents(u64 chunk_object, struct list_head *orphan_devexts, struct list_head *ret_list) { struct device_extent_record *devext; struct device_extent_record *next; int count = 0; list_for_each_entry_safe(devext, next, orphan_devexts, chunk_list) { if (devext->chunk_offset == chunk_object) { list_move_tail(&devext->chunk_list, ret_list); count++; } } return count; } static int calc_num_stripes(u64 type) { if (btrfs_bg_type_is_stripey(type)) return 0; else if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP)) return 2; else if (type & (BTRFS_BLOCK_GROUP_RAID1C3)) return 3; else if (type & (BTRFS_BLOCK_GROUP_RAID1C4)) return 4; else return 1; } static int btrfs_verify_device_extents(struct block_group_record *bg, struct list_head *devexts, int ndevexts) { struct device_extent_record *devext; u64 stripe_length; int expected_num_stripes; expected_num_stripes = calc_num_stripes(bg->flags); if (expected_num_stripes && expected_num_stripes != ndevexts) return 1; if (check_num_stripes(bg->flags, ndevexts) < 0) return 1; stripe_length = calc_stripe_length(bg->flags, bg->offset, ndevexts); list_for_each_entry(devext, devexts, chunk_list) { if (devext->length != stripe_length) return 1; } return 0; } static int btrfs_rebuild_unordered_chunk_stripes(struct recover_control *rc, struct chunk_record *chunk) { struct device_extent_record *devext; struct btrfs_device *device; int i; devext = list_first_entry(&chunk->dextents, struct device_extent_record, chunk_list); for (i = 0; i < chunk->num_stripes; i++) { chunk->stripes[i].devid = devext->objectid; chunk->stripes[i].offset = devext->offset; device = btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 0); if (!device) return -ENOENT; BUG_ON(btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 1)); memcpy(chunk->stripes[i].dev_uuid, device->uuid, BTRFS_UUID_SIZE); devext = list_next_entry(devext, chunk_list); } return 0; } static int btrfs_calc_stripe_index(struct chunk_record *chunk, u64 logical) { u64 offset = logical - chunk->offset; int stripe_nr; int nr_data_stripes; int index; stripe_nr = offset / chunk->stripe_len; if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID0) { index = stripe_nr % chunk->num_stripes; } else if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID10) { index = stripe_nr % (chunk->num_stripes / chunk->sub_stripes); index *= chunk->sub_stripes; } else if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID56_MASK) { int parity; parity = btrfs_bg_type_to_nparity(chunk->type_flags); nr_data_stripes = chunk->num_stripes - parity; index = stripe_nr % nr_data_stripes; stripe_nr /= nr_data_stripes; index = (index + stripe_nr) % chunk->num_stripes; } else { return -1; } return index; } /* calc the logical offset which is the start of the next stripe. */ static inline u64 btrfs_next_stripe_logical_offset(struct chunk_record *chunk, u64 logical) { u64 offset = logical - chunk->offset; offset /= chunk->stripe_len; offset *= chunk->stripe_len; offset += chunk->stripe_len; return offset + chunk->offset; } static int is_extent_record_in_device_extent(struct extent_record *er, struct device_extent_record *dext, int *mirror) { int i; for (i = 0; i < er->nmirrors; i++) { if (er->devices[i]->devid == dext->objectid && er->offsets[i] >= dext->offset && er->offsets[i] < dext->offset + dext->length) { *mirror = i; return 1; } } return 0; } static int btrfs_rebuild_ordered_meta_chunk_stripes(struct recover_control *rc, struct chunk_record *chunk) { u64 start = chunk->offset; u64 end = chunk->offset + chunk->length; struct cache_extent *cache; struct extent_record *er; struct device_extent_record *devext; struct device_extent_record *next; struct btrfs_device *device; LIST_HEAD(devexts); int index; int mirror; int ret; cache = lookup_cache_extent(&rc->eb_cache, start, chunk->length); if (!cache) { /* No used space, we can reorder the stripes freely. */ ret = btrfs_rebuild_unordered_chunk_stripes(rc, chunk); return ret; } list_splice_init(&chunk->dextents, &devexts); again: er = container_of(cache, struct extent_record, cache); index = btrfs_calc_stripe_index(chunk, er->cache.start); BUG_ON(index == -1); if (chunk->stripes[index].devid) goto next; list_for_each_entry_safe(devext, next, &devexts, chunk_list) { if (is_extent_record_in_device_extent(er, devext, &mirror)) { chunk->stripes[index].devid = devext->objectid; chunk->stripes[index].offset = devext->offset; memcpy(chunk->stripes[index].dev_uuid, er->devices[mirror]->uuid, BTRFS_UUID_SIZE); index++; list_move(&devext->chunk_list, &chunk->dextents); } } next: start = btrfs_next_stripe_logical_offset(chunk, er->cache.start); if (start >= end) goto no_extent_record; cache = lookup_cache_extent(&rc->eb_cache, start, end - start); if (cache) goto again; no_extent_record: if (list_empty(&devexts)) return 0; if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID56_MASK) { /* Fixme: try to recover the order by the parity block. */ list_splice_tail(&devexts, &chunk->dextents); return -EINVAL; } /* There is no data on the lost stripes, we can reorder them freely. */ for (index = 0; index < chunk->num_stripes; index++) { if (chunk->stripes[index].devid) continue; devext = list_first_entry(&devexts, struct device_extent_record, chunk_list); list_move(&devext->chunk_list, &chunk->dextents); chunk->stripes[index].devid = devext->objectid; chunk->stripes[index].offset = devext->offset; device = btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 0); if (!device) { list_splice_tail(&devexts, &chunk->dextents); return -EINVAL; } BUG_ON(btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 1)); memcpy(chunk->stripes[index].dev_uuid, device->uuid, BTRFS_UUID_SIZE); } return 0; } static int btrfs_rebuild_chunk_stripes(struct recover_control *rc, struct chunk_record *chunk) { int ret; /* * All the data in the system metadata chunk will be dropped, * so we need not guarantee that the data is right or not, that * is we can reorder the stripes in the system metadata chunk. */ if ((chunk->type_flags & BTRFS_BLOCK_GROUP_METADATA) && btrfs_bg_type_is_stripey(chunk->type_flags)) ret =btrfs_rebuild_ordered_meta_chunk_stripes(rc, chunk); else if ((chunk->type_flags & BTRFS_BLOCK_GROUP_DATA) && btrfs_bg_type_is_stripey(chunk->type_flags)) ret = 1; /* Be handled after the fs is opened. */ else ret = btrfs_rebuild_unordered_chunk_stripes(rc, chunk); return ret; } static int next_csum(struct btrfs_root *csum_root, struct extent_buffer **leaf, struct btrfs_path *path, int *slot, u64 *csum_offset, u32 *tree_csum, u64 end, struct btrfs_key *key) { int ret = 0; struct btrfs_csum_item *csum_item; u32 blocksize = csum_root->fs_info->sectorsize; u16 csum_size = csum_root->fs_info->csum_size; int csums_in_item = btrfs_item_size(*leaf, *slot) / csum_size; if (*csum_offset >= csums_in_item) { ++(*slot); *csum_offset = 0; if (*slot >= btrfs_header_nritems(*leaf)) { ret = btrfs_next_leaf(csum_root, path); if (ret < 0) return -1; else if (ret > 0) return 1; *leaf = path->nodes[0]; *slot = path->slots[0]; } btrfs_item_key_to_cpu(*leaf, key, *slot); } if (key->offset + (*csum_offset) * blocksize >= end) return 2; csum_item = btrfs_item_ptr(*leaf, *slot, struct btrfs_csum_item); csum_item = (struct btrfs_csum_item *)((unsigned char *)csum_item + (*csum_offset) * csum_size); read_extent_buffer(*leaf, tree_csum, (unsigned long)csum_item, csum_size); return ret; } static u64 calc_data_offset(struct btrfs_key *key, struct chunk_record *chunk, u64 dev_offset, u64 csum_offset, u32 blocksize) { u64 data_offset; int logical_stripe_nr; int dev_stripe_nr; int nr_data_stripes; data_offset = key->offset + csum_offset * blocksize - chunk->offset; nr_data_stripes = chunk->num_stripes; nr_data_stripes -= btrfs_bg_type_to_nparity(chunk->type_flags); logical_stripe_nr = data_offset / chunk->stripe_len; dev_stripe_nr = logical_stripe_nr / nr_data_stripes; data_offset -= logical_stripe_nr * chunk->stripe_len; data_offset += dev_stripe_nr * chunk->stripe_len; return dev_offset + data_offset; } static int check_one_csum(int fd, u64 start, u32 len, u32 tree_csum, u16 csum_type) { char *data; int ret = 0; u8 result[BTRFS_CSUM_SIZE]; int csum_size = 0; u8 expected_csum[BTRFS_CSUM_SIZE]; UASSERT(0); data = malloc(len); if (!data) return -1; ret = pread(fd, data, len, start); if (ret < 0 || ret != len) { ret = -1; goto out; } ret = 0; put_unaligned_le32(tree_csum, expected_csum); btrfs_csum_data(NULL, csum_type, (u8 *)data, result, len); if (memcmp(result, expected_csum, csum_size) != 0) ret = 1; out: free(data); return ret; } static u64 item_end_offset(struct btrfs_root *root, struct btrfs_key *key, struct extent_buffer *leaf, int slot) { u32 blocksize = root->fs_info->sectorsize; u16 csum_size = root->fs_info->csum_size; u64 offset = btrfs_item_size(leaf, slot); offset /= csum_size; offset *= blocksize; offset += key->offset; return offset; } static int insert_stripe(struct list_head *devexts, struct recover_control *rc, struct chunk_record *chunk, int index) { struct device_extent_record *devext; struct btrfs_device *dev; devext = list_entry(devexts->next, struct device_extent_record, chunk_list); dev = btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 0); if (!dev) return -ENOENT; if (btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 1)) { error("unexpected: found another device with id %llu", devext->objectid); return -EINVAL; } chunk->stripes[index].devid = devext->objectid; chunk->stripes[index].offset = devext->offset; memcpy(chunk->stripes[index].dev_uuid, dev->uuid, BTRFS_UUID_SIZE); list_move(&devext->chunk_list, &chunk->dextents); return 0; } static inline int count_devext_records(struct list_head *record_list) { int num_of_records = 0; struct device_extent_record *devext; list_for_each_entry(devext, record_list, chunk_list) num_of_records++; return num_of_records; } static int fill_chunk_up(struct chunk_record *chunk, struct list_head *devexts, struct recover_control *rc) { int ret = 0; int i; for (i = 0; i < chunk->num_stripes; i++) { if (!chunk->stripes[i].devid) { ret = insert_stripe(devexts, rc, chunk, i); if (ret) break; } } return ret; } #define EQUAL_STRIPE (1U << 0) static int rebuild_raid_data_chunk_stripes(struct recover_control *rc, struct btrfs_root *root, struct chunk_record *chunk, u8 *flags) { int i; int ret = 0; int slot; struct btrfs_path path = { 0 }; struct btrfs_key prev_key; struct btrfs_key key; struct btrfs_root *csum_root; struct extent_buffer *leaf; struct device_extent_record *devext; struct device_extent_record *next; struct btrfs_device *dev; u64 start = chunk->offset; u64 end = start + chunk->stripe_len; u64 chunk_end = chunk->offset + chunk->length; u64 csum_offset = 0; u64 data_offset; u32 blocksize = root->fs_info->sectorsize; u32 tree_csum; int index = 0; int num_unordered = 0; LIST_HEAD(unordered); LIST_HEAD(candidates); list_splice_init(&chunk->dextents, &candidates); again: if (list_is_last(candidates.next, &candidates)) goto out; key.objectid = BTRFS_EXTENT_CSUM_OBJECTID; key.type = BTRFS_EXTENT_CSUM_KEY; key.offset = start; csum_root = btrfs_csum_root(root->fs_info, start); ret = btrfs_search_slot(NULL, csum_root, &key, &path, 0, 0); if (ret < 0) { fprintf(stderr, "Search csum failed(%d)\n", ret); goto fail_out; } leaf = path.nodes[0]; slot = path.slots[0]; if (ret > 0) { if (slot >= btrfs_header_nritems(leaf)) { ret = btrfs_next_leaf(csum_root, &path); if (ret < 0) { fprintf(stderr, "Walk tree failed(%d)\n", ret); goto fail_out; } else if (ret > 0) { slot = btrfs_header_nritems(leaf) - 1; btrfs_item_key_to_cpu(leaf, &key, slot); if (item_end_offset(csum_root, &key, leaf, slot) > start) { csum_offset = start - key.offset; csum_offset /= blocksize; goto next_csum; } goto next_stripe; } leaf = path.nodes[0]; slot = path.slots[0]; } btrfs_item_key_to_cpu(leaf, &key, slot); ret = btrfs_previous_item(csum_root, &path, 0, BTRFS_EXTENT_CSUM_KEY); if (ret < 0) goto fail_out; else if (ret > 0) { if (key.offset >= end) goto next_stripe; else goto next_csum; } leaf = path.nodes[0]; slot = path.slots[0]; btrfs_item_key_to_cpu(leaf, &prev_key, slot); if (item_end_offset(root, &prev_key, leaf, slot) > start) { csum_offset = start - prev_key.offset; csum_offset /= blocksize; btrfs_item_key_to_cpu(leaf, &key, slot); } else { if (key.offset >= end) goto next_stripe; } if (key.offset + csum_offset * blocksize > chunk_end) goto out; } next_csum: ret = next_csum(csum_root, &leaf, &path, &slot, &csum_offset, &tree_csum, end, &key); if (ret < 0) { fprintf(stderr, "Fetch csum failed\n"); goto fail_out; } else if (ret == 1) { if (!(*flags & EQUAL_STRIPE)) *flags |= EQUAL_STRIPE; goto out; } else if (ret == 2) goto next_stripe; list_for_each_entry_safe(devext, next, &candidates, chunk_list) { data_offset = calc_data_offset(&key, chunk, devext->offset, csum_offset, blocksize); dev = btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 0); if (!dev) { ret = 1; goto fail_out; } BUG_ON(btrfs_find_device_by_devid(rc->fs_devices, devext->objectid, 1)); ret = check_one_csum(dev->fd, data_offset, blocksize, tree_csum, btrfs_super_csum_type(root->fs_info->super_copy)); if (ret < 0) goto fail_out; else if (ret > 0) list_move(&devext->chunk_list, &unordered); } if (list_empty(&candidates)) { num_unordered = count_devext_records(&unordered); if (chunk->type_flags & BTRFS_BLOCK_GROUP_RAID6 && num_unordered == 2) { btrfs_release_path(&path); ret = fill_chunk_up(chunk, &unordered, rc); return ret; } goto next_stripe; } if (list_is_last(candidates.next, &candidates)) { index = btrfs_calc_stripe_index(chunk, key.offset + csum_offset * blocksize); BUG_ON(index == -1); if (chunk->stripes[index].devid) goto next_stripe; ret = insert_stripe(&candidates, rc, chunk, index); if (ret) goto fail_out; } else { csum_offset++; goto next_csum; } next_stripe: start = btrfs_next_stripe_logical_offset(chunk, start); end = min(start + chunk->stripe_len, chunk_end); list_splice_init(&unordered, &candidates); btrfs_release_path(&path); csum_offset = 0; if (end < chunk_end) goto again; out: ret = 0; list_splice_init(&candidates, &unordered); num_unordered = count_devext_records(&unordered); if (num_unordered == 1) { for (i = 0; i < chunk->num_stripes; i++) { if (!chunk->stripes[i].devid) { index = i; break; } } ret = insert_stripe(&unordered, rc, chunk, index); if (ret) goto fail_out; } else { if ((num_unordered == 2 && chunk->type_flags & BTRFS_BLOCK_GROUP_RAID5) || (num_unordered == 3 && chunk->type_flags & BTRFS_BLOCK_GROUP_RAID6)) { ret = fill_chunk_up(chunk, &unordered, rc); } } fail_out: ret = !!ret || (list_empty(&unordered) ? 0 : 1); list_splice_init(&candidates, &chunk->dextents); list_splice_init(&unordered, &chunk->dextents); btrfs_release_path(&path); return ret; } static int btrfs_rebuild_ordered_data_chunk_stripes(struct recover_control *rc, struct btrfs_root *root) { struct chunk_record *chunk; struct chunk_record *next; int ret = 0; int err; u8 flags; list_for_each_entry_safe(chunk, next, &rc->unrepaired_chunks, list) { if ((chunk->type_flags & BTRFS_BLOCK_GROUP_DATA) && btrfs_bg_type_is_stripey(chunk->type_flags)) { flags = 0; err = rebuild_raid_data_chunk_stripes(rc, root, chunk, &flags); if (err) { list_move(&chunk->list, &rc->bad_chunks); if (flags & EQUAL_STRIPE) fprintf(stderr, "Failure: too many equal stripes in chunk[%llu %llu]\n", chunk->offset, chunk->length); if (!ret) ret = err; } else list_move(&chunk->list, &rc->good_chunks); } } return ret; } static int btrfs_recover_chunks(struct recover_control *rc) { struct chunk_record *chunk; struct block_group_record *bg; struct block_group_record *next; LIST_HEAD(new_chunks); LIST_HEAD(devexts); int nstripes; int ret; /* create the chunk by block group */ list_for_each_entry_safe(bg, next, &rc->bg.block_groups, list) { nstripes = btrfs_get_device_extents(bg->objectid, &rc->devext.no_chunk_orphans, &devexts); chunk = calloc(1, btrfs_chunk_record_size(nstripes)); if (!chunk) return -ENOMEM; INIT_LIST_HEAD(&chunk->dextents); chunk->bg_rec = bg; chunk->cache.start = bg->objectid; chunk->cache.size = bg->offset; chunk->objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; chunk->type = BTRFS_CHUNK_ITEM_KEY; chunk->offset = bg->objectid; chunk->generation = bg->generation; chunk->length = bg->offset; chunk->owner = BTRFS_CHUNK_TREE_OBJECTID; chunk->stripe_len = BTRFS_STRIPE_LEN; chunk->type_flags = bg->flags; chunk->io_width = BTRFS_STRIPE_LEN; chunk->io_align = BTRFS_STRIPE_LEN; chunk->sector_size = rc->sectorsize; chunk->sub_stripes = btrfs_bg_type_to_sub_stripes(bg->flags); ret = insert_cache_extent(&rc->chunk, &chunk->cache); if (ret < 0) { errno = -ret; error("cannot insert extent to cache start %llu size %llu", chunk->cache.start, chunk->cache.size); free(chunk); return ret; } list_del_init(&bg->list); if (!nstripes) { list_add_tail(&chunk->list, &rc->bad_chunks); continue; } list_splice_init(&devexts, &chunk->dextents); ret = btrfs_verify_device_extents(bg, &devexts, nstripes); if (ret) { list_add_tail(&chunk->list, &rc->bad_chunks); continue; } chunk->num_stripes = nstripes; ret = btrfs_rebuild_chunk_stripes(rc, chunk); if (ret > 0) list_add_tail(&chunk->list, &rc->unrepaired_chunks); else if (ret < 0) list_add_tail(&chunk->list, &rc->bad_chunks); else list_add_tail(&chunk->list, &rc->good_chunks); } /* * Don't worry about the lost orphan device extents, they don't * have its chunk and block group, they must be the old ones that * we have dropped. */ return 0; } static inline int is_chunk_overlap(struct chunk_record *chunk1, struct chunk_record *chunk2) { if (chunk1->offset >= chunk2->offset + chunk2->length || chunk1->offset + chunk1->length <= chunk2->offset) return 0; return 1; } /* Move invalid(overlap with good chunks) rebuild chunks to bad chunk list */ static void validate_rebuild_chunks(struct recover_control *rc) { struct chunk_record *good; struct chunk_record *rebuild; struct chunk_record *tmp; list_for_each_entry_safe(rebuild, tmp, &rc->rebuild_chunks, list) { list_for_each_entry(good, &rc->good_chunks, list) { if (is_chunk_overlap(rebuild, good)) { list_move_tail(&rebuild->list, &rc->bad_chunks); break; } } } } /* * Return 0 when successful, < 0 on error and > 0 if aborted by user */ int btrfs_recover_chunk_tree(const char *path, int yes) { int ret = 0; struct btrfs_root *root = NULL; struct btrfs_trans_handle *trans; struct recover_control rc; init_recover_control(&rc, yes); ret = recover_prepare(&rc, path); if (ret) { fprintf(stderr, "recover prepare error\n"); return ret; } ret = scan_devices(&rc); if (ret) { fprintf(stderr, "scan chunk headers error\n"); goto fail_rc; } if (cache_tree_empty(&rc.chunk) && cache_tree_empty(&rc.bg.tree) && cache_tree_empty(&rc.devext.tree)) { fprintf(stderr, "no recoverable chunk\n"); goto fail_rc; } print_scan_result(&rc); ret = check_chunks(&rc.chunk, &rc.bg, &rc.devext, &rc.good_chunks, &rc.bad_chunks, &rc.rebuild_chunks, 1); if (ret) { if (!list_empty(&rc.bg.block_groups) || !list_empty(&rc.devext.no_chunk_orphans)) { ret = btrfs_recover_chunks(&rc); if (ret) goto fail_rc; } } else { print_check_result(&rc); printf("Check chunks successfully with no orphans\n"); goto fail_rc; } validate_rebuild_chunks(&rc); print_check_result(&rc); root = open_ctree_with_broken_chunk(&rc); if (IS_ERR(root)) { fprintf(stderr, "open with broken chunk error\n"); ret = PTR_ERR(root); goto fail_rc; } ret = check_all_chunks_by_metadata(&rc, root); if (ret) { fprintf(stderr, "The chunks in memory can not match the metadata of the fs. Repair failed.\n"); goto fail_close_ctree; } ret = btrfs_rebuild_ordered_data_chunk_stripes(&rc, root); if (ret) { fprintf(stderr, "Failed to rebuild ordered chunk stripes.\n"); goto fail_close_ctree; } if (!rc.yes) { ret = ask_user("We are going to rebuild the chunk tree on disk, it might destroy the old metadata on the disk, Are you sure?"); if (!ret) { ret = 1; goto fail_close_ctree; } } trans = btrfs_start_transaction(root, 1); BUG_ON(IS_ERR(trans)); ret = remove_chunk_extent_item(trans, &rc, root); BUG_ON(ret); ret = rebuild_chunk_tree(trans, &rc, root); BUG_ON(ret); ret = rebuild_sys_array(&rc, root); BUG_ON(ret); ret = rebuild_block_group(trans, &rc, root); if (ret) { printf("Fail to rebuild block groups.\n"); printf("Recommend to run 'btrfs check --init-extent-tree ' after recovery\n"); } btrfs_commit_transaction(trans, root); fail_close_ctree: close_ctree(root); fail_rc: free_recover_control(&rc); return ret; }